A  Proofs

Lemma 3. Let X be a random variable taking values in X and let F be a family of measurable
functions with f € F : X? — [—=M, M), with each f € F optionally, and possibly not uniquely,
(partially) parameterized by 8y € O, A : F x ©r — [0, Ma], and X > 0. Then, for any 6 > 0,
with probability at least 1 — §, any IID sample S = {x;};_, drawn from Px satisfies

Ef:]EX,X’f(XaX/) S Z f(xlvxj)+)‘A[f79f]

i,j=1,i#j

-
n(n —1)

2 1\?
+2(Rp1 (F1) + R (Fa)) +2M (n log 5)

ﬁ S @) + AN, 07] SEf + AMy +2(Rpo1 (F1) + R (F2))
i j=1,i]
+2M <i log ;) ’
/ 1 =
Ef=Exx f(X,X) < n(n_l)i’j;’#jf(xi,xj) + AA [f,@f]
+ 2 (7?%71,5 (F1) + Rs (.7:2)) + 6 M (Z log ?) :
1 n )
n(n—1) D flanwy) + AN[f,07] <Ef+AMy +2 (Rn—l,s (Fi) + Rs (]:2))

1
3
+6M (2 log 2>
n )

where Rg is the empirical Rademacher Complexity, given by:

1 n
Rs (F) =E,sup — 6 f (z;
) =B S s

where € is a Rademacher random vector taking values uniformly in {—1,1}", S_; = {x; };Lzl o

Ru—1,s (F) =n"t 30 Rs_, (F), F1 = {g| IrerwexVocx [9(z) = f (2, 2)]},
Fo={9|IferrexVeecx [g(x) = f (x,2")]}, and R,, is the (expected) Rademacher complexity
for a sample of size n, R,, = EgRg, where the expectation is over all samples, S, of size n.

Finally, if the elements of F are symmetric, so thatV¢cr » »ex (f (z,2") = f (2, 2)), F1 = Fo.
In particular, 67 might be the weights associated with the neural network f. Note that, as is the case

for neural networks, ¢y may not be uniquely determined by f, so that multiple fs may be associated
with the same f. We may also take © x = (J, so that f is regarded purely as an element of F.

Proof. Let ESf = ﬁZi,jzl,j;ﬁif(xiaxj)» ES,Af = ﬁzi,jzmﬁf@?u%) +
L0 Bsf = LS Bxf (@i X), 6(8) = supser (Bsf—Ef), 60(s) =
SUp e F (Esf—Esf), and 62 (9) = SUpfe F (IESf—Ef>. Note that ESESf =

EX,X’f ()(7 X/) = Ef = ]EX,X’f (X, X/) = ESESJC. AISO, let S/ = {l‘;}?:l and let
Si ={zi; }?:1 be obtained from S by replacing x; by /, so that x; ; = «; for j # i and x; ; = .
In order to apply McDiarmid’s Inequality, we must find bounds, ¢; such that |¢ (S;) — ¢(S)| < ¢;
fort=1,...,n.
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16(55) = 6(9)] = |sup (Es,f —Ef) - sup (Esf —Ef) ‘
fer feF
< sup |(Bs.f ~Ef) - (Bsf —Ef)|
feF
= sup IAESiffIAEZSf’
ferF
L Y fewe-— Y e
=Sup |—/——« Tij,Tik) = —F7 % Ti, T
fer|n(n—1) Py J n(n —1) Py J
1 n
S ——sup Y | (@i wik) = f (2, 0)]
n(n —1) FEF 1 Tk
1 n
=— sup | f (2,5, i) — f (x5,
n(n —1) /‘—1‘2 _.fe If @i ) (5, 23)]
Jj=1,j#k k=i
+ Y sup |f (i wik) — f (i w)|
k=1k£j,j=i 1<
1 n
=—— | D suplf(zj2) — f(wj,m)]
nn =1\ 57 e
+ Z sup | f (z}, z1) — f (25, 21)|
k=1.kzi T €F
- Zn: sup 2M + i sup 2M <72 (n—1)-2M
n(n —1) i1 dEF ki fEF ~n(n-1)
=4Mn~!
so we can choose ¢; = ¢ = 4Mn~!. The exponent in McDiarmid’s Inequality is then
_ ~1 -
—2¢2 (30, ¢2) o o (n (4Mn_1)2> = —2¢? (16M>n~1) o —LnM—2€. Set-

- 3 1 1
ting & = e 5"M < gives ¢ = (—8M2 logg)2 = M (2log2)? = 2M (2log2)?. Then,

n

McDiarmid’s Inequality yields,

NI

1
so that, with probability 1 — £, ¢(S) < Es¢(S) + 2M (21log 2)*. We now need to compute
Es¢(S). However, this is difficult to do directly, so we instead compute it separately for ¢(!) and
#?). Let € be a Rademacher random vector taking values uniformly in {—1,1}". Then,
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Egs¢™M (S ESSUP s f — Esf

_Essup( =D Z [z, xj) —fZEXf Ziy X)

fer z]:l,j;ﬁz i=1

n

:ES sup Z f Z‘“Z‘ ZES/ Z f(x“xl)
fer \ n(n—1) i eyt ’ Ry oy 7

_ Ly o)) — 1 (e

=Eg Jsclelg).—ES,n(n — 1) i’j;’j?&i (.f (1’1,1']) f (1’171'3-))

1 n
< ES S’ Jsflel_l;: ﬁ ’j_zl;];ﬂ (f (xia ‘rj) - f (x“x;))
< 7Z]ES S/ Sup ] Z (f (LL'“LL']) - f (x“:t;))
Jj=1,j#i

n

1 1 ’
EZ]Exi,s,i,S/_i D n—1 Z (f (x4, 25) _f($i7$j))

i=1 G=1,j%i
1 — 1 z
:EZ]EE x;,S_;,S SuPnfl , Z 46]‘ (f(fl,l‘])—f(l‘l,l‘;))
i=1 J=1,j#1
n 1 n
S nz Erl S_lesupj Z ij(xhxj)
=1 j=1,j#i
1 - ,
+ E,, s csup ] Z —€ f (xi,xj)
FEF TS
1 « 1 ~
=5 Z]Ez Es_; e sup — Z & f (w5, 25)
i=1 fer j=1,5i
n
+ES esugn_l Z .Ejf(xmxj)
Jj=1,j#i
2 n n
= *Z]Ew Es ;.esup — Z € f (xi, )
i=1 fer j=Lj#i
9 n n—1
= — ]E ]E bl
ey st
1 n—1 1 n—1
=2E, Es . ;ggm ; € f (xn,xj) =2ExEg . ;ggnf ; &f (X, x;)
n—1 n—1

< Q]ES_n e Sup
feF,xzex N — 1

=2R,.—1 (]:1)

> eif () =2Es B sup
i1 feEFxex N — 1

Z &f (x’l'z)

=1

where, in the seventh line, we note that the inner sum depends only on S = {x;} US_; and S’ ,
but not 7, in the eighth line, we introduce Rademacher variables because reversing the order of the
difference is equivalent to swapping elements between S_; and S’ ; and, since the expectation is over
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all possible pairs of samples, its value is unchanged, in the tenth line, we note that negation simply
interchanges pairs of Rademacher vectors, so the expectation is unchanged, and, in the final line,

Fi={g| JreFprexVeex l9(z) = f (2, 2)]}.

ES’¢(2) (S) =Eg sup (ESf — ]Ef) =Eg sup (]Es’f — ES/IES/f) =Eg sup Es (ESf - ES’f)
fer fer feF

< Eg,s/ sup (Esf - ES'f)
fer
1 n
_Ess/sup< ZEXf r;, X nZE;gf(g;é,X))
i=1

—Ess/ Sllp < Z EXf .%'Z, Exf(.%‘;7X))>
i=1

feF \ "

1 n
= EcEg, s/ sup < > e (BExf(xi, X) - Exf (ﬂfgaX))>
1 n 1 n
<Escsup = » €Exf(z;,X)+Eg csup = » —Exf(z],X)
fern ; fermn ;

1 — 1 —
=Eg,sup — &Exf (i, X)+Eg,sup — eExf(x;, X
DB S (@ X) +Esesp 3B f (i X)

n

1
= QES e SUp — EzEXf CUu ) < 2ES,5 sup  — &f (xi, x)
ferm Z feFxex N ;

where, in the fifth line, we introduce Rademacher variables because changing the order of the
difference is equivalent to swapping elements between S and S, and, since the expectation is over all
possible pairs of samples, its value is unchanged, in the seventh line, we note that negation simply
interchanges pairs of Rademacher vectors leaving the expectation unchanged, and, in the final line,

Fo =19 | 3rerarexVoex [9(x) = f (x,2")]}. Then,
ES¢(S) = ES sup (IAEsf — ]Ef) = ES sup (Esf — fES'f + INEsf — Ef)
feF ferF
< Egsup (Esf — Esf) +Es sup (Esf — Ef) = Es¢™(S) + Eso?(5)
fer feF
=2R,._1 (.Fl) + 2R, (]:2)

Finally, combining the above results tells us that, with probability 1 — g, o(S) <
1 ~
2(Ru-1 (F1) + Ry (F2)) + 2M (21log 3)? so Esf < Ef + 2(Rp-1(F1) +Rn(F2)) +
1 .
2M (21log 2)?. Replacing ¢(S) by ¢/(S) = sup;cr (]Ef — ]Esf) in the above proof yields
~ 1
Ef < Esf +2(Ru-1(F1) + R (F2)) + 2M (2log2)2. Since A > 0,0 < A < My,
0 < XA[f, 0] < AMy, so we also have,
2, 2 z
n %y

Ef < Esf+MI[f.07]+2(Raci (F1) + Ry (F2)) +2M
— Es,xf +2(Rn_1 (F1) + R (F2)) +2M (i log §> 3

fignf = Bsf + AA[f,07] < Ef + MMy +2 (Ro1 (F1) + R (F2)) + 2M (ilog?)z
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Using 2§ in place of §, we see that, with probability at least 1 — §, Ef < IAES, Af +
1 ~
2 (Rn—l (]:1) + R, (Fg))+2M (% log %) 2 and ES,)\f < Ef+)\MA+2 (Rn—l (Fl) + R, (FQ))+
1
2M (2 log §)?, yielding the first two inequalities.

In order to obtain results in terms of the empirical Rademacher complexity, Rg, instead of the
(expected) Rademacher complexity, R,,, we need to apply McDiarmid’s Inequality a second time.
Let G be a family of measurable functions with g € G : X — [-M, M|, Let R,,—1,5 (G) =

n 3" R, (G),sothat EgR, 1.5 (G) = Rp—1 (G). Then,

Ro-1,5,(9) = Ru-1.5 (g)\

I
M
[
(/‘
%

_ geg J 1,j#k J=1,j#k
= Z]E sup Z €;9 (i ;) bup Z €jg(x;)
99 1 j#k 9 j=1j#k
< 1ZE sup Z lej (9 (%i,5) — g (25))]
n(n — 9€9 ;Y g
= > E. sup g (x (@) I(k # 4)
n—l k:l
<L S tiEa——1 Y am
n(n—1) — nin —1) T
2Mn~!

where, in the fifth line, we note that the term inside the absolute value is potentially nonzero if and
only if it involves x}, which occurs in each sum over j exactly once, except in the case in which
k # i, in which case it does not occur at all.

|Rs, (G) — Rs (9)] = |Ee sugn Zejg (@i;) — Ee su;g)n Zejg xj)
g€ €

j=1 j=1
<n lE. sup2|ej g(zi;)—g(z;)) =n""E. SUP\Q( D) — g (xi)]
geg geg
<n 'E.2M
=2Mn~t

Combining the above results gives,

‘(ﬁn—l,si (F1) + Rs, (]:2)) - (kn—l,s (F1)+Rs (]:2))‘
- ‘(fzn,l s, (F1) — fzn,LS (]-'1)) + (Rs, (F2) — R (fg))‘
]Rn 15, (F1) = Ru_vs (]-‘1)’ +[Rs, (Fa) — Rs (Fo)| = 2Mn~" + 2Mn~"!
=4Mn~!

This is the same value we obtained previously, so that the corresponding e = 2M (2 log 2)?. Then,
McDiarmid’s Inequality gives,
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v
IN

| N >

]

p [(Rn—l (F1) + Rn (F2)) — (7%71—1,5' (F1) + Rs (]:2)) > 6} <

P[(Ru1s (F1) + Rs (F2)) = Ryt (F1) + R (F2))

so that, with probability 1 — &, R,_i (Fi) + Rn(F2) < Ra—1,s(F1) + Rs(Fa) +
2M (%log%)%. Combining this with the previous results shows that, with probability at
least 1= 6, Bf < Bonf +2(Roo1s(F1)+Rs(F2)) + (M +2-2M) (2log2)* =
Boaf + 2(Ru1s(Fi)+Rs(F2)) + 6M (2log2)* and Bsyf < Ef + AMy +
2 (7@,1,1,5 (F1) + Rs (.7:2)> + 6M (21og 2) %, yielding the second pair of inequalities.

Finally, if the elements of F are symmetric, so that Vycr 5 wex f (z,2') = f (2, 2), if g € Fy
then s r pcaxVoex (g(z) = f (2, x) = f(x,2")), s0 g € Fy as well and F; C Fy. Likewise, if
g € Fathen Iscr peaVacr (9(z) = f(z,2') = f (2/,x)), s0o g € Fi as well and Fo C F;. Thus,
Fi1 = Fo.

O

Corollary 4. The inequalities in Lemma can be strengthened to the following:

Ef gﬁ S Fl@img) + AN [f, 0]

i,j=1,i#j

N

2 1
+2Ex (Rp—1 (Fi,x) + R (Fa,x)) + 2M (n log (5>

1

w2 (@) T AN 6] S B+ AMy

4,j=1,1#]

Nl=

2 1
+ 2Ex ('Rn,1 (.7:1’)() + R, (]:2,)()) +2M (n log 5)

1

Bf Sn(n -1

S Fana;) + A6

i,§=1,i%j]

N

. 2 2
+ 2Ex (Rn—l,S (.7:17)() +Rg (.7:27)()) +6M (n log (S)

o
n(n—1)

S fl@ia) + AN[f,05] SEf + AMy

4,j=1,i#j

[N

. 2 2
+2Ex (Rn—LS (]:1,)() +Rs (]:27)()) + 6M (n log 5)

/

]:l,a: = {ga: | er]:vm’e?( [gw (xl) = f ($,$/)]}, ]:2,1 = {ga: | er]-'va:’EX [gw (37/> = f($ ,x)]}
If the elements of F are symmetric, then F1 , = Fa 4.

Proof. This follows directly from the proof of Lemmain which we show that

Es¢M(S) < 2ExEs_, . supser 7 S ef (X m) = 2BEx Rt (Fix)

and E5¢®(S) < 2Eg csupjer 30 6 Ex f (2, X) < 2BExEgesuprer 230 6 f (i, X)
= 2Ex R, (F2,.). Using these sharper bounds in the expressions (obtained from McDiarmid’s
inequality) in Lemma 3 (and using 2 in place of d) yields the first pair of equations.
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In order to obtain the second pair of expressions, we again need to apply McDiarmid’s inequality.
Using results from the proof of lemma@

‘Ex (7%71—1,51 (F1,x)+Rs, (]:2,)()) —Ex (ﬁn—l,s (F1,x)+Rs (]:2,X))’
= ’Ex (ﬁnfl,si (Fi.x) — Ru-1.5 (E,x)) +Ex (Rs; (F2,x) — Rs (F2,x))

<Ex ’Ifzn—l,Si (Fix) — 7A3n—1,s (fl,X)‘ +Ex |Rs, (Fo,x) — Rs (Fo,x)|
=Ex2Mn ' +Ex2Mn~t =2Mn~t +2Mn~!
=4Mn~1

Since this is the same value of ¢; we obtained in lemmal 3] McDiarmid’s Inequality holds for

€ =2M (% log 5) so that, with probability at least 1 — 3, S Ex (Rp_1 (Fi,x) + Ry (Fo,x)) <
~ 1

Ex (Rn—l,s (Fi,x) +Rs (]'-Q,X)) +2M (21log 2)2. Then, the second pair of expressions is

obtained by replacing § by g in the first pair of expressions and combining the result with the above

inequality. Since each of these expressions hold with probability at least 1 — g, their combination
will hold with probability at least 1 — 2 - g =1 -4, as claimed.

If the elements of F is symmetric, so that Vicr o wexf (z,2') = f(2/,2), if g € F1, then
JperVorex (92 (2') = [ (z,2") = f(2',2)], s0 g € Fa, as well and Fy , C Fp,. Likewise, if
g€ FoyIrerVoexgs (@) =f(2',x) = f(z,2)],s0 g € F1 5 as well and Fp , C Fq . Thus,

J:l,z = ]:2,1:-

O
Lemma 5. Let b € H : A x W x X — —M,M] such that if
h e H, —h € H Y C [-M,M], k& : (AxXZxX)? = [-M,M]
Voaredaaex ez (k((a,z,2),(d,2',2") =k ((d,2',2'), (a,2, 2))), and =2 =
(A, W, XY, Z). Additionally, let Ik ((a,w,z,y,2), (¢ 0,2y, 2") = (y — h(a,w,x))
x (y —h(a,w' 2")k((a,z,2), (a’,x’,z')) Then,

EzR, (F1,2) =E=R, (Fo2)

1
<2ME4 x,2,5,e Sup — Z eih (ai, wi, i) k (a5, 24, 2:) , (A, X, Z))
hen M

+ (2log2)? MQMkn’%
— OME4 x,sRn (Fi x.z) + (2log2)® M>Myn~ %

S 2MES€ 7267‘ azawzaxz k((ai7xi7zi)7(aax7z))
heH, aG.A weX z€z M

1

+ (2log 2)5 M?*Mn~2
= 2MR, (F') + (2log2)? M2Myn~*

]:tlzzz:{faavz|3h€Hva6Ax€Xz€Zfazz(a, w/ x Z/): (a w' x) (a x' z) (a7x7z))}
, 2

(
V=h(d w2k ((d,2,7),(a,2,2))}

F' ={f | 3nernacarex :czVarcawex ezf (a0, 2

Proof. Let F = {g | 3nen (9 = fn.x)}- Since, for all h € H, fj, 1 is manifestly symmetric, we have
F1 = Fyand F ¢ = F ¢, where these classes are defined in lemma and corollaryl 4| respectively.
We now compute EzR,, (F1z) = EzR,, (Fa,2).
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1 n
E=R, (F1,2) = E=R, (F2,2) = EzsEs e ?ul; - > eif (@,5)
€ i=1

n

1
=EAwx,v,25,. ?ug -~ ZGif ((as, wi, x4, ¥4, 25) , (A, W, XY, Z))
€ i=1
=EAw,x,v,2,5, sup = Zfz Yi — h(as, wi, ;) (Y — h (A, W, X))
he
x k((a;,xi,2),(A, X, Z))

n

Z h(a;, wi, x;))

:\'—‘

—EAWXYZSeSUP(Y h (AW, X))

x k ((ai, i, 2:), (A, X, Z))

<EAWXYZSESUPY *ZGZ.% (ai, @i, zi) , (A, X, Z))
i=1

1 n
+Eawx,v,28,sup =Y - - Zéih (ai, wi, z;) k ((ai, @i, z) , (A, X, Z))
heH P

l Eiyik((aiaxiazi)a(Aa X, Z))
n 4

K2
n

th (@i, wi, x;) k ((ai, 24, 2:) , (A, X, Z))

=1

n

+EAwx,v,zs.esup —h (AW, X)-
heH

=

+Eaw,x,v,2,5,sup h (A, W, X) -
heH

We analyze each of these four terms separately.

n

1
Ea,w,x,v,2,5,¢ sup Y.— Z eiyik ((ai, 24, 2:) , (A, X, Z))
€

n
i=1

1 n
=FEaxv,z5Y - -~ Z eiyik ((ai, x5, 2) , (A, X, Z))

i=1

1 n
=K Y. — Egiik 1y Ly 21 ) s AaX’Z
A,X,Y,Z,8 nz eiyik ((ai, 23, 2) 5 ( )

=1
=E Y lio ik ((ai, 2, 2),(A, X, Z)) =EyY -0
= LA X)Y,Z S n & Yi iy Liy <), s <y — Ly

=0

n

1
Ea,w,x,v,2,5,esup =Y - — Z eih (ai, wi, x;) k ((ai, i, z) , (A, X, Z))
heM

=1

1 n
E Zezh (ai, wi,xi) k ((ai,xi, Zl) 5 (A,X, Z))‘
=1

<Eax,yv,zs,.sup |Y]
heH

1 n
S EA,X,Z,S,G sup M |- Z Eih (aivwivxi) k ((aia Ti, Z’L) ) (Ava Z))‘
heH n<4

1 n
= MEAx,x,z,5, Sup — Z €ih (ai, wi, ;) k ((ai, 4, 2:) , (A, X, Z))
heH T ]
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where the final equality is due to the fact that h € H if and only if —h € H, so that the supremum of
the sum will be equal to the supremum of its absolute value.

]EAWXYZSE buPh A WX 26}1 g, Wi, T k((ai,xi,Zi),(A,X,Z))

ezh (ai7wi7xi> k ((ai7xi7 Zi) 3 (AaX7 Z))

M:

<Eawx,zs.e sup h' (AW, X)-

1
h,h'€H ns

Mzu

<Eawx,zse sup |N (AW, X)|

Eih (aiawiami) k ((ahxi,zi) ) (AvXa Z))‘
h,h'eH

1
n

1

.
I

<EAXZSE bupj\4 Zez A, Wi, Ty k((aiaxiazi)v(AyXaZ))|

= ME x,z,5, sup — Zeih (a;, wi, ;) k ((ai, 24, 2) , (4, X, Z))
heH T

where the final equality follows, as above, because h € H if and only if —h € H.

Eaw,x,v,z,5, sup —h (A, W, X) - eiyik ((ai, v, 2:) , (A, X, Z))

heH

S

Il
—

K2

1 n
<Eawx,zs5. Eug |h (A, W, X)| ‘n Zfiyik ((ai, i, 2:) , (A, X, Z))
S i—1
1 n
<E EM _ 'sz 1y Ly 21 ) A,X,Z
S B4 X zs, ‘n;ﬂ/ (@i, i, 2i) 5 ( ))‘

1 n
= MEax,zse sup h-— Z eyik ((ai, 23, 2:) , (A, X, Z))
he{-1,1} ni 1

= ME4 x,z,sE. sup Zelhyl (a;, i, i), (A, X, Z))
he{-1,1} T

-

m\»—a
w

<M -EaxzsMM,, (2log2)? n=% = M- MM, (2log2) n
= (21og2)? M2Mn~*

where the final inequality follows from Massart’s Finite Lemma using |yk| < M M},. Combining
these results gives,
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EzRy (F1z) =E=R, (Fo5)
<0+ (2 log 2)F M2Mn~%

1 n
+ ME4,x,2,5, SUp — > e (ai,wi, i) k (a5, 33, 2) , (A, X, Z))
heH 1

1 n
+ MEa x z5.c50p — > €ih(ai,wi, ) k ((ai, 25, %), (A, X, Z))
heH T 2

n

1
=2MEx,x,2,5,e Sup — Z eih (ai, wi, i) k (a5, 24, 2:) , (A, X, Z))
hen M

+ (2log 2)5 Mszn*%

—2MEAXZESESUP Zez asz“xz)k((aiaxmzi)v(AaXa Z))
heH T =
+ (2log2)® M2Myn~?

1
=2ME, x zEs sup — ZEifA,X,Z (@i, wi, @i, 2;)

fa,x,z€F) x z n i—1
+(2log2)? M2Myn~%
— OME 4 x s R0 (Fi x.7) + (2log2)® M>Myn~3

SQMESE *ZQ a“w“xi k((aivxivzi)7(a7xaz))
heH, aG.A mGX z€Z M

+ (2log2)® M2Myn~%
1< 1 .
=2MEg . sup — qu (as, wi, x4, 2;) + (2log 2)é M?Mn~2
ferr a4
= 2MR, (F') + (2log 2)? M2Myn~*

Fiee = {fawz | InernVoreawex ez fou: (a0, 0 2): (T a:) (d',2',2') , (a,2,2)) }
z

(
) h (a w' x/) k ((a/,;r:/, z') , (a,z, z))}

-F = {f | EthH,aEA,IEX,zEZVa 'eAx’€eX,z’! GZf (a ,’LU ,l‘ )

O

Lemma 6. Let X be a measurable space, | be a o-finite measure on X, Fy be a collection of
u-measurable functions, with f € Fo: X - R k: X 2 — R be symmetric and measurable with
respect to the product measure (11 X ), and F be the quotient space of Fo in which functions
are identified if they are equal p-almost everywhere. For f,g € JFo, define the bilinear form

9k = [ f(@)k(z,y)9(y)du(z, y), where  is the product measure. Then, ()}, is an inner product
on F if and only if k is an Integrally Strictly Positive Definite (ISPD) kernel, so that, for all f € Fy
such that f # 0 p-almost everywhere, [ f(z)k(x,y)f(y)du(z,y) > 0. Further, if k is ISPD, then it

defines a metric on F by di(f,g) = =(f-9,f— g>é

Proof. For f,g € Fo,
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@f+mmk=/@f+mmmmwm@mm%m

- c/f h(y)du(z, y) +/g(x)k(x,y)h(y)du(x,y)
- C<f, >k + (g, h>

(f,9)k = /f(w)k(xyy)g(y)du(%y) = /g(y)k(yaw)f(x)du(:v,y)

:/g@mqu@Mme

so (), is a bilinear form, as claimed.
To see that (), is well defined on F. Note, that, if f = f’ a.e., then

[(f 9k — ’/f k(z,y)g(y)du(z,y) — /f (y)du(z, y)‘
< [156@) = /@) ) o)l i)
/If‘f 2)| k(z, ) 9(y)| du(a. )
//w £) @) (o9} 9(0)] ds@)duy) = [ 0dty)

where, in the fourth line, we use Tonelli’s Theorem and the fact that f — f' = 0 a.e., so
| — fllkllg| = 0 py-a.e. and, thus, the inner integral is 0. Thus, if f = f" a.e., (f,9)r = ([, 9)&-
By the symmetry of the bilinear form, if g = ¢’ a.e. (', g)x = (f',9' )k, sothat,if f = f/ . g=¢
ae. (f,9)r = {f 9 )k, so ()i is well defined on F.

If k is also ISPD, then, for f # 0 p-almost everywhere, (f,hHw=[f(z y)f(y )d,u(ac y) >0,
so that, combined with the above results, (), is an inner product on F. Conversely, if ()1, is an inner
product, then, for f # 0 p-almost everywhere, (f, f)r > 0, so k is ISPD, by definition.

Since (), is an inner product, it defines a norm ||||x on F by || f|x = (f,f)%. Letdg(f,9) = I1f—9llx-
Since ||[| is a norm, di.(f,9) = |If = gllk = [ =1lllg = fllx = llg — flle = dr(g, f) and, if
[ # gae., then, di(f,g) = |f — gllx > 0, while di(f, f) = |lf — fllx = [|0]x = 0. Finally,
di(f;h) = If = hlle = If =9+ 9= hllk <|If = gllx +[lg = hllx = dr(f, ) + dr(g,h) by the
subadditivity of the norm, so that the triangle inequality holds and dj, is a metric on F, as claimed.

O]
Theorem Let hy, minimize Ry (h) and lAlk,U,Am minimize IA%k7U7>\,n(h) forh € H, k: (A X
X x Z)2 = [-My, My, A : H x O, — [-0,M,], and let h* : A x W x X — R satisfy
E[Y — (AW, X)|A, X, Z] = 0P x, z-almost surely, where
Ry(h) :E[(Y—h(A W, X)) (YY" —h(A, W X)Nk(AX,Z),(A, X', Z")]
Z yi — h(ai, wi, z;)) (y; — b (aj,wj, z;))

X k ((aiv L, Zi) ) (aj’ Ljs ZJ))] + )‘A[h’ eh]

Rk,U,)\,n(h) =
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Also let,
di (h, ') =E[(h (A,W,X) —h (AW, X)) (h (A, W X")—h' (A, W X"))
x k((A,X,2),(A, X", Z"))]

Then, d2 (h*,h) = Ri(h) and, with probability at least 1 — 4,

di (h*a ilk:,U,k,n) S di (h*a Bk) + )\MA + 8MEA7X,Z (Rn—l (]:1/47)(72) + Rn (./—"547x7z))

1
2

2. 2 .
+ 16 M? M, (n log 5) +10(2log2)? M2Myn™2

< @ (W7 ) + AMy +8M (R (F') + Ry (F1)

2

2 2102 Ve -3
+ 16 M*“Mj, n10g5 +10(2log2)2 M*Myn~2

Further, if Assumptionholds, so k is ISPD, then dy, is a metric on Li‘ xz and, if the right hand side
of the inequality goes fo zero as n goes to infinity,

d, (]E [h*|A, X, Z] — E [i}k,k,n A, X, Z]) P 050 E [hkm
in dy. Also, ’E[h*\AX, Z]-E [ﬁkm A X, Z”
E[h*|A, X, Z] in L? (P 4 x z)-norm.

A, X, Z} P B, X, 7]

AX,Z] L

E) 0 so E {iLk’)\yn

Pax z

-Ft/z,z,z = {fa,x,z | EIheHVa/GA,I/GX,Z/EZfQ,x,Z (a/y ’LU/, -T/v Zl) =h (a/7 ’LU/, .Z'/) k ((a/7 LU/, Z/) ) (a7 Z, Z)) }
]:/ = {f | HhE’H,aEA,CL‘EX,ZEZVa'EA,:E’éX,z’GZf ((1,, ’LU/, 1'/, Z/) =h (alv ’l.U/, J],) k ((alv xlv Zl) ’ (a‘a z, Z))}
Proof. Let =2 = {A, W, X,Y, Z}. Since h; minimizes Ry (h) and iAzk’U’)\,n minimizes Rk,U,A,n(h)
for b € H, Ri.vam (ilk,U,A,n) < Riuan (hk>.

Taking f ((a’7 w,r,Y, Z) ’ (G/, ’LU/, .’If/, y/’ Z/)) = (y —h (G/, w, .’Il)) (y/ —h (a/a U}/, x/))
k((a,z,2),(d, 2, z’)inoting that |f| < (M + M)? - My, = (2M)? M, = 4M?> My, and applying

lemma and corollary|4|to Ri(h) = Ef and Rk’U’ an(h) = Es, A f tells us that, with probability at
least 1 — ¢
2 b

N|=

A 2 2
Ri(h) < Riuan(h) +2Es (Ry-1 (Fig) + R (Faz)) + 8M2 M, (n log 5)

A 2 2 2
Rk,U,)\,n(h) < Rk(h) + MM + 2Eg (Rn—l (]‘—175) + R, (]:2,5)) + 8M2Mk <7’L log 5>

so, with probability at least 1 — 9,

A~ ~ ~ 2 2 2
Ry, (hk7U7/\,n) < Riuan (hk7U7/\,n) + 2Bz (Ry—1 (Fiz) + R (Foz)) + 8M? M, (n log 5)

i ) g ov3
< Rivoam (hk) + 2Bz (Ry1 (Fiz) + Ry (Fa.2)) + SM2M,, <n log 5>

~ 2 2 2
< Ry (hk) 4+ MMy + 4Bz (Rp_1 (Fr.2) + Ry (Fo.z)) + 16M2M,, (n log 5)

Applying lemma[5]yields,
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Ry, (ilk,U,/\,n> < Ry (ilk) + AMy +4 (2MEA x,zRn-1 (Fa x.z) +2ME4 x,z2Rn (Fi x.2))

+4((210g2)%M2M;€(n—1)_%+(210g2)%M2Mkn_%>
2 2\?
+ 16 M2 M, ( log )
n 1)

< R (hy) + AMy +8MEa x,z (Ru-1 (Fh x.2) + R (Fhx.2))

1 1
1 2 2 2 2
+4(2log2)? M2Mn"2 (( & ) +1> + 16M2 M, (log§)
n

n—1 5

< Ry, () + AMy + 8ME x,z (Ru-1 (Fi x.2) + R (Fax.2))

1
2

20 (2100 2 Y AR Mon k.
+ 16 M~ My, log(S +4(2log2)? M*“Myn™2
n

DO | Ot

= Ry (A ) + AMy + 8ME4 x 7 (Ru1 (Fhx.z) + R (Fhx.2))
%

2 2 1
+ 16 M2 M, ( log 5) +10(21og2)% M*Myn~
n

W=

- 2 2\
<Ry (hk) + AMy 4 8M (Rp—1 (F') + Ry (F')) + 16 M2 M;, (n log 6)

+10(2log2)? M2Myn~2

By assumption, h* satisfies E [Y — h*(A, X, X)|A, X, Z] = 0 P4 x,z-almost surely, so that,

EY —h(A W, X)AX,Z]|=E[Y —h* (A, W, X))+ h*" (AW, X) - h(A, W, X)|A, X, Z]
=E[Y -h" (AW, X)AX,Z]|+ER" (AW, X) - h(A, W, X)|A, X, Z]
=0+E[R* (AW, X)—h(A W, X)|A X, Z]
=E[Rr" (AW, X)—h(A, W, X)|A, X, Z]

P 4, x,z-almost surely. Then,

Re(h) = E[(Y — h(A,W, X)) (Y’ = h (A, W, X)) k (4, X, Z), (A, X', Z'))]
=E[E[(Y - h(A,W,X)) (Y —h(A, W, X))
% k((A,X,Z), (A, X", Z)(A X, Z) (A, X, Z)]]
=EE]Y -h(AW,X)|A X, Z]
x E[Y' — h (A, W', X")|A", X', Z']
% k((A,X,Z), (A, X", Z'))]
—E[E[h* (A, W, X) — h(A,W,X)|A, X, Z]
x E[h* (A, W', X") — h (A", W', X")|A', X', Z']
% k((A,X,Z), (A, X, Z'))]
=E[E[(h* (A, W, X) — h(A,W, X)) (h* (A", W', X") — h (A", W', X"))
% k((A,X,Z), (A, X", Z)(A X, Z) (A, X, Z')]
= E[(h" (A, W,X) — h (A, W, X)) (A" (A, W', X') — h (A, W, X))
(

x k((A,X,2),(A, X", Z")]
=d; (", h)
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Thus,

di (h*, ilk,U,A,n) = Ry (ﬁk,U,A,n>

< Ry, (Bk) + AM +8MEA x,z (Rn-1 (Fax.z) + Rn (Fax.z))
1
+ 16 M2 M, (i log ?) +10(2log2)? M2Myn~?

— 2 (h*, Bk) +AM +8MEa x.z (Ro—1 (Fax.z) + R (Fax.z))

2. 2 1
+ 16 M2 M, (n log 5) 1£10(2log2)? M2Myn~*

1
2

- 2 2

+10(2log2)? M2Myn~%

If the right hand side of this expression goes to zero as n goes to infinity, then, for any §, e > 0, we can
find n such that the right hand side is less than €. Further, since we can do this for any value of §, we
can choose a sequence of d,,s decreasing in n, so that lim,,_, ., 4,, = 0, so that the left hand side con-
verges in probability. If & is ISPD, by Lemmal6| d, is a metric on L2 y . Thus, dj, (h hio M) LR

A X, Z} LN E[h*|A, X, Z], in dj. Further, the fact that k is Integrally

A X, Z} ’

0, so E |:illc,U,>\,n

Strictly Positive Definite, implies that HE (114, X, Z] ~ E [hvpn P, 0, s0

Pax z

that E |:}Alk,U,)\,n

A X, Z} 2E [h*|A, X, Z],in L? (P gx z)-norm, as well.
O

Lemma7. Let f : X% — [-M, M|, Vyex f (z,2) >0, U [f] = ﬁznj 1jzi | (@i, 25), and
Volf] = n2 sz:lf(xi,xj). Then, (n — 1)U, [f] < nV,[f] < (n — 1)U, [f] + M.

Proof.
(n— l)U Z fzg,z;) <n ™t Z f(zi,xj)
i,7=1,77#1 i,j=1
=aVulfl=n""| DY fla)+ D flanw)
i,j=1,j#1 1,j=1,j=1
<n"tn(n—1)U,[f 12]‘ zi,2:) < (n—=0)U,[f] + M
)

(n—1)UL[f] < nVilf] < (n = 1)U, [f] + M
O

Corollary 8. Let hj, minimize Ry (h) and lAzky,,\’n minimize Rk7v,,\7n(h) for h € H and let h* :
AXxWx X = Rsatisfy E[Y — h*(A, W, X)|A, X, Z] = 0 P4 x z-almost surely, where

Ry(h) =E[(Y — h(A,W, X)) (Y/ - h(A/7 W/’X/)) k((AX,2), (AlaX/7 Zl))]

Revan(h) =n">" (yi = h(ai,wi, 2:)) (y; — b (ag, w5, 25)) k ((ai, 26, 2) , (a5, 25, 25))

i,j=1
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Also let,
di (h,W)=E[(h(AW,X) -1 (AW, X)) (h(A W X")—1h A W, X))
xk (A, X,2), (A", X', Z")]

Then, d2 (h*,h) = Ri(h) and, with probability at least 1 — 4,

dz (h*, ilk,V,A,n) <d: (h*, ilk) + AMy +8MEa x,z (Rn-1 (Faxz) +Rn (Fax.z))

5
+10(2log 2)Z M2Mjn "3

1
2. 2\2
+ 16M> M, (n log ) + (AMPMy, + AMy) (n—1)7*

- 2. 2\2
<d: (h*, hk) + AMy +8M (Ry—1 (F') + Ry (F')) + 16 M? M, <n log 6>

+ (AM? My + AM,) (n — 1)1 +10 (2log 2)* M>Mn~*

Further, if Assumptionholds, so k is ISPD, then dy, is a metric on L% z and, if the right hand side
of the inequality goes fo zero as n goes to infinity,

dk (]E [h*|A,AX7 Z] —E |:}Alk-7)\7n A,X, Z]) z) 0 so E |:}Alk,k7n
in dy. Also, ’E[h*\A,X, Z]-E [ﬁk,m A X, ZH
E[h*|A, X, Z] in L? (P 4,x,z)-norm.

A, X, Z} P B4, X, 7]

A,X,Z] L

z) 0 so E V“ﬁ)\vn

Pax z

]:Lll,x,z = {fa,;v,z | ElhE’HVcL’EA,E’GX,Z’GZfa7172 (a,awl7xl7 Z/) =h (a,7wl7ml) k (a',x’, Zl) ’ (CL,ZC, Z))}
h

(
(a/,w/,m/) k ((a/,x/, z/) , (a,z, z))}

F = {f | Fner,aczex ze2Varcaarex ez f (a/,w/,m/,z/) =

Proof. Defining f and = as in Theorem then Rkawn(h) = mzazl,ﬁéi fn (&,65),

Riuan(h) = ﬁzzjzl,#i fn (&,&) + MAf.0f], Riva(h) = n2 i i1 I (Gis&)),
Rivan(h) =n"2 szzl I (&,&5) + AA[f, 0], Noting that | f| < 4M? M), and applying Lemma
to Rk,U,A,n and Rk,V,)\,n yields,

. R nooa
Rin(h) = Ry un(h) + AA[f, 0] < —1 1Rk,V,n(h) + AA[f, 0]
nooa n noos
< — = —
< Bevin(h) + = Af 05 = ——— Rrvan(h)

< Riun(h) + (n = 1) 4M2 My + ——— M|, 0]
n—
From the proof of Theorem with probability at least 1 — g, we have,

~ 2 2 2
Ri(h) < Ry an(h) + 2Bz (Ru—1 (Fi,2) + R (Fo,2)) + 8M> M, (n log 5)

. 9 9\3
Rian(h) < Ri(h) + AM? 4+ 2Bz (R 1 (Fi2) + Rn (Foz)) + 8M2 M, (n log 5)

Recalling that }Alk-WV’)\,n minimizes IA%k7V7A7n(h) and hj minimizes Ryi(h) over H, so that

Rivan (hk,\/,)\,n) < Revan (hk> and combining the above expressions gives,
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~ ~ ~ 2 2 2
Ry (hk,v,A,n) < Reuan (hk,v,,\,n) + 2Bz (Ru—1 (Fi.2) + R (Fo,z)) + 8M?M;, (n log 6)

noo . L /2 9\?
< = = = - —
< L Rivian (Akvam) + 2= (Ro1 (F1.2) + Ro (Fo2)) + 8M2 My (n log 5)
1
< R (ﬁ)+2}E—(R (Fi,2) + R (Fo2)) + 8M>M 210g2)
= n_1 k,V,.A\n k = n—1 1,= n 2,E2 k n g 5

< R (Bt) + (0 = 1) "M 4M My + %AA[]‘, 0f] + 2Bz (Ro_1 (Fiz) + R (Faz))

5
< Ry (hg) + (n = 1) MM, + —AMy +4Ez (Ry1 (F1.2) + R (Fa2))

1
2 2\2
+ 8M? M, ( log )
n

2. 2\*?
+ 16 M2 M, (log >
n )

< Ry (hk) + (AM2My, + AMy) (n — 1)1 + AMy, + 4Bz (Ry_1 (Fi.z) + R (F22))

1
2 2\2

+ 16M? M, ( log >
n 1)

Using Lemmaand results from the proof of Theorem

Ry, (%@,V,A,n) < Ry, (ilk) + (4M2Mk + )\M)\) (TL — 1)_1 + AM
2 2\
+8M (Rp_1 (F') + R (F')) + 16 MM, (n log 6)
+10(2log2)? M2Myn~%

1
2

- 2. 2
= Ry, (hk) + AMy +8M (Ry—1 (F') + Ry (F')) + 16 M2 M;, (n log 6)

+ (AMP My + AMy) (n— 1)~ +10 (21og 2)® M>Myn ™%

Recalling that d3 (h*, h) = Ry(h), we have,

N ~ 2 2 2
&2 (h*, hk,v,m) <d? (h*, hk) + AM2 4 8M (Rt (F') + R (F')) + 16M2M,, (n log 5)

+ (AM? My + AM,) (n — 1)1 +10 (2log 2)* M>Myn~*

O

Theorem Under Assumption 4| h* is the unique solution P 4 w, x-almost surely. Further, if
E [han|4, X, 2] B B[4, X, 2], a2 1.

Proof. Let h*, h*' both be zeros of E[Y — h (A, W, X)|A, X, Z], P 4, x, z-almost surely, then
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E[(h* — h*') (A, W, X)|A, X, Z] =E[(h" =Y +Y — ") (4, W, X)|4, X, Z]
:E[Y—h*'(A,VKXﬂA,X,Z} —E[Y —h* (AW, X)|A,X,Z]=0-0
=0

P 4,x,z-almost surely, so h* = h*' P 4 w, x -almost surely.

P P

It E [ﬁk’k,n A X, Z} P BRI, X, Z), ‘E [(hn — h*) (A, W, X)‘A,X, Z} ‘ ) LAY
A X,Z
meaning that the convergence occurs P 4 x z-almost surely, so, by assumption, by — h* . L
AW, X
0, so ;Ln 3> h*.
O

B Hyperparameter Tuning & Model Architecture

We tuned the architectures of the Naive Net and NMMR models on both the Demand and dSprite
experiments. The Naive Net used MSE loss to estimate Y'“, while NMMR relied on either the
U-statistic or V-statistic.

Within each experiment, the Naive Net and NMMR models used similar architectures. In the Demand
experiment, both models consisted of 2-5 (“Network depth” in Table fully connected layers with
a variable number (“Network width”) of hidden units.

In the dSprite experiment, each model had two VGG-like heads [28] that took in A and W images
and applied two blocks of {Conv2D, Conv2D, MaxPool2D} with 3 by 3 kernels. Each Conv2D layer
had 64 filters in the first block, then 128 filters in the second block. The output of the second block
was flattened, then projected to 256 dimensions. Two subsequent fully connected layers were used,
with their number of units determined by the “layer width decay” factor in Table For example, if
this factor was 0.5, then the two layers would have 128 and 64 units, respectively.

We performed a grid search over the following parameters:

Table S1: Grid of hyperparameters for our naive neural network and NMMR models.

Hyperparameter Demand dSprite

Learning rate {3e-3, 3e-4, 3e-5} {3e-4, 3e-5, 3e-6}
L2 penalty {3e-5, 3e-6, 3e-7}  {3e-6, 3e-7}

# of epochs 3000 500

Batch size 1000 256

Layer width decay {0.25, 0.5}
Network width {10, 40, 80}

Network depth {2,3,4,5}

We selected the final hyperparameters by considering the lowest average U-statistic or V-statistic on
held-out validation sets for NMMR or the MSE for the Naive Net. For the Demand experiment, we
repeated this process 10 times with different random seeds and averaged the statistics. For the dSprite
experiment, we had 3 repetitions.

Full hyperparameter choices for all methods used in this work are available in our code. The
hyperparameters selected for NMMR were tuned for each dataset:
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Table S2: Optimal hyperparameters for NMMR methods

Hyperparameter NMMR-U Demand NMMR-U dSprite  NMMR-V Demand NMMR-V dSprite
Learning rate 3e-3 3e-5 3e-3 3e-5

L2 penalty 3e-6 3e-6 3e-6 3e-7

# of epochs 3,000 500 3,000 500

Batch size 1,000 256 1,000 256

Layer width decay — 0.25 — 0.5

Network width 80 — 80 —

Network depth 4 — 3 —

The hyperparameters for Naive Net for each dataset were:

Table S3: Optimal hyperparameters for Naive Net model

Hyperparameter Naive Net Demand  Naive Net dSprite
Learning rate 3e-3 3e-5

L2 penalty 3e-6 3e-6

# of epochs 3,000 500

Batch size 1,000 256

Layer width decay — 0.25

Network width 80 —

Network depth 2 —

Another hyperparameter of note is the choice of kernel in the loss function of NMMR. Throughout,
we relied on the RBF kernel:

—llzi—=;113
k(x;,x;) =e 22

with o = 1. For future work, we could consider other choices of the kernel or tune the length scale
parameter . In the dSprite experiment, the kernel function is applied to pairs of Z and A data. Since
A is an 64 x 64 image, we chose to concatenate (z;, 0.05a;) as input to the kernel for the i-th data
point. One could also consider tuning this multiplicative factor, but in practice we found that it
allowed for both Z and A to impact the result of the kernel function.

C Experiment Details

C.1 Demand Data Generating Process

The Demand experiment has the following structural equations:

* Demand: U ~ U(0, 10)

¢ Fuel cost: [y, Z5] = [2sin(27U/10) + €1, 2 cos(27U/10) + €3]
* Web page views: W = 7g(U) + 45 + €3

 Price: A=35+ (Z1 +3)g(U) + Z2 + ¢4

» Sales: Y = A x min(exp(Wl—BA), 5) —5g(U) + €5

* where g(u) = 2 (% + 45" | 16— 2), and ¢, ~ N(0,1)
C.2 Demand causal DAG
C.3 Demand Exploratory Data Analysis
In Figure Panels A and B show that W is a more informative proxy for U than Z, although

neither relationship is one-to-one. Panel C shows that the true potential outcome curve, denoted by
the black curve a — E[Y?], deviates from the observed (A, Y) distribution due to confounding. In
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N U: Demand —
Z: Cost / \ W: Views
A: Price — Y: Sales

Figure S1: Causal DAG for the Demand experiment.

particular, the largest deviation occurs at smaller values of A. The goal of each method is to recover
this average potential outcome curve given dataon A, Z, W, and Y.

A100] B10.0] Cio0/
.‘
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Figure S2: Views of the A, Z, W, Y, U relationships. (A) Z; (red) and Z> (orange) have sinusoidal
relationships with U, (B) W has a far less noisy relationship with U, and (C) the observed distribution
(A,Y) (blue) deviates from the true average potential outcome curve (black).

C.4 Demand Boxplot Statistics

Table|S4| contains the median and interquartile ranges (in parentheses) of the c-MSE values compiled
in the boxplots shown in Figure NMMR demonstrated state of the art performance on the Demand
benchmark. We also extended the benchmark to include training set sizes of 10,000 and 50,000
data points, whereas Xu et al. [7] originally included 1,000 and 5,000 data points. We observed that
NMMR-U had strong performance across all dataset sizes. PMMR and KPV were unable to run on
50,000 training points due to computational limits on their kernel methods, while DFPV exhibited a
large increase in c-MSE as training set size increased.

Table S4: Demand Boxplot Median & (IQR) values
Training Set Size

Method 1,000 5,000 10,000 50,000
PMMR 587.51 (40.35)  466.5 (33.47) 423.1 (29.26) —

KPV 469.94 (97.07)  481.32 (54.8) 470.62 (29.3) —

Naive Net 160.35 (33.78)  186.97 (30.22)  204.36 (113.71))  224.09 (33.17)
CEVAE 180.8 (161.26) 214.98 (120.88)  170.58 (176.1)  171.98 (293.27)
2SLS 82.08 (18.82) 83.16 (4.51) 82.1(5.55) 82.01 (2.22)
DFPV 41.83 (11.78) 48.22 (7.73) 87.14 (471.59)  242.15 (464.38)
LS 63.19 (5.82) 65.14 (2.64) 64.98 (2.44) 64.65 (0.74)
NMMR-U (ours)  23.68 (8.02) 16.21 (10.55) 14.25 (4.46) 14.27 (12.47)
NMMR-V (ours) 23.41 (11.26) 30.74 (17.73) 42.88 (29.45) 62.18 (16.97)
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C.5 Demand Prediction Curves

Figures
Demand

S3 provide the individual predicted potential outcome curves of each method in the

experiment. While Figure
of the model’s actual estimate of

provides a summary of the c-MSE, this does not give a picture
@]. These figures give an insight into ranges of A for which

each model provides particularly accurate or inaccurate estimates of the potential outcomes. Across
all training set sizes, methods are most accurate in the region where the training observations of Y’
are closest to the ground truth (see Figure|S2).
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Figure S3: Demand experiment with 1,000 training data points with the true average potential
outcome curves (black) and each method’s predicted potential outcome curves (blue). Each method
was replicated 20 times, generating one predicted curve per replicate. Note that with only a limited
amount of data, most methods only recover the true curve in the later half of the range of A. See

Figure
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Figure S4: Demand experiment with 5,000 training data points with the true average potential
outcome curves (black) and each method’s predicted potential outcome curves (blue). Each method
was replicated 20 times, generating one predicted curve per replicate. Note that now, NMMR begins
to adjust in the range of A € [10, 20] and bend down towards the true curve. NMMR is empirically
accounting for the unobserved confounder U through the proxy variables.
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Figure S5: Demand experiment with 10,000 training data points with the true average potential

outcome curves (black) and each method’s predicted potential outcome curves (blue). Each method

was replicated 20 times, generating one predicted curve per replicate. We observed some additional
curvature to NMMR prediction curves
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Figure S6: Demand experiment with 50,000 training data points with the true average potential
outcome curves (black) and each method’s predicted potential outcome curves (blue). Each method
was replicated 20 times, generating one predicted curve per replicate. KPV and PMMR timed out
due to computational requirements of their kernel methods.

C.6 dSprite Data Generating Process

The dSprite experiment has a unique data generating mechanism, given that the images A and W are
queried from an existing dataset rather than generated on the fly. The dataset is indexed by parameters:
shape, color, scale, rotation, posX, and posY. As mentioned in the paper, this experiment fixes shape
= heart, color = white. Therefore, to simulate data from this system, we follow the steps:

1. Simulate values for scale, rotation, posX, posY T,

2. Set U = posY.

3. Set Z = (scale, rotation, posX).

4. Set A equal to the dSprite image with the corresponding (scale, rotation, posX and posY) as
found in Z and U, then add NV(0,0.1) noise to each pixel.

5. Set W equal to the dSprite image with (scale=0.8, rotation=0, posX=0.5) and posY from U,
then add A/ (0, 0.1) noise to each pixel.

_ 5llvec(A)T B||3—-5000 « (31

6. Compute Y 000 X8U5__2155'5)2 +e, ¢~ N(0,0.5)

" Let DU(a, b) denote a Discrete Uniform distribution from a to b. Scale is a Discrete Uniform random
variable taking values [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] with equal probability. Rotation ~ DU (0, 27r) with
40 equally-spaced values. And both posX, posY ~ DU (0, 1) with 32 equally-spaced values.

C.7 dSprite causal DAG

U: posY

W: Fig(scale=0.8, rotation=0,

Z: (scale, rotation, posX) p0sX=0.5, posY)

S

A: Fig(scale, rotation,

posX, posY) Y': Outcome

Figure S7: DAG for the dSprite experiment
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C.8 dSprite Exemplar A and W

0 10 20 30 40 50 60
0 10 20 30 40 50 60

(b) Example of W in dSprite, which is always a
centered, vertical heart with a fixed scale. The only
thing that changes is posY, which is determined by
U.

(a) Example of A in dSprite corresponding (scale,
rotation, posX and posY) determined from Z and
U.

Figure S8: Examples of the image based treatment A and outcome-inducing proxy W in the dSprite
experiment. Previous proximal inference methods did not take advantage of the inductive bias of
image convolutions, which NMMR naturally incorporates into its neural network architecture for the
dSprite benchmark.

C.9 dSprite Test Set

The dSprite test set consists of 588 images A spanning the following grid of parameters:
5 10 15 20 25 30
* pOSX € [Oa 35_17 :%_(1)3 %7 %_(1)3 %7 %]
* posY € [0, 57, 37, 315 51+ 510 1)
« scale € [0.5,0.8.1.0]

* rotation € [0, 0.5, 7, 1.57]

||vec(a) B||3—5000
1000 .

1
The labels for each test image A are computed as E[Y?] = 12

C.10 dSprite Boxplot Statistics

Table contains the median and interquartile ranges (in parentheses) of the c-MSE values compiled
in the boxplots shown in Figure NMMR demonstrated state of the art performance on the dSprite
benchmark. We also extended the benchmark to include training set sizes of 7,500 data points,
whereas Xu et al. [7] originally included 1,000 and 5,000 data points. We observed that NMMR-V
had strong performance across all dataset sizes and particularly excelled when training data increased.
Most other methods remained relatively consistent as the amount of data increased.
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Table S5: dSprite Boxplot Median & (IQR) values
Training Set Size

Method 1,000 5,000 7,500
PMMR 17.7(0.78)  17.74 (0.64)  16.2 (0.48)
KPV 23.4(137)  16.58(0.93)  14.46 (1.01)
Naive Net 32.25(9.72) 34.24(11.95) 34.76 (11.95)
CEVAE 2634 (0.82) 26.16 (1.51)  25.77 (1.45)
DFPV 10.02(2.95) 8.81(2.04)  8.52(1.06)
NMMR-U (ours)  4.72 (1.1) 7.1 (2.74) 7.52 (2.05)
NMMR-V (ours) 11.8(1.88) 1.82(0.67)  1.53(0.68)

C.11 dSprite DFPV vs. NMMR Evaluation

In order to assess whether our improved performance on dSprite was due to the fact that NMMR
leveraged convolutional neural networks while DFPV relied on multi-layer perceptrons with a
spectral-norm regularization. We modified DFPV to include the same VGG-like heads mentioned
in Appendix[B| We performed a grid search over the same learning rates and L2 penalties in Table
Figure|S9|shows that DFPV with CNNs actually performed slightly worse than the original,
published-version of DFPV. We report several different results for DFPV CNN since the results were
so close after cross validation. Figure [S9|shows results for only the 1,000 data point evaluation —
DFPV had trouble scaling in practice as dataset size increased.

100

BS PMMR
=

e
——

B L
* _ ES DFPV_CNNI
E3 DFPV_CNN2
E DFPV_CNN3
- NMMR U (ours)

- NMMR V (ours)

Causal MSE (logjo)

1,000
Data Size

Figure S9: Performance of DFPV with CNNs compared to other evaluated methods on the dSprite
benchmark. DFPV with CNNs performed worse compared to the published version of DFPV across
a variety of hyperparameters

Model Learning Rate  Weight Decay
DFPV_CNNI1 3e-6 3e-6
DFPV_CNN2 3e-6 3e-7
DFPV_CNN3  3e-5 3e-7

Table S6: Hyperparameters for reported DFPV_CNN models
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D Batched Loss Function

When computing the unregluarized version of the loss function of NMMR:
L= —hAW,X)TK(Y - h(A,W,X))

we either had to compute the kernel matrix K for all points in the training set once, or dynamically
calculate this matrix per batch. The latter approach would require many, many more calculations
since we’d be repeating this process every batch and every epoch.

Our solution relied on batching the V-statistic and U-statistic. Recall we can write the V-statistic as:

n
Ry(h)=n">" (yi — hi) (y; — hy) ki
i,j=1
We can vectorize this double sum as a series of vector and matrix multiplciations:
k‘171 kl,n Y1 _h(a7w1’$1)
(y1 — h(a,w1,21),...,yn — h(a, wy, x,)) : .
kni oo knon yn_h(a>wnamn)

and for the U-statistic, we can simply set the main diagonal of K to be O to eliminate ¢ = j terms
from this double sum.

However, calculating K for large datasets in a tensor-friendly manner resulted in enormous GPU
allocation requests, on the order of 400GBs in the dSprite experiments. We implemented a batched
version of the matrix multiplication above to circumvent this issue:

def NMMR_loss_batched(model_output, target, kernel_inputs,
kernel_function, batch_size: int, loss_name: str):
residual = target - model_output
n = residual.shape [0]

loss = 0
for i in range (0, n, batch_size):
# return the i-th to i+batch_size rows of K
partial_kernel_matrix = calculate_kernel_matrix_batched(
kernel_inputs,
(i, i+batch_size),
kernel_function)
if loss_name == "V_statistic":
factor = n **x 2
if loss_name == "U_statistic":
factor = n * (n-1)
# zero out the main diagonal of the full matrix
for row_idx in range(partial_kernel_matrix.shape[0]):
partial_kernel _matrix[row_idx, row_idx+i] = 0
# partial matrix multiplication
temp_loss = residual[i:(i+batch_size)].T @
partial_kernel_matrix @ residual / factor
loss += temp_loss [0, O]
return loss

E Noise Figures

In the Demand noise experiment, we tested each method’s ability to estimate E[Y*] given varying
levels of noise in the proxies Z and W. Specifically, we varied the variance on the Gaussian noise
terms €1, €2, and €3 from the Demand structural equations described in Appendix We will refer
to these variances as 0% , 0%, and o, respectively, and we set 03 = o7, throughout. We refer to
the pair (0% , 0% ) as "Z noise" and o7, as "W noise". In Xu et al. [7], these variances were all equal
to 1. We evaluated each methodfon 5000 samples from the Demand data generating process with the
following Z and W noise levels:
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0%,,0%, €{0,0.01,0.1,0.5,1,2,4,8,16}
oty € {0,0.01,0.1,0.5,1, 16, 64, 150}

In total there are 9 x 8 = 72 noise levels. From Appendix Figure Panels A and B, we can see that
7, and Z lie approximately within the interval [—4, 4], whereas T lies approximately in the interval
[20, 45]. Accordingly, we chose the maximum value of Z and W noise to be the square of half of the
variable’s range. So for W, half of this range is approximately 12.5 units, therefore the maximum
value for J%,V is 12.52 ~ 150. Similarly, half of the range of Z is 4, and so the maximum value of
both a%l and 0%2 is 42 = 16. This maximum level of noise is capable of completely removing any
information on U contained in Z and W.

Intuitively, as the noise on Z and W is increased, they become less informative proxies for U. We
would expect that greater noise levels will degrade each method’s performance in terms of c-MSE.
This experiment provides a way of evaluating how efficient each method is at recovering information
about U, given increasingly corrupted proxies. It also provides some initial insights into the relative
importance of each proxy, Z and W.

Figurecontains a 72-window grid plot with 1 window for each combination of Z and W noise
and Figures[STT[ST8|show each method’s individual potential outcome prediction curves at each
of the 72 noise levels. We can see that NMMR-V is notably more robust to noise than NMMR-U,
and also appears to be the most efficient method at higher noise levels. NMMR also consistently
outperforms Naive Net, supporting the utility of the U- and V-statistic loss functions. However, we
also note that kernel-based methods, such as KPV and PMMR, rank increasingly well with increased
noise level, likely due to their lack of data adaptivity. We also observe that less data adaptive methods
are less prone to large errors. Finally, we see a surprising trend that as the Z noise is increased, several
methods achieve lower c-MSE. We believe this stems from the fact that W is a more informative
proxy, so it is possible that noising Z aids methods in relying more strongly on the better proxy for U.

TWe used the optimal hyperparameters for NMMR-U, NMMR-V and Naive Net found through
tuning, as described in Appendix
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