
A Differentially Private Stochastic Convex Optimization

In this section, we provide analyses of our near-linear time algorithms for DP-SCO with near-optimal
utility guarantees on the excess (population) risk. We first present some helpful lemmas that already
exist in the literature and give their proofs for completeness.

A.1 Supporting Lemmas

In the phased algorithms for both convex minimization and convex-concave minimax problems, we
interactively [17] access a dataset multiple times where a future output is allowed to depend on all the
past outputs. However, since each phase only accesses a disjoint partition of the dataset, we can use
the parallel composition in Lemma 2.1 to guarantee differential privacy. Here we provide a specific
form of it that can be directly applied to our algorithms.
Lemma A.1. (Parallel Composition [36]) Given a dataset S and its disjoint partition S =

SK
k=1 Sk,

define the mechanisms as A1 = A1(S1),A2 = A2(S2;A1), · · · ,AK = AK(SK ;AK�1). Suppose

each mechanism Ak(Sk;Ak�1) is (", �)-DP w.r.t. the set Sk for k = 1, · · · ,K, then the composition

AK is (", �)-DP w.r.t. the full dataset S.

Proof. For neighboring datasets S ⇠ S0, without loss of generality we let S = {⇠1, · · · , ⇠i, · · · , ⇠n}
and S0 = {⇠1, · · · , ⇠0i, · · · , ⇠n}, where ⇠i and ⇠0i are sampled independently. That is, the only
difference between the datasets comes from ⇠i and ⇠0i, and the remaining samples are the same. As
a result, for the disjoint partitions S =

SK
k=1 Sk and S0 =

SK
k=1 S

0
k, we can conclude that there is

only one pair Sj ⇠ S0
j for some j 2 {1, · · · ,K}, and that Sk = S0

k for k 6= j. Then we have that

P(AK(S)) =
KY

k=1

P(Ak(Sk)|Ak�1)

= P(Aj(Sj)|Aj�1)
KY

k=1,k 6=j

P(Ak(S
0
k)|Ak�1)



⇣
e"P(Aj(S

0
j)|Aj�1) + �

⌘ KY

k=1,k 6=j

P(Ak(S
0
k)|Ak�1)

 e"P(AK(S0)) + �.

By Definition 1 of (", �)-differential privacy, the proof is complete.

Next, we restate the stability and generalization results of the empirical risk minimization shown in
Shalev-Shwartz et al. [42]. Lemma A.2 considers the case when the objective f(x; ⇠) is strongly-
convex and Lemma A.3 studies the case when f(x; ⇠) is convex with a strongly-convex regularizer.
Both results depend on the Lipschitzness parameter of the objectives, making L a critical parameter
in private algorithms [7, 22, 49]. In practice, any estimate of the upper bound of Lipschitz constant L
can be used, e.g., see methods in [45, 20].

Here we only give a detailed proof of the regularized version. The proof of Lemma A.2 can be derived
similarly and we omit it. It is worth mentioning that Lemma A.3 does not require the Lipschitzness
of the regularizer, and is not a trivial extension of its unregularized version.
Lemma A.2. [42, Theorem 6] Consider a stochastic optimization problem such that f(x; ⇠) is

µ-strongly convex and L-Lipschitz w.r.t. x 2 X for any ⇠. Given a dataset S with n i.i.d. samples,

denote the empirical optimal solution as x̂⇤
S = argminx2X F̂S(x) , (1/n)

Pn
i=1 f(x; ⇠i). Then for

any neighboring datasets S ⇠ S0
, we have that

kx̂⇤
S � x̂⇤

S0k 
2L

µn
.

The stability result also implies the generalization error of x̂⇤
S can be bounded as

E[F (x̂⇤
S)� F (x⇤)] 

2L2

µn
,

where x⇤ = argminx2X F (x) , E⇠[f(x; ⇠)] is the population optimal solution.
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Lemma A.3. [42, Theorem 7] Under the same settings as Lemma A.2. Consider the case when

f(x; ⇠) is convex and L-Lipschitz with a µ-strongly convex regularizer G(x). Denote the empirical

optimal solution as x̂⇤
S = argminx2X {F̂S(x) +G(x)}. Then for any neighboring datasets S ⇠ S0

,

kx̂⇤
S � x̂⇤

S0k 
2L

µn
.

The stability result also implies the generalization error of the empirical solution:

E

F (x̂⇤

S) +G(x̂⇤
S)

�
� E


min
x2X

{F (x) +G(x)}

�


2L2

µn
,

measured by the excess population risk.

Proof. Without loss of generality, we let neighboring datasets S = {⇠1, · · · , ⇠i, · · · , ⇠n} and S0
i =

{⇠1, · · · , ⇠0i, · · · , ⇠n}, where ⇠i and ⇠0i are sampled independently.

Since F̂S(x) +G(x) is µ-strongly convex and x̂⇤
S is the optimal solution, we have that

F̂S(x̂
⇤
S0
i
) +G(x̂⇤

S0
i
) � F̂S(x̂

⇤
S) +G(x̂⇤

S) +
µ

2
kx̂⇤

S � x̂⇤
S0
i
k
2.

Similarly, by strong-convexity of F̂S0
i
+G(x) and optimality of x̂⇤

S0
i
, we have that

F̂S0
i
(x̂⇤

S) +G(x̂⇤
S) � F̂S0

i
(x̂⇤

S0
i
) +G(x̂⇤

S0
i
) +

µ

2
kx̂⇤

S � x̂⇤
S0
i
k
2.

Summing up the above two equations, we can obtain
µkx̂⇤

S � x̂⇤
S0
i
k
2
 F̂S(x̂

⇤
S0
i
)� F̂S0

i
(x̂⇤

S0
i
) + F̂S0

i
(x̂⇤

S)� F̂S(x̂
⇤
S)

=
1

n
[f(x̂⇤

S0
i
; ⇠i)� f(x̂⇤

S0
i
; ⇠0i)] +

1

n
[f(x̂⇤

S ; ⇠
0
i)� f(x̂⇤

S ; ⇠i)]

=
1

n
[f(x̂⇤

S0
i
; ⇠i)� f(x̂⇤

S ; ⇠i)] +
1

n
[f(x̂⇤

S ; ⇠
0
i)� f(x̂⇤

S0
i
; ⇠0i)]


2L

n
kx̂⇤

S � x̂⇤
S0
i
k, (3)

where the first equality holds since for any x,

F̂S(x)� F̂S0
i
(x) =

1

n

nX

j=1

f(x; ⇠j)�
1

n

0

@
nX

j=1,j 6=i

f(x; ⇠j) + f(x; ⇠0i)

1

A

=
1

n
[f(x; ⇠i)� f(x; ⇠0i)], (4)

and the last inequality follows from L-Lipschitzness of f(x; ⇠). As a result of (3), we obtain the
stability of empirical solutions as

kx̂⇤
S � x̂⇤

S0
i
k 

2L

µn
. (5)

For the generalization error, we follow the standard results on stability and generalization. Let
x⇤ = argminx2X {F (x) +G(x)} for notation simplicity, and then

E[F (x̂⇤
S) +G(x̂⇤

S)]� E[F (x⇤) +G(x⇤)]
(a)
= E[F (x̂⇤

S) +G(x̂⇤
S)]� E[F̂S(x

⇤) +G(x⇤)]

(b)
 E[F (x̂⇤

S) +G(x̂⇤
S)]� E[F̂S(x̂

⇤
S) +G(x̂⇤

S)]

(c)
= E

"
1

n

nX

i=1

F (x̂⇤
S0
i
)�

1

n

nX

i=1

f(x̂⇤
S ; ⇠i)

#

(d)
=

1

n

nX

i=1

E[f(x̂⇤
S0
i
; ⇠i)� f(x̂⇤

S ; ⇠i)]

(e)


2L2

µn
,

where (a) holds since x⇤ is independent of S, (b) follows by the optimality of x̂⇤
S , (c) uses the fact

that x̂⇤
S and x̂⇤

S0
i

have the same distribution for each i, (d) is true because S0
i is independent of ⇠i and

(e) uses Lipschitzness of f(x; ⇠) and stability bound (5).
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A.2 Near-Linear Time Algorithms for Smooth Strongly-Convex Functions

For strongly-convex functions, Algorithm 1 achieves near-optimal excess risk bounds with near-linear
time-complexity. The proof of Theorem 3.3 that gives its guarantees is provided below.

Proof of Theorem 3.3. We first prove the privacy guarantee. Given neighboring datasets S ⇠ S0, the
sensitivity of A in Algorithm 1 is bounded as

kA(S)�A(S0)k  kA(S)� x̂⇤
Sk+ kx̂⇤

S � x̂⇤
S0k+ kx̂⇤

S0 �A(S0)k


4L

µn
, (6)

with probability 1� �/2 by the union bound, where the last inequality follows from the stability of
empirical solutions in Lemma A.2 and guarantees of algorithm A. Then by Gaussian mechanism in
Definition 2, Algorithm 1 is (", �)-DP when setting � = 4L

p
2 log(2.5/�)/(µn").

We then give the guarantees for the output x̃. Since F̂S is `-smooth and x̂⇤
S is in the interior of X , the

excess empirical risk satisfies

E[F̂S(x̃)� F̂S(x̂
⇤
S)] 

`

2
Ekx̃� x̂⇤

Sk
2

 `
�
Ekx̃�A(S)k2 + EkA(S)� x̂⇤

Sk
2
�

 `

✓
32L2

· d log(2.5/�)

µ2n2"2
+

�2L2

16µ2n2

◆

< 33L2 ·
d log(2.5/�)

µn2"2
, (7)

where the third inequality is due to the guarantee of A in Remark 1 and the choice of �, and the last
inequality follows from the standard settings that " < 1, d � 1 and � < 1/n, and  = `/µ is the
condition number. Similarly for the excess population risk, we have that

E[F (x̃)� F (x⇤)] 
`

2
Ekx̃� x⇤

k
2


3`

2

�
Ekx̃�A(S)k2 + EkA(S)� x̂⇤

Sk
2 + Ekx̂⇤

S � x⇤
k
2
�

 `

✓
48L2

· d log(2.5/�)

µ2n2"2
+

3�2L2

32µ2n2
+

6L2

µ2n

◆

< L2

✓
7

µn
+

48d log(2.5/�)

µn2"2

◆
,

where we use the fact that (µ/2)Ekx̂⇤
S � x⇤

k
2
 E[F (x̂⇤

S) � F (x⇤)] by strong-convexity and the
generalization bound in Lemma A.2. Note that we can still obtain the bound for Ekx̃� x̂⇤

Sk
2 and

Ekx̃� x⇤
k
2 if we do not assume x̂⇤

S and x⇤ are interior points.

Near-optimality: The utility bounds on the excess risk have an extra  dependence compared to
the optimal bound [6, 7]. When the problem is not ill-conditioned, we can achieve the optimal rate.

Gradient Complexity: Algorithm 1 requires high-probability convergence of A such that kA(S)�
x̂⇤
Sk  L/(µn) with probability 1� �/4. Existing algorithms for smooth strongly-convex finite-sum

problems guarantee that E[F̂S(A(S))�F̂S(x̂⇤
S)]  � with O(T (n,) log(1/�)) gradient evaluations.

For example, SVRG [26] and SARAH [38] have gradient complexity O((n + ) log(1/�)) and
Katyusha [2] needs O((n +

p
n) log(1/�)) gradient queries, where  = `/µ is the condition

number. Since EkA(S)� x̂⇤
Sk 

p
2�/µ by strong-convexity of F̂S(x) and Jensen’s inequality, we

can then apply Markov’s inequality for kA(S)� x̂⇤
Sk � 0 and obtain that

P
✓
kA(S)� x̂⇤

Sk �
L

µn

◆


n
p
2�µ

L
.

Setting � = �2L2/(32µn2), the RHS becomes �/4 and the requirement of A is satisfied. This implies
the complexity of Algorithm 1 is O(T (n,) log(n/�)) as discussed in Remark 1. Therefore, we
achieve the linear-time gradient complexity up to logarithmic factors in n/�.
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A.3 Near-Linear Time Algorithms for Smooth Convex Functions

This section contains the proof of Theorem 3.4 that gives analyses of the near-optimal Algorithm 2
for convex functions. The core is the following lemma that leverages the generalization properties of
regularized empirical problems.
Lemma A.4. For k = 1, · · · ,K, by the settings and notations in Algorithm 2, we have that

E[F (x̂⇤
k)� F (x̂⇤

k�1)] 
µk

2
Ekx̂⇤

k�1 � x̃k�1k
2 +

2L2

µkn̄
,

where x̂⇤
k is the optimal solution of the regularized empirical function F̂k(x) and x̂⇤

0 is defined later

in the proof of Theorem 3.4.

Proof. Applying the generalization results in Lemma A.3 for F̂k with regularization term (µk/2)kx�
x̃k�1k

2 and dataset Sk := {⇠i}kn̄i=(k�1)n̄+1, we have that for any x 2 X ,

E
h
F (x̂⇤

k) +
µk

2
kx̂⇤

k � x̃k�1k
2
i
 E


min
x02X

n
F (x0) +

µk

2
kx0

� x̃k�1k
2
o�

+
2L2

µkn̄

 E
h
F (x) +

µk

2
kx� x̃k�1k

2
i
+

2L2

µkn̄
.

Setting x = x̂⇤
k�1, the proof is done since kx̂⇤

k � x̃k�1k
2
� 0.

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. We first give the guarantees of each phase in Algorithm 2 by a similar proof
as Theorem 3.3 in the previous section (see (6) and (7)). For phase 1  k  K, by the stability of x̂⇤

k
in Lemma A.3 and the requirement of output xk in Algorithm 2, we know xk has sensitivity bounded
by 4L/(µkn̄) with probability at least 1 � �/2, and then setting �k = 4L

p
2 log(2.5/�)/(µkn̄")

guarantees (", �)-DP. As a result, we can obtain that

Ekx̃k � x̂⇤
kk

2
 2Ekx̃k � xkk

2 + 2Ekxk � x̂⇤
kk

2

 2d�2
k +

�2L2

8µ2
kn̄

2

< 65L2
·
d log(2.5/�)

µ2
kn̄

2"2
. (8)

Then we analyze the full algorithm. By the parallel composition in Lemma A.1, Algorithm 2 is
(", �)-DP since we use disjoint datasets for different phases and each phase is (", �)-DP. For the
excess population risk of the output x̃K , we decompose the error as

E[F (x̃K)� F (x⇤)] = E[F (x̃K)� F (x̂⇤
K)] +

KX

k=1

E[F (x̂⇤
k)� F (x̂⇤

k�1)], (9)

where x⇤
2 argminx2X F (x) is the population optimal solution, x̂⇤

k is the optimal solution of the
regularized empirical function F̂k(x) in Algorithm 2, and we let x̂⇤

0 = x⇤ only for simplicity of the
analysis. For the first term in the RHS of (9), we have that

E[F (x̃K)� F (x̂⇤
K)]

(a)
 L

q
Ekx̃K � x̂⇤

Kk2

(b)
< 9L2

·

p
d log(2.5/�)

µK n̄"
(c)
 9LD ·

p
d log(2.5/�)

n̄"
,
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where (a) holds by L-Lipschitzness of F (x) and Cauchy–Schwarz inequality, (b) uses (8) and (c)
follows from the settings that µK = µn and µ � L/(D

p
n). Therefore, with Lemma A.4 to handle

the second term in the RHS of (9), we obtain that

E[F (x̃K)� F (x⇤)]  9LD ·

p
d log(2.5/�)

n̄"
+

KX

k=1

✓
µk

2
Ekx̂⇤

k�1 � x̃k�1k
2 +

2L2

µkn̄

◆

 9LD ·

p
d log(2.5/�)

n̄"
+

KX

k=2

65µk

2µk�1

L2d log(2.5/�)

µk�1n̄2"2
+

KX

k=1

2L2

µkn̄
+

µ1

2
kx⇤

� x0k
2

 9LD ·

p
d log(2.5/�)

n̄"
+

65L2d log(2.5/�)

µn̄2"2
+

2L2

µn̄
+ µkx⇤

� x0k
2

 4LD · log(n)

 
1
p
n
+

7
p
d log(2.5/�)

n"

!
,

where the second inequality uses the guarantees of x̃k�1 in (8) for k � 2 and the settings that
x̂⇤
0 = x⇤, x̃0 = x0, the third inequality follows from the choice that µk = µ ·2k and the last inequality

holds since µ = (L/D)max{1/
p
n, 14 log(n)

p
d log(2.5/�)/(n")} and kx⇤

k
2
 D2 when the

initialization is x0 = 0.

Near-optimality: The utility bound on the excess population risk has an extra logarithmic term
in n, which can be removed by a different parameter choice. For example in phased-ERM [22], the
regularization parameter increases as µk = µ · 23k across different phases, and the size of partitioned
datasets decreases as nk = n/2k. However, the decreasing data size may not give us near-optimal
algorithms for convex-concave minimax problems. To be consistent, we also use a fixed data size for
the convex minimization case, despite this additional logarithmic factor compared to phased-ERM.

Gradient Complexity: Remark 1 suggests that the complexity of each phase is O(T (n̄, (` +
µk)/µk) log(1/�k)) with �k = �2L2/(32µkn̄2) when solving a µk-strongly convex, (`+µk)-smooth
finite-sum problems with sample size n̄. Then the total complexity is just

PK
k=1 O(T (n̄, `/µk +

1) log(n/�)). Therefore, for SVRG [26] and SARAH [38], the complexity is
KX

k=1

O

✓✓
n̄+

`

µk
+ 1

◆
log(n/�)

◆
= O((n+

p
n`D/L) log(n/�)),

since
PK

k=1 1/µk  1/µ  O(
p
nD/L) by the settings of µk and µ in Algorithm 2. Similarly for

Katyusha [2], we can compute that the total complexity is O((n + n3/4
p
`D/L) log(n/�)) sincePK

k=1 1/
p
µk  O(n1/4

p
D/L). The linear time-complexity can be achieved with fast accelerated

or variance reduced algorithms, up to logarithmic factors.

B Differentially Private Stochastic Minimax Optimization

In this section, we give the analysis of the near-linear time algorithms for smooth DP-SMO with
near-optimal utility guarantees on the (population) duality gap. We first present some useful lemmas.

B.1 Supporting Lemmas

Here we overuse notations to provide some general properties of the duality gap for a smooth and
strongly-convex–strongly-concave function f(x, y).
Lemma B.1. Let f(x, y) be a µx-strongly convex µy-strongly concave function with one saddle

point (x⇤, y⇤) 2 X ⇥ Y . Then for any (x̃, ỹ) 2 X ⇥ Y , its duality gap satisfies that

max
y2Y

f(x̃, y)�min
x2X

f(x, ỹ) �
µx

2
kx̃� x⇤

k
2 +

µy

2
kỹ � y⇤k2.

If f(x, y) is also `-smooth and the saddle point (x⇤, y⇤) is in the interior of X ⇥ Y , it holds that

max
y2Y

f(x̃, y)�min
x2X

f(x, ỹ) 
(y + 1)`

2
kx̃� x⇤

k
2 +

(x + 1)`

2
kỹ � y⇤k2,
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where x = `/µx and y = `/µy are condition numbers.

Proof. First, by optimality of (x⇤, y⇤) and strong-convexity of f(·, y⇤) and �f(x⇤, ·), we know

max
y2Y

f(x̃, y)�min
x2X

f(x, ỹ) � f(x̃, y⇤)� f(x⇤, y⇤) + f(x⇤, y⇤)� f(x⇤, ỹ)

�
µx

2
kx̃� x⇤

k
2 +

µy

2
kỹ � y⇤k2.

The inequality also implies that for any (x̃, ỹ) 2 X ⇥ Y , it holds that

f(x̃, y⇤)� f(x⇤, ỹ) �
µx

2
kx̃� x⇤

k
2 +

µy

2
kỹ � y⇤k2. (10)

To show the second part, we first introduce some notations. Let �(x) = maxy2Y f(x, y) be the
primal function and  (y) = minx2X f(x, y) be the dual function. When f(x, y) is µx-strongly
convex, µy-strongly concave and `-smooth, we have that �(x) is (y + 1)`-smooth and  (y) is
(x + 1)`-smooth, which is a standard result in the literature (e.g., see [51, Proposition 1]). Since
(x⇤, y⇤) is the interior point, we know that

max
y2Y

f(x̃, y)�min
x2X

f(x, ỹ) = �(x̃)� f(x⇤, y⇤) + f(x⇤, y⇤)� (ỹ)

= �(x̃)� �(x⇤) + (y⇤)� (ỹ)


(y + 1)`

2
kx̃� x⇤

k
2 +

(x + 1)`

2
kỹ � y⇤k2,

where the last inequality follows by the smoothness of �(x) and � (y). The same result is also
obtained by Zhang et al. [51] (see proof of Theorem 3 in their appendix).

In the following, we give the stability and generalization results of empirical saddle point problems
proved in Zhang et al. [51]. Lemma B.2 considers the case when f(x, y; ⇠) is strongly-convex–
strongly-concave, and its regularized version Lemma 4.4 when f(x, y; ⇠) is convex-concave is in the
main text. The same as the minimization case in Lemma A.2 and A.3, Lemma 4.4 does not require
Lipschitzness of the regularizer and is not a trivial extension of Lemma B.2.
Lemma B.2. [51, Lemma 1 and Theorem 1] Consider a stochastic minimax problem such that

f(x, y; ⇠) is µx-strongly convex µy-strongly concave and L-Lipschitz w.r.t. x 2 X and y 2 Y . Let

µ = min{µx, µy} and denote the empirical saddle point of function F̂S(x, y) as (x̂⇤
S , ŷ

⇤
S) given

dataset S with n i.i.d. samples. Then for any neighboring datasets S ⇠ S0
, we have that

µxkx̂
⇤
S � x̂⇤

S0k
2 + µykŷ

⇤
S � ŷ⇤S0k

2


4L2

µn2
.

The stability result implies the generalization error of the empirical solution can be bounded as

max
y2Y

E[F (x̂⇤
S , y)]�min

x2X
E[F (x, ŷ⇤S)] 

2
p
2L2

µn
,

measured by the population weak duality gap.

We only prove the regularized version in Lemma 4.4 for completeness. The proof of above Lemma
B.2 is simpler and nearly the same, so it will not be repeated here.

Proof of Lemma 4.4. The same as the proof of Lemma A.3, we let neighboring datasets S =
{⇠1, · · · , ⇠i, · · · , ⇠n} and S0

i = {⇠1, · · · , ⇠0i, · · · , ⇠n}, where ⇠i and ⇠0i are sampled independently.

Applying (10) in the proof of Lemma B.1 for F̂S(x, y)+G(x, y) and F̂S0
i
(x, y)+G(x, y), we obtain

F̂S(x̂
⇤
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i
, ŷ⇤S) +G(x̂⇤

S0
i
, ŷ⇤S)� F̂S(x̂

⇤
S , ŷ

⇤
S0
i
)�G(x̂⇤

S , ŷ
⇤
S0
i
) �

µx

2
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S0
i
k
2 +

µy

2
kŷ⇤S � ŷ⇤S0

i
k
2,

F̂S0
i
(x̂⇤
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⇤
S0
i
) +G(x̂⇤

S , ŷ
⇤
S0
i
)� F̂S0

i
(x̂⇤

S0
i
, ŷ⇤S)�G(x̂⇤

S0
i
, ŷ⇤S) �

µx

2
kx̂⇤

S � x̂⇤
S0
i
k
2 +

µy

2
kŷ⇤S � ŷ⇤S0

i
k
2.
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Summing up the above two inequalities, we can get

µxkx̂
⇤
S � x̂⇤

S0
i
k
2 + µykŷ

⇤
S � ŷ⇤S0

i
k
2
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⇤
S0
i
, ŷ⇤S)� F̂S0

i
(x̂⇤

S0
i
, ŷ⇤S) + F̂S0

i
(x̂⇤

S , ŷ
⇤
S0
i
)� F̂S(x̂

⇤
S , ŷ

⇤
S0
i
)

(a)
=

1

n
[f(x̂⇤

S0
i
, ŷ⇤S ; ⇠i)� f(x̂⇤

S0
i
, ŷ⇤S ; ⇠

0
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1
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⇤
S0
i
; ⇠0i)� f(x̂⇤
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i
; ⇠i)]

=
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i
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[f(x̂⇤
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; ⇠0i)� f(x̂⇤
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(b)
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k2 + kŷ⇤S � ŷ⇤S0
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(c)
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q
µxkx̂⇤

S � x̂⇤
S0
i
k2 + µykŷ⇤S � ŷ⇤S0

i
k2. (11)

where (a) uses the following equation that holds for any (x, y):

F̂S(x, y)� F̂S0
i
(x, y) =

1

n
[f(x, y; ⇠i)� f(x, y; ⇠0i)],

as a consequence of (4), (b) is true since f(x, y; ⇠) is L-Lipschitz, i.e.,

|f(x1, y1; ⇠)� f(x2, y2; ⇠)|
2
 L2

�
kx1 � x2k

2 + ky1 � y2k
2
�
, 8x1, x2 2 X , y1, y2 2 Y,

and (c) follows from the definition that µ = min{µx, µy}. As a result of (11), we have the following
stability bound that holds for neighboring datasets S ⇠ S0

i:

µxkx̂
⇤
S � x̂⇤

S0
i
k
2 + µykŷ

⇤
S � ŷ⇤S0

i
k
2


4L2

µn2
. (12)

Then we can analyze the generalization error using stability results. We first bound the error of x̂⇤
S as:
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y2Y

E
h
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Ekx̂⇤
S � x̂⇤

S0
i
k, (13)

where (a) holds by the inequality maxy h1(y) � maxy h2(y)  maxy{h1(y) � h2(y)} for any
function h1 and h2, (b) holds since x⇤

S and x⇤
S0
i

have the same distribution, and (c) follows from the

definition of F̂S(x, y) and the fact that S0
i is independent from ⇠i so one can first take expectation

w.r.t. ⇠i. Similarly for ŷ⇤S , by the inequality minx h1(x)�minx h2(x)  maxx{h1(x)� h2(x)},
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Combining the above two inequalities (13) and (14), we obtain that

max
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E
h
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S � x̂⇤
S0
i
k+ kŷ⇤S � ŷ⇤S0

i
k

i
.

The first two terms in the RHS of (15) can be bounded by Cauchy–Schwarz inequality and the
optimality of (x̂⇤

S , ŷ
⇤
S),

max
y2Y

E
h
F̂S(x̂
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o�

= 0.

For the last term in the RHS of (15), we have that
⇣
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i
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k
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2 + µykŷ
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
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µ2n2
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where the last inequality follows from the stability (12). Then plugging the above two bounds back
into (15), we obtain that

max
y2Y

E
h
F (x̂⇤
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i
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x2X
E
h
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i


2
p
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,

which is the generalization error of (x̂⇤
S , ŷ

⇤
S) measured by the population weak duality gap.

In the analysis of the phased algorithms for convex-concave functions, we will use the following
corollary of Lemma 4.4.
Corollary B.3. Under the same settings as Lemma 4.4. Let (uS , vS) 2 X⇥Y be some points that may

have dependence on the dataset S. Suppose their stability w.r.t. S is bounded as EkuS � uS0k  �u

and EkvS � vS0k  �v for any neighboring datasets S ⇠ S0
. Then it holds that

E[F (x̂⇤
S , vS)� F (uS , ŷ
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⇤
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2
p
2L2

µn
+ L(�u +�v).

As a special case, when u and v are independent of S, the third term vanishes since�u = �v = 0.

Proof. When vS has dependence on S, by the same reason as (13), we have
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and similarly by (14), we get
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Moreover, since (x̂⇤
S , ŷ

⇤
S) is the saddle point of F̂S(x, y) +G(x, y), we have
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As a result, by the three inequalities above, we have
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
2
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µn
+ L(�u +�v),

where the last inequality follows from (16) and stability of uS , vS .

B.2 Near-Linear Time Algorithms for Smooth Strongly-Convex–Strongly-Concave Functions

Algorithm 3 achieves near-optimal utility guarantees on the strong duality gap for SC-SC functions
with near-linear time-complexity. Its analysis is provided in the proof of Theorem 4.3 below.

Proof of Theorem 4.3. For the privacy guarantee, we first bound the sensitivity of algorithm A. Given
neighboring datasets S ⇠ S0, by Lemma B.2, for µ = min{µx, µy}, we know that

kx̂⇤
S � x̂⇤

S0k 

r
1

µx
(µxkx̂⇤

S � x̂⇤
S0k

2 + µykŷ⇤S � ŷ⇤S0k
2)


2L

n

r
1

µxµ
.

For the same reason, by the guarantee of A in Algorithm 3, we have kAx(S) � x̂⇤
Sk 

(L/n)
p
1/(µxµ) with probability at least 1� �/8. Thus the sensitivity of Ax is bounded as

kAx(S)�Ax(S
0)k  kAx(S)� x̂⇤

Sk+ kx̂⇤
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S0k+ kx̂⇤
S0 �Ax(S

0)k


4L

n

r
1

µxµ
, (17)

with probability at least 1� �/4 by the union bound. Applying Gaussian mechanism in Definition 2,
Ax +N (0,�2

xIdx) is ("/2, �/2)-DP when setting �x = (8L/(n"))
p
2 log(5/�)/(µxµ). Similarly

we can bound the sensitivity of Ay and the setting of �y in Algorithm 3 guarantees ("/2, �/2)-DP of
Ay +N (0,�2

yIdy ). Finally by the basic composition in Lemma 2.1, Algorithm 3 is (", �)-DP.

Next, we prove the utility guarantees for the output (x̃, ỹ). For the empirical bound, we apply Lemma
B.1 for F̂S(x, y) under the assumption that (x̂⇤

S , ŷ
⇤
S) is the interior point and get

E

max
y2Y

F̂S(x̃, y)�min
x2X

F̂S(x, ỹ)

�

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2
Ekx̃� x̂⇤
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2
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2
⇤

(18)

+ (x + 1)` · E
⇥
kỹ �Ay(S)k

2 + kAy(S)� ŷ⇤Sk
2
⇤
.
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According to the values of �x and �y in Algorithm 3 to guarantee (", �)-DP, we know

(y + 1)` · Ekx̃�Ax(S)k
2 + (x + 1)` · Ekỹ �Ay(S)k

2

 (xy + ) · E
⇥
µxkx̃�Ax(S)k

2 + µykỹ �Ay(S)k
2
⇤

 256L2(xy + )
d log(5/�)

µn2"2
, (19)

where we let µ = min{µx, µy},  = `/µ and d = max{dx, dy}. Similarly by the guarantee of the
algorithm A in Remark 3, we have

(y + 1)` · EkAx(S)� x̂⇤
Sk

2 + (x + 1)` · EkAy(S)� ŷ⇤Sk
2
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2 + µykAy(S)� ŷ⇤Sk

2
⇤

 L2(xy + )
�

8µn2
. (20)

As a result of above two inequalities and (18), when d � 1, " < 1 and � < 1/n, we have that

E

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F̂S(x̃, y)�min
x2X

F̂S(x, ỹ)

�
 257L2(xy + )

d log(5/�)

µn2"2
.

Similarly, we can apply Lemma B.1 for F (x, y) to obtain the population guarantee as

E

max
y2Y

F (x̃, y)�min
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F (x, ỹ)
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2
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✓
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µn
+

128d log(5/�)

µn2"2

◆
,

where we use (19) and (20), and the bound for the distance between (x̂⇤
S , ŷ

⇤
S) and (x⇤, y⇤) follows

from Lemma B.1 and the generalization results in Lemma B.2 such that

E
hµx

2
kx̂⇤

S � x⇤
k
2 +

µy

2
kŷ⇤S � y⇤k2

i


2
p
2L2

µn
,

where µ = min{µx, µy} simplifies the notations. We conclude the proof by a remark. When the
saddle points are not interior points, we can instead obtain the guarantee on the distance between
(x̃, ỹ) and (x̂⇤

S , ŷ
⇤
S) or (x⇤, y⇤), which is weaker than the duality gap.

Near-optimality: The utility bound on the strong duality gap of our algorithm scales with
O
�
2
�
1/(µn) + d log(1/�)/(µn2"2)

��
. Since the SC-SC minimax problem can be regarded as

a strongly-convex minimization problem when restricting the domain Y as a singleton, the lower-
bound [6, 7] ⌦(1/(µxn) + dx log(1/�)/(µxn2"2)) of a µx-strongly convex DP-SCO problem can
be regarded as a trivial lower-bound of DP-SMO problem. Therefore, our rate is optimal w.r.t. n
and (", �), but it remains unclear whether the dependence w.r.t. µx, µy and dx, dy can be further
improved as the exact lower-bound for SC-SC DP-SMO is still an open question. Nonetheless, we
achieve near-optimal bound when the problem is not ill-conditioned.

Gradient Complexity: Algorithm 3 requires that µxkAx(S) � x̂⇤
Sk

2 + µykAy(S) � ŷ⇤Sk
2


L2/(µn2) holds with probability at least 1 � �/8. Existing methods for smooth SC-SC finite-
sum saddle point problems guarantee that E[maxy2Y F̂S(Ax(S), y) � minx2X F̂S(x,Ay(S))] 
� with O(T (n,x,y) log(1/�)) gradient complexity. For example, Extragradient [43] uses
O(n log(1/�)) gradient queries and SVRG/SAGA [39] needs O((n + 2) log(1/�)) gradient
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computations, where  = max{x,y}. Since E[µxkAx(S)� x̂⇤
Sk

2 + µykAy(S)� ŷ⇤Sk
2]  2� by

Lemma B.1, we can then apply Markov’s inequality and obtain that

P
✓�

µxkAx(S)� x̂⇤
Sk

2 + µykAy(S)� ŷ⇤Sk
2
�
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L2

µn2

◆


2�µn2

L2
.

Setting � = �L2/(16µn2), the RHS becomes �/8 and the requirement of A is satisfied. This implies
the complexity of Algorithm 3 is O(T (n,x,y) log(n/�)) as discussed in Remark 3. Therefore,
we achieve the linear-time gradient complexity up to logarithmic factors.

B.3 Near-Linear Time Algorithms for Smooth Convex-Concave Functions

In this section, we analyze the algorithm for smooth convex-concave DP-SMO. We first present a
lemma that extends the results that the proximal operator is non-expansive to minimax settings.
Lemma B.4. Let f(x, y) be a convex-concave function on the closed convex domain X ⇥ Y . For

some (u, v) 2 X ⇥ Y and µx, µy > 0, we define

Fu,v(x, y) , f(x, y) +
µx

2
kx� uk2 �

µy

2
ky � vk2.

Denote the saddle point of Fu,v(x, y) as (x⇤
u,v, y

⇤
u,v) 2 X ⇥ Y . Then it holds that
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2
 µxku� u0
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where (x⇤
u0,v0 , y⇤u0,v0) 2 X⇥Y is the saddle point of Fu0,v0(x, y) defined in the same way as Fu,v(x, y)

for some point (u0, v0) 2 X ⇥ Y .

Proof. For (x, y) 2 Rdx ⇥ Rdy , we define fX ,Y(x, y) := f(x, y) + IX (x) � IY(y), where IC is
the indicator function of some set C, i.e., IC(x) = 0 if x 2 C and IC(x) = 1 otherwise. Since
IX and IY are both convex when the domain is convex, fX ,Y(x, y) is convex-concave. By the
above definition, (x⇤

u,v, y
⇤
u,v) is the saddle point of F̄u,v(x, y) := fX ,Y(x, y) + (µx/2)kx� uk2 �

(µy/2)ky � vk2. Applying the optimality condition, i.e., 0 2 @F̄u,v(x⇤
u,v, y

⇤
u,v), we know that

µx(u� x⇤
u,v) 2 @xfX ,Y(x

⇤
u,v, y

⇤
u,v), µy(v � y⇤u,v) 2 �@yfX ,Y(x

⇤
u,v, y

⇤
u,v), (21)

where @xfX ,Y and @yfX ,Y are partial subgradients. Similarly for (x⇤
u0,v0 , y⇤u0,v0) and F̄u0,v0 , we have

µx(u
0
� x⇤

u0,v0) 2 @xfX ,Y(x
⇤
u0,v0 , y⇤u0,v0), µy(v

0
� y⇤u0,v0) 2 �@yfX ,Y(x

⇤
u0,v0 , y⇤u0,v0). (22)

By the property that (@xfX ,Y ,�@yfX ,Y) is a monotone operator when fX ,Y(x, y) is convex-concave
(see [40, Theorem 1] or [19, Lemma 1]), it holds for any x1, x2 2 Rdx , y1, y2 2 Rdy , and subgradients
(gx,�gy) 2 (@xfX ,Y ,�@yfX ,Y) that

�
gx(x1, y1)� gx(x2, y2)

�>�
x1 � x2

�
�
�
gy(x1, y1)� gy(x2, y2)

�>�
y1 � y2

�
� 0.

Therefore, using the set membership relations (21) and (22), we get that

µx

⇣
(u�u0)�(x⇤

u,v�x⇤
u0,v0)

⌘>⇣
x⇤
u,v�x⇤

u0,v0

⌘
+µy

⇣
(v�v0)�(y⇤u,v�y⇤u0,v0)

⌘>⇣
y⇤u,v�y⇤u0,v0

⌘
� 0.

Hence, we obtain that

µxkx
⇤
u,v � x⇤

u0,v0k
2 + µyky

⇤
u,v � y⇤u0,v0k

2

 µx(u� u0)>(x⇤
u,v � x⇤

u0,v0) + µy(v � v0)>(y⇤u,v � y⇤u0,v0)

 µxku� u0
kkx⇤

u,v � x⇤
u0,v0k+ µykv � v0kky⇤u,v � y⇤u0,v0k



q
µxkx⇤

u,v � x⇤
u0,v0k

2 + µyky⇤u,v � y⇤u0,v0k
2 ·

q
µxku� u0k2 + µykv � v0k2,

by Cauchy-Schwarz inequality. The proof is thus complete.

The following lemma is a consequence of Corollary B.3 and Lemma B.4.
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Lemma B.5. For k = 1, · · · ,K, by the settings and notations in Algorithm 4, we have that

E[F (x̂⇤
k, ŷ

⇤
k+1)� F (x̂⇤

k�1, ŷ
⇤
k)] 

µk

2
Ekx̂⇤

k�1 � x̃k�1k
2 +

8L2

µn̄
+

µ

2
E
⇥
kŷ⇤k+1k

2
� kŷ⇤kk

2
⇤
,

where (x̂⇤
k, ŷ

⇤
k) is the saddle point of the regularized empirical function F̂k(x, y) for 1  k  K, and

x̂⇤
0 = x⇤

, ŷ⇤K+1 2 argmaxy2Y E[F (x̃K , y)] are used later in the proof of Theorem 4.5.

Proof. Applying Corollary B.3 for F̂k(x, y) with regularization term (µk/2)kx � x̃k�1k
2
�

(µ/2)kyk2 and dataset Sk := {⇠i}kn̄i=(k�1)n̄+1, we have that for any x 2 X and y 2 Y ,

E[F (x̂⇤
k, y)� F (x, ŷ⇤k)] 

µk

2
Ekx� x̃k�1k

2
�

µk

2
Ekx̂⇤

k � x̃k�1k
2 +

µ

2
Ekyk2 � µ

2
Ekŷ⇤kk2

+
2
p
2L2

µn̄
+ L(�x +�y), (23)

where �x and �y are the stability bounds of x and y w.r.t. Sk. Let x = x̂⇤
k�1 and y = ŷ⇤k+1 in the

above inequality. Note that x̂⇤
k�1 is independent of Sk and then �x = 0 for 1  k  K. For �y,

we need to compute the difference of ŷ⇤k+1 given neighboring datasets Sk ⇠ Sk0 . In the following
analysis, we denote the saddle point as (x̂⇤

k0 , ŷ⇤k0), the output of A as (xk0 , yk0) and the perturbed
output as x̃k0 corresponding to the dataset Sk0 . When k  K � 1, since ŷ⇤k+1 is the saddle point of

1

n̄

X

i2Sk+1

f(x, y; ⇠i) +
µk+1

2
kx� x̃kk

2
�

µ

2
kyk2,

and ŷ⇤k0+1 is the saddle point of

1

n̄

X

i2Sk+1

f(x, y; ⇠i) +
µk+1

2
kx� x̃k0k

2
�

µ

2
kyk2,

we can conclude from Lemma B.4 that

µEkŷ⇤k+1 � ŷ⇤k0+1k
2
 µk+1Ekx̃k � x̃k0k

2

= µk+1Ekxk � xk0k
2

 3µk+1

�
Ekxk � x̂⇤

kk
2 + Ekx̂⇤

k � x̂⇤
k0k

2 + Ekxk0 � x̂⇤
k0k

2
�


µk+1

µk

✓
12L2

µn̄2
+

3�L2

4µn̄2

◆


26L2

µn̄2
,

where the equality holds since the only difference is due to the neighboring datasets Sk ⇠ Sk0

and the third inequality follows from Lemma 4.4 and guarantees of A in Remark 3. Therefore we
obtain that �y =

p
26L/(µn̄) for ŷ⇤k+1 when k  K � 1. When k = K, by the definition that

ŷ⇤K+1 2 argmaxy2Y E[F (x̃K , y)], we know that �y = 0 since ŷ⇤K+1 is independent of S. Then by
(23), it holds for all k = 1, · · · ,K that

E[F (x̂⇤
k, ŷ

⇤
k+1)� F (x̂⇤

k�1, ŷ
⇤
k)] 

µk

2
Ekx̂⇤

k�1 � x̃k�1k
2 +

µ

2
E
⇥
kŷ⇤k+1k

2
� kŷ⇤kk

2
⇤
+

8L2

µn̄

since kx̂⇤
k � x̃k�1k

2
� 0 and 2

p
2 +

p
26 < 8.

With Lemma B.5, we are ready to give the proof of Theorem 4.5.

Proof of Theorem 4.5. The population function F (x, y) has at least one saddle point on the domain
X ⇥ Y , and we denote it as (x⇤, y⇤). First, we show that Algorithm 4 is ("/2, �/2)-DP and give the
utility bound of its output x̃K . Similar to the proof of Theorem 4.3, we can obtain guarantees of each
phase in Algorithm 4. By Lemma 4.4, since min{µk, µ} = µ, we know that the empirical solution
x̂⇤
k has stability 2L/(n̄

p
µkµ). With the guarantee of the algorithm A and the same statement as (17),
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the sensitivity of xk is bounded by 4L/(n̄
p
µkµ) with probability 1� �/4, and thus the values of �k

guarantee ("/2, �/2)-DP. As a result, by (19) and (20),

Ekx̃k � x̂⇤
kk

2
 2Ekx̃k � xkk

2 + 2Ekxk � x̂⇤
kk

2

 2dx�
2
k +

L2

4µk

�

µn̄2


257L2

µk

dx log(5/�)

µn̄2"2
. (24)

Then we analyze the full algorithm. By the parallel composition in Lemma A.1, Algorithm 4 is
("/2, �/2)-DP since we use disjoint datasets for different phases and each phase is ("/2, �/2)-DP.
For the utility bound of the output x̃K , we start with the following decomposition:

max
y2Y

E[F (x̃K , y)]� E[F (x⇤, ŷ⇤1)] = E[F (x̃K , ŷ⇤K+1)� F (x̂⇤
K , ŷ⇤K+1)]

+
KX

k=1

E
h
F (x̂⇤

k, ŷ
⇤
k+1)� F (x̂⇤

k�1, ŷ
⇤
k)
i
, (25)

where we let x̂⇤
0 = x⇤ for the saddle point of F (x, y) and ŷ⇤K+1 2 argmaxy2Y E[F (x̃K , y)] to

simplify the analysis. The first term in the RHS of (25) can be bounded by Lipschitzness of F (x, y):

E[F (x̃K , ŷ⇤K+1)� F (x̂⇤
K , ŷ⇤K+1)]  L

q
Ekx̃K � x̂⇤

Kk2

<
17L2

p
µKµ

p
dx log(5/�)

n̄"

=
17L2

µ
p
n

p
dx log(5/�)

n̄"

 17LD ·

p
d log(5/�)

2n̄"
, (26)

where the second inequality uses the guarantee of phase K in (24), the equality is due to the setting
that µK = µn and the last inequality follows from the choice that µ � 2L/(D

p
n) and dx  d.

Therefore, with Lemma B.5 to bound the second term in the RHS of (25), we obtain that

max
y2Y

E[F (x̃K , y)]� E[F (x⇤, ŷ⇤1)]  17LD ·

p
d log(5/�)

2n̄"
+

KX

k=1

✓
µk

2
Ekx̂⇤

k�1 � x̃k�1k
2 +

8L2

µn̄

◆

+
µ

2

KX

k=1

E
⇥
kŷ⇤k+1k

2
� kŷ⇤kk

2
⇤

 17LD ·

p
d log(5/�)

2n̄"
+

KX

k=2

257µk

2µk�1

L2dx log(5/�)

µn̄2"2

+
KX

k=1

8L2

µn̄
+

µ1

2
kx⇤

� x0k
2 +

µ

2
kŷ⇤K+1k

2

 4LDK2

 
1
p
n
+

5
p
d log(5/�)

n"

!
+

µ

2
(2kx⇤

� x0k
2 + kŷ⇤K+1k

2)

 8LDK2

 
1
p
n
+

5
p
d log(5/�)

n"

!
, (27)

where the second inequality is due to the guarantees of x̃k�1 in (24) for k � 2 and the set-
tings that x̃0 = x0, x̂⇤

0 = x⇤, the third inequality holds by the choice that µk = µ · 2k,
µ = (L/D)max{2/

p
n, 13 log(n)

p
d log(5/�)/(n")}, and the last inequality follows from the

assumptions that kx⇤
k
2
 D2 and kŷ⇤K+1k

2
 D2 when the initialization is x0 = 0. Since (x⇤, y⇤)
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Algorithm 5 Phased Output Perturbation for Convex-Concave Minimax Problems
Input: Dataset S = {⇠i}ni=1, algorithm A, DP Parameters (", �), regularizer µ, initializer y0.

1: Set K = log(n), n̄ = n/K and ỹ0 = y0.
2: for k = 1, · · · ,K do
3: Set µk = µ · 2k.
4: Run the algorithm A on the smooth SC-SC finite-sum saddle point problem

min
x2X

max
y2Y

F̂k(x, y) ,
1

n̄

kn̄X

i=(k�1)n̄+1

f(x, y; ⇠i) +
µ

2
kxk2 �

µk

2
ky � ỹk�1k

2,

to obtain the output (xk, yk) such that with probability 1� �/8,

µkxk � x̂⇤
kk

2 + µkkyk � ŷ⇤kk
2


L2

µn̄2
,

where (x̂⇤
k, ŷ

⇤
k) is the saddle point of the regularized empirical function F̂k(x, y).

5: ỹk = yk +N (0,�2
kIdy ) with �k = (8L/(n̄"))

p
2 log(5/�)/(µkµ).

Output: ỹK .

is the saddle point of F (x, y), we know that F (x⇤, ŷ⇤1)  F (x⇤, y⇤), and thus

max
y2Y

E[F (x̃K , y)]  F (x⇤, y⇤) + 8LDK2

 
1
p
n
+

5
p
d log(5/�)

n"

!
. (28)

Here we give the privacy and utility guarantees of the primal solution x̃K . The dual solution comes
from a symmetric Algorithm 5. The same as the above analysis for Algorithm 4, we can show that
Algorithm 5 is ("/2, �/2)-DP and give the utility bound of its output ỹK . Without causing confusion,
we borrow notations from Algorithm 4 for simplicity. Since everything is very much similar by
switching the role of the primal x and the dual y, we will not repeat all the details.

First, each phase of Algorithm 5 is ("/2, �/2)-DP since with probability at least 1��/4, the sensitivity
of yk is bounded by 4L/(n̄

p
µkµ). Similar to (24), the output ỹk for 1  k  K satisfies that

Ekỹk � ŷ⇤kk
2


257L2

µk

dy log(5/�)

µn̄2"2
. (29)

Then by the parallel composition of differential privacy, Algorithm 5 is ("/2, �/2)-DP. For the utility
bound of the output ỹK , we have the following error decomposition that mirrors (25):

E[F (x̂⇤
1, y

⇤)]�min
x2X

E[F (x, ỹK)] =
KX

k=1

E
h
F (x̂⇤

k, ŷ
⇤
k�1)� F (x̂⇤

k+1, ŷ
⇤
k)
i

+ E[F (x̂⇤
K+1, ŷ

⇤
K)� F (x̂⇤

K+1, ỹK)], (30)

where (x̂⇤
k, ŷ

⇤
k) is the saddle point of the regularized empirical function F̂k(x, y) for 1  k  K, and

we let ŷ⇤0 = y⇤ for the saddle point of F (x, y) and x̂⇤
K+1 2 argminx2X E[F (x, ỹK)] to simplify the

analysis. The first term in the RHS of (30) can be bounded by a similar result as Lemma B.5. By
Corollary B.3 and Lemma B.4, setting x = x̂⇤

k+1 and y = ŷ⇤k�1, we obtain that

E[F (x̂⇤
k, ŷ

⇤
k�1)� F (x̂⇤

k+1, ŷ
⇤
k)] 

µk

2
Ekŷ⇤k�1 � ỹk�1k

2 +
8L2

µn̄
+

µ

2
E
⇥
kx̂⇤

k+1k
2
� kx̂⇤

kk
2
⇤
.

The second term in the RHS of (30) can be bounded by Lipschitzness of F (x, y),

E[F (x̂⇤
K+1, ŷ

⇤
K)� F (x̂⇤

K+1, ỹK)]  17LD ·

p
d log(5/�)

2n̄"
,

28



which is the same as (26) using the guarantee of ỹK in (29). Finally plugging the above two bounds
back into (30), by the same reason as (27), we get that

E[F (x̂⇤
1, y

⇤)]�min
x2X

E[F (x, ỹK)] 
KX

k=2

257µk

2µk�1

L2dy log(5/�)

µn̄2"2
+

KX

k=1

8L2

µn̄

+
µ1

2
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2 +
µ

2
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2 + 17LD ·

p
d log(5/�)

2n̄"

 8LDK2

 
1
p
n
+

5
p
d log(5/�)

n"

!
,

where we use the guarantees of ỹk in (29) and the assumption that ky⇤k2  D2 and kx̂⇤
K+1k

2
 D2

when the initialization is y0 = 0. Finally since (x⇤, y⇤) is the saddle point of F (x, y), we know that
F (x̂⇤

1, y
⇤) � F (x⇤, y⇤), and thus

�min
x2X

E[F (x, ỹK)]  �F (x⇤, y⇤) + 8LDK2

 
1
p
n
+

5
p

d log(5/�)

n"

!
. (31)

By basic composition in Lemma 2.1, the composition (x̃K , ỹK) of Algorithm 4 and 5 is (", �)-DP.
The proof is thus complete summing up (28) and (31). Note that we only require that (x⇤, y⇤) and
(x̂⇤

K+1, ŷ
⇤
K+1) have bounded norms, which is slightly weaker than assuming bounded domains.

Near-optimality: The lower-bound [6, 7] ⌦(1/
p
n+

p
d log(1/�)/(n")) of DP-SCO problems

can be also regarded as a lower-bound of DP-SMO problems (see Boob and Guzmán [11] for more
details). Thus we can achieve optimal rates up to logarithmic factors.

Gradient Complexity: To compute the gradient complexity of our Algorithm 4 and 5, we first
review some existing algorithms for smooth SC-SC finite-sum saddle point problems. The general
finite-sum minimax optimization problem can be formulated as

min
x2X

max
y2Y

F̂S(x, y) =
1

n

nX

i=1

f(x, y; ⇠i),

where f(x, y; ⇠) is µx-strongly convex in x, µy-strongly concave in y and `-smooth. We are interested
in the �-approximate saddle point (x̃, ỹ) 2 X ⇥ Y such that

E

max
y2Y

F̂S(x̃, y)�min
x2X

F̂S(x, ỹ)

�
 �,

where the expectation is taken w.r.t. the randomness in the algorithm. GDA and Extragradient
[43] use the full-batch gradient at each iteration and consider a deterministic problem. Since the
iteration complexity is O(2 log(1/�)) and O( log(1/�)) respectively, the total gradient complexity
is O(n2 log(1/�)) for GDA and O(n log(1/�)) for Extragradient to achieve a �-approximate
saddle point, where  = `/min{µx, µy}. These two algorithms do not leverage the finite-sum
structure and obtain sub-optimal convergence rates. Palaniappan and Bach [39] first introduced the
use of variance reduction methods into finite-sum minimax optimization problems. The gradient
complexity is improved to O((n+ 2) log(1/�)) by SVRG/SAGA and O((n+

p
n) log(1/�)) by

the accelerated SVRG/SAGA. The state-of-the-art complexity O((n+
p
nxy+n3/4p) log(1/�))

that also matches with the lower-bound is provided in Yang et al. [48] and Luo et al. [34], where
x = `/µx and y = `/µy . Their algorithms are based on a catalyst framework.

We then analyze the complexity of Algorithm 4 and 5. Since two algorithms have the same gradient
complexity, we only do the computations for Algorithm 4. If we regard the regularized empirical
problem in Algorithm 4 as a general (`+ µk)-smooth, µk-strongly convex and µ-strongly concave
finite-sum minimax problem, linear time-complexity cannot be achieved since the condition number
(` + µk)/µ  O(

p
n`D/L) + 2k can be as large as O(n). By Remark 3, the complexity of each

phase in Algorithm 4 is O(T (n̄,x,y) log(1/�)) where x = (`+ µk)/µk, y = (`+ µk)/µ and
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Table 2: Comparisons of the gradient complexity of Algorithm 3 for smooth SC-SC DP-SMO and
Algorithm 4 and 5 for smooth convex-concave DP-SMO when equipping with different non-private
minimax optimization algorithms. Here ` is the smoothness parameter of f(x, y; ⇠), x = `/µx,
y = `/µy ,  = max{x,y} are condition numbers, and Õ hides logarithmic factors in n/�.

Algorithm SC-SC Convex-Concave

Extragradient [43] Õ(n) Õ(n3/2`D/L+ n2)

SVRG/SAGA [39] Õ(n+ 2) Õ(n+ n(`D/L)2)

Acc-SVRG/SAGA [39] Õ(n+
p
n) Õ(n+ n`D/L)

Jin et al. [25] Õ(n+
p
n) Õ(n+ n`D/L)

AL-SVRE [34] Õ(n+
p
nxy + n3/4p) Õ(n`D/L+ n5/4)

Catalyst-Acc-SVRG [48] Õ(n+
p
nxy + n3/4p) Õ(n`D/L+ n5/4)

� = �L2/(16µn̄2) since µ  µk. As a result, when using the state-of-the-art algorithms AL-SVRE
[34] and Catalyst-Acc-SVRG [48], the total gradient complexity is

KX

k=1

O

  
n̄+

s
n̄(`+ µk)2

µkµ
+ n̄3/4

s
`+ µk

µ

!
log(1/�)

!


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s
`

µ
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p
n̄`

µ

1
p

2k
+ (

p
n̄+ n̄3/4)

p

2k

!
log(n/�)

!

 O((n+ n
p
`D/L+ n`D/L+ n5/4) log(n/�)),

since 1/µ  O(
p
nD/L) and

PK
k=1

p

2k = O(
p
n). The complexity of Extragradient [43] can

be computed similarly. We find that the super-linear complexity comes from the potentially large
smoothness parameter corresponding to the regularizer (µk/2)kx� x̃k�1k

2. Next we show this can
be avoided by algorithms with fine-grained analyses and thus near-linear time-complexity is possible.

Jin et al. [25] provided sharper rates when the problem is separable. The problem they considered is

min
x2X

max
y2Y

F̂1(x, y) ,
1

n

nX

i=1

f(x, y; ⇠i) + g(x)� h(y),

where f(x, y; ⇠) is `-smooth and convex-concave, g(x) is `g-smooth, h(y) is `h-smooth and the
overall function F̂1(x, y) is µx-strongly convex µy-strongly concave. Their algorithms achieve a
�-approximate saddle point of F̂1(x, y) with complexity

Õ

  
n+

p
n

 s
`g
µx

+

s
`h
µy

+
`

µx
+

`
p
µxµy

+
`

µy

!!
log(1/�)

!
,

where Õ hides additional logarithmic terms. Our regularized problems satisfy the above special
structure with `g = µx = µk and `h = µy = µ. This fine-grained analysis is especially suitable for
us since the potentially large smoothness parameter µk does not affect the complexity result. The
total complexity of Algorithm 4 using results in Jin et al. [25] is thus

KX

k=1

Õ

✓✓
n̄+

p
n̄

✓
`

µk
+

`
p
µkµ

+
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◆
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✓✓
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p
n`

µ

◆
log(n/�)

◆

 Õ((n+ n`D/L) log(n/�)),
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which is linear in the number of samples up to logarithmic factors.

The above results suggest that the smoothness parameter of the regularization term in our problems
does not affect the gradient complexity. Actually Palaniappan and Bach [39] studied the case

min
x2X

max
y2Y

F̂2(x, y) ,
1

n

nX

i=1

f(x, y; ⇠i) + g(x, y),

where f(x, y; ⇠) is convex-concave and `-smooth, and g(x, y) is µx-strongly convex, µy-strongly
concave and possibly nonsmooth. Moreover, the nonsmooth part g(x, y) is required to be “simple” in
the sense that the proximal operator

prox�
g (x

0, y0) , argmin
x2X

max
y2Y

n
�g(x, y) +

µx

2
kx� x0

k
2
�

µy

2
ky � y0k2

o
,

is easy to compute for any (x0, y0) 2 X ⇥ Y . The complexity of their algorithms SVRG/SAGA and
Acc-SVRG/SAGA only depends on the smoothness parameter of f(x, y; ⇠) and SC-SC parameters
µx, µy, i.e., `/min{µx, µy}. The algorithms are first designed for matrix games, but also work
for general functions (see extensions to monotone operators in their supplementary material [39]).
Our regularized problems satisfy the special structure since the quadratic regularization term is
prox-friendly. The resulting complexity is

KX

k=1

O

✓✓
n̄+

p
n̄`

µ

◆
log(1/�)

◆
= O((n+ n`D/L) log(n/�)),

for Acc-SVRG/SAGA and O((n+n(`D/L)2) log(n/�)) for SVRG/SAGA by a similar computation.
Table 2 summarizes the complexity of our private algorithms for both smooth SC-SC and convex-
concave cases when equipping with different non-private minimax optimization algorithms. We
provide several instances where near-linear time-complexity is possible. It is worth mentioning
that AL-SVRE [34] and Catalyst-Acc-SVRG [48] can achieve the near-linear time-complexity for
convex-concave problems when exploiting the special structure of the regularized problems. We
leave this for future work. Minimax optimization with finite-sum structure is a well-studied research
topic, and we only include a small set of representative algorithms here. We refer interested readers
to Yang et al. [48], Luo et al. [34] and references therein for more discussions.

B.4 Near-Linear Time Algorithms for Smooth Convex–Strongly-Concave Functions

Algorithm 4 can be extended to the convex–strongly-concave (C-SC) case, and Algorithm 5 can be
extended to the strongly-convex–concave (SC-C) case. In this section, we provide a brief discussion
for the setting that f(x, y; ⇠) is convex in x and µy-strongly concave in y. The SC-C setting is similar
and we omit it here. When µy  O(1/

p
n), the strong-concavity does not help too much and we can

directly regard it as a convex-concave problem and apply Algorithm 4 and 5. However, there is no
need to add the regularization term for y in Algorithm 4 when µy � O(1/

p
n). The resulting variant

for smooth C-SC DP-SMO iteratively solves

min
x2X

max
y2Y

8
<

:
1

n̄

kn̄X

i=(k�1)n̄+1

f(x, y; ⇠i) +
µk

2
kx� x̃k�1k

2

9
=

;,

at each phase k to obtain the output (xk, yk) such that with probability 1� �/4,

µkkxk � x̂⇤
kk

2 + µykyk � ŷ⇤kk
2


L2

n̄2 min{µk, µy}
,

where (x̂⇤
k, ŷ

⇤
k) is the saddle point of the regularized empirical function. Then the perturbed output

x̃k is obtained by adding Gaussian noise N (0,�2
kIdx) to the primal solution xk with variance

�k = (4L/(n̄"))
p
2 log(2.5/�)/(µk min{µk, µy}). As a direct corollary of Theorem 4.5, the final

output x̃K satisfies the following guarantees.
Corollary B.6. Let Assumption 4.1 hold. Assume that f(x, ·; ⇠) is µy-strongly concave on Y for any

x 2 X with µy � L/(D
p
n). Suppose max{kxk, kyk}  D for all x 2 X and y 2 Y . Then the
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variant of Algorithm 4 discussed above is (", �)-DP and its output x̃K satisfies that

max
y2Y

E[F (x̃K , y)]� F (x⇤, y⇤)  6LD log(n)

 
1
p
n
+

4
p
dx log(2.5/�)

n"
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+ L2 log2(n)

✓
8

µyn
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65dx log(2.5n/�)

µyn2"2

◆
,

when setting µ = 3(L/D)max
n
1/
p
n, 4 log(n)

p
dx log(2.5/�)/(n")

o
.

The proof directly follows from (27) when replacing µ by min{µk, µy} for every µ appearing in the
denominator and the fact that 1/min{µk, µy}  1/µk+1/µy . The requirement that µy � O(1/

p
n)

is used to control the DP noise such that (26) holds (noticing that 1/(µK min{µK , µy})  O(1)
when µy is not too small). When f(x, y; ⇠) is C-SC, the primal function �(x) = maxy2Y E[F (x, y)]
is smooth and convex. Since F (x⇤, y⇤) = �(x⇤), the above guarantees imply that

E[�(x̃K)� �(x⇤)]  6LD log(n)
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p

dx log(2.5/�)
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!

+ L2 log2(n)
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8

µyn
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65dx log(2.5n/�)

µyn2"2

◆
,

which is the optimal rate, up to logarithmic factors, for the smooth convex DP-SCO problem
minx2X �(x). Then we analyze its gradient complexity by similar computations as the above section.
The total complexity is Õ(n+n(`D/L)2+2

y) for SVRG/SAGA [39], Õ(n+n`D/L+
p
ny) for

Acc-SVRG/SAGA [39] and Õ(n+ n`D/L+
p
ny) using Jin et al. [25], where Õ hides additional

logarithmic terms and y = `/µy . Not surprisingly, near-linear time-complexity is achievable.
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