PERCEPTUAL DATASETS А

Table 4 shows the existing perceptual datasets, and what sort of experimental setup was used. Whilst most datasets use the 2AFC setup, some datasets (TID, CSIQ, CLIC) use an Elo ranking system to decide which images to show a particular observer. This results in a dataset where each triplet judgement is not independent, and results in triplets having a different number of judgements M.

BAPPS and CLIC are the only datasets that release the raw 2AFC ratings, but they differ in that BAPPS ensures the same number of judgements for each triplet, and each observer is shown random triplets. This is the setting that the proposed method was designed for, but we can still apply it to others.

Table 4: Detailed description of existing perceptual datasets: TID 2008(Ponomarenko et al., 2009), TID 2013(Ponomarenko et al., 2013), CSIQ (Larson & Chandler, 2010), LIVE (Sheikh et al., 2005), BAPPS (Zhang et al., 2018) and CLIC (Toderici et al., 2021).

663 664 665	Dataset	Method	Image Sizes	No. of Images	No. of Distortions	No. of Triplets	Total No. of Judgements	Type of Judgement Released
666 667	TID 2008	2AFC sorting	512x384	25	17	2k	256k	MOS
668	TID 2013	2AFC sorting	512x384	25	24	3k	5k	MOS
669	CSIQ	2AFC	512x512	30	6	866	5k	DMOS
670 671	LIVE	5 level scale	768x512	29	5	779	25k	DMOS
672 673	BAPPS Train	2AFC	64x64	151k	425	151k	302k	2AFC
674 675	BAPPS JND	JND	64x64	10k	425	10k	29k	True/False
676	BAPPS Validation	2AFC	64x64	36k	425+	36k	182k	2AFC
678	CLIC 2021	2AFC	768x768	315		119k	120k	2AFC

BAPPS ADDITIONAL RESULTS R

Here we present additional results on the training and test validation sets of BAPPS. We also separately report evaluation metrics per distortion used in the BAPPS test set for a more in-depth com-parison of metrics.

Table 5 shows evaluation metrics on both the training and test set of BAPPS. The training set has been used to fit $\hat{P}(d_0, d_1)$. We see a consistent behaviour across sets, despite the different number of judgements M for the train and test sets.

Table 6 shows a breakdown of the agreement of judgements (AJ) Eq. 7, negative log-likelihood (NLL) Eq. 8 and 2AFC score Eq. 9, evaluated on the test set of BAPPS. We split the dataset into the category of distortion used, namely: Traditional (4720 triplets), CNN (4720 triplets), Color (9440 triplets), Deblur (1888 triplets), Frame interpolation (10856) and Super resolution (4720 triplets). Details on these distortions can be found in Zhang et al. (2018).

С **INTERPRETABILITY - MORE EXAMPLES**

The negative log-likelihood in Eq 8 depends on $\hat{P}(d_0, d_1)$, and in order to visualise this, here we present several examples of evaluating the NLL of different j = [0, 5]. We use triplets where one distorted image is extremely close to the reference and the decision is clear (Fig 6), one distorted image is extremely far from the original and the decision is clear (Fig 7) and finally a triplet where the decision is borderline as both distorted images are far from the original (Fig 8).

Measure		Euclidean	NLPD	SSIM	PIM	LPIPS	DISTS
$AI(=\hat{D}M)(0)$	Train	68.615	68.049	70.470	80.226	80.290	79.325
AJ(n, P, M) (%)	Test	75.345	75.195	75.653	81.598	82.048	80.841
$AI(\hat{\rho},\hat{D},M)(0)$	Train	74.197	73.682	74.074	79.344	80.126	79.102
AJ(n, P, M) (%)	Test	82.650	82.544	82.795	84.216	84.461	84.179
$\hat{\mathbf{M}} \mathbf{L} (\mathbf{x}, \hat{\mathbf{D}}, \mathbf{M})$	Train	1.058	1.074	1.029	0.775	0.761	0.798
$NLL(n, P, M)\downarrow$	Test	1.889	1.885	1.867	1.522	1.490	1.557
	Train	0.962	0.969	0.948	0.797	0.782	0.810
$\mathrm{NLL}(n, P, M)\downarrow$	Test	1.480	1.491	1.476	1.376	1.361	1.386
2AEC Saarat	Train	0.6675	0.6648	0.6880	0.7763	0.7698	0.7661
ZAFC Scole	Test	0.6289	0.6287	0.6319	0.6971	0.6890	0.6862

Table 5: Results on the BAPPS dataset (Zhang et al., 2018). In the training set, there are 2 judgements per triplet (M = 2) and in the test set, 5 (M = 5). Lower NLL is better.

Table 6: Evaluation metrics on the BAPPS validation set, split by distortion applied.

				-	•			
Distance	Maaguma	Distortion						
Distance	Measure	Traditional	CNN	Color	Deblur	Frame Interp.	Super Resolution	
Euclidean	$\mathrm{AJ}(n,\hat{P},M)$ (%) \uparrow	65.458	77.784	78.352	78.256	75.932	76.415	
	$NLL(n, \hat{P}, M)\downarrow$	2.530	1.713	1.732	1.715	1.826	1.820	
	2AFC Score↑	0.554	0.807	0.622	0.579	0.564	0.664	
	$\mathrm{AJ}(n,\hat{P},M)$ (%) \uparrow	66.585	76.805	76.047	78.318	76.250	77.139	
NLPD	$NLL(n, \hat{P}, M)\downarrow$	2.470	1.759	1.843	1.704	1.816	1.779	
	2AFC Score↑	0.578	0.802	0.592	0.576	0.559	0.670	
	$\mathrm{AJ}(n,\hat{P},M)$ (%) \uparrow	67.992	78.903	76.068	78.430	77.373	76.476	
SSIM	$NLL(n, \hat{P}, M)\downarrow$	2.402	1.638	1.850	1.700	1.752	1.823	
	2AFC Score↑	0.605	0.808	0.602	0.586	0.572	0.651	
	$\mathrm{AJ}(n,\hat{P},M)$ (%) \uparrow	81.428	87.013	80.233	81.422	81.981	81.780	
PIM	$NLL(n, \hat{P}, M)\downarrow$	1.541	1.150	1.619	1.551	1.492	1.504	
	2AFC Score↑	0.767	0.838	0.652	0.622	0.632	0.716	
	$AJ(n, \hat{P}, M)$ (%) \uparrow	80.585	88.136	80.869	81.036	81.589	82.824	
LPIPS	$NLL(n, \hat{P}, M)\downarrow$	1.596	1.059	1.564	1.556	1.515	1.436	
	2AFC Score↑	0.748	0.837	0.655	0.614	0.587	0.699	
	$AJ(n, \hat{P}, M)$ (%) \uparrow	80.364	85.996	79.186	80.152	81.261	81.787	
DISTS	$NLL(n, \hat{P}, M)\downarrow$	1.609	1.196	1.656	1.613	1.535	1.511	
	2AFC Score↑	0.757	0.832	0.639	0.602	0.626	0.714	
	•							

D CLIC

742 743 We include additional information regarding the CLIC dataset used, including the distribution of the 744 number of judgements M_t per triplet. We also show additional visualisations of the triplets in the 745 (d_0, d_1) before and after the uniformistation transformation, as well as evaluation metrics using both 746 the training and test set.

747 748

D.1 DISTRIBUTION OF NUMBER OF JUDGEMENTS

The CLIC 2021 subset we use to train (the oracle set) consists of 119,901 triplets with the number of judgements $M_t = \{1, 2\}$ and results of the judgements j, where the distribution can be seen in Fig. 11. We also show the distributio of j for each M_t . Most of the triplets have one judgement, with roughly uniform $j = \{0, 1\}$. For the triplets with 2 judgements, the majority are indecisive with j = 1.

The same distribution for the subset used for evaluation (the validation set) with $M_t = [1, 10]$ can be seen in Fig 10. The vast majority of triplets also contain only 1 judgement, where the distribution

14

Figure 6: Example of valuating the negative log-likelihood j = [0, 5] according to DISTS for a triplet from the BAPPS test set where one image \mathbf{x}_0 is close to the reference \mathbf{x}_{ref} . White is more likely and blue is less likely.

Figure 7: Example of valuating the negative log-likelihood j = [0, 5] according to DISTS for a triplet from the BAPPS test set where one image \mathbf{x}_0 is far from the reference \mathbf{x}_{ref} . White is more likely and blue is less likely.

of j similar to that of the training set. The set also includes a small number of triplets with more judgements, varying in distribution of j.

Figure 8: Example of valuating the negative log-likelihood j = [0, 5] according to DISTS for a triplet from the BAPPS test set where both images $\{x_0, x_1\}$ are far from the reference x_{ref} . White is more likely and blue is less likely.

Figure 9: Distribution of number of judgements M_t , and resulting judgements j for the CLIC data used for training.

Figure 10: Distribution of number of judgements M_t , and resulting judgements j for the CLIC data used for evaluation.

D.2 ADDITIONAL VISUALISATIONS

Fig 11 shows the distribution of triplets in the (d_0, d_1) plane for the training set used to find $\hat{P}(d_0, d_1)$ from the CLIC dataset. Note that the triplets shown vary in number of judgements $M_t = \{1, 2\}$, and when training the triplets are treated as binary judgements (M = 1) on M_t identical triplets.

Figure 11: Candidate distances in their original space (top row) and uniformised (bottom row). Shown are the training samples from the CLIC dataset and the colour indicates the judgement assigned to the triplet according to $\{1, 2\}$ observers. The points in this plot have a varying number of observers M.

We also show the surface of the binomial parameter $\hat{P}(d_0, d_1)$ in the (d_0, d_1) plane estimated from the CLIC training set.

D.3 EVALUATION ON TRAINING AND TEST SET

Table 7 shows evaluation metrics on both the training and test set of CLIC. The training set has been used to fit $\hat{P}(d_0, d_1)$.

Figure 12: $\hat{P}(d_0, d_1)$ fit to the distribution of scores in the training set of CLIC, $\hat{P}(d_0, d_1)$, for different candidate distances.

Similar behaviour as the results on BAPPS can be observed in the negative log-likelihoods on the training set, where in some instances the negative log-likelihood of the actual measurements is lower than the theoretical minimum, again due to the number of samples we are using to estimate these properties. With a larger sample size, we expect this to not be an issue.

Table 7: Results on the CLIC dataset (Toderici et al., 2021). In the training set there are 2 judgements per triplet (M = 2) and in the test set, 1 (M = 1). Lower NLL is better.

Measure		Euclidean	NLPD	SSIM	PIM	LPIPS	DISTS
$\mathbf{A}\mathbf{I}(\hat{\mathbf{D}},\mathbf{M})(0) \mathbf{A}$	Train	53.185	51.860	56.315	73.034	73.226	72.082
AJ(n, P, M) (%) ¹	Test	44.116	45.415	44.872	74.023	74.016	75.991
$\mathbf{AI}(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{D}}, \boldsymbol{M}) (\boldsymbol{\alpha}) \mathbf{A}$	Train	51.439	50.996	52.204	69.830	69.698	68.999
AJ(n, P, M)(%)	Test	52.346	53.965	53.783	71.526	70.948	69.403
	Train	0.694	0.694	0.689	0.548	0.543	0.556
$NLL(n, P, M)\downarrow$	Test	0.722	0.721	0.731	0.624	0.615	0.585
$\mathbf{M} \mathbf{L} (\hat{\mathbf{n}} \ \hat{\mathbf{D}} \ \mathbf{M})$	Train	0.694	0.695	0.693	0.567	0.567	0.582
$NLL(n, P, M)\downarrow$	Test	0.718	0.717	0.713	0.586	0.588	0.609
2AEC Scoret	Train	0.5304	0.5173	0.5619	0.7297	0.7317	0.7202
ZAPC SCOLE	Test	0.4277	0.4389	0.4364	0.7318	0.7314	0.7539