
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFLM: CONTROLLABLE SYNTHETIC DATA GENER-
ATION VIA DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have significantly en-
hanced their knowledge and generative capabilities, leading to a surge of inter-
est in leveraging LLMs for high-quality data synthesis. However, synthetic data
generation via prompting LLMs remains challenging due to LLMs’ limited un-
derstanding of target data distributions and the complexity of prompt engineering,
especially for structured formatted data. To address these issues, we introduce
DiffLM, a controllable data synthesis framework based on variational autoencoder
(VAE), which further (1) leverages diffusion models to reserve more information
of original distribution and format structure in the learned latent distribution and
(2) decouples the learning of target distribution knowledge from the LLM’s gen-
erative objectives via a plug-and-play latent feature injection module. As we ob-
served significant discrepancies between the VAE’s latent representations and the
real data distribution, the latent diffusion module is introduced into our framework
to learn a fully expressive latent distribution. Evaluations on seven real-world
datasets with structured formatted data (i.e., Tabular, Code and Tool data) demon-
strate that DiffLM generates high-quality data, with performance on downstream
tasks surpassing that of real data by 2%–7% in certain cases. Data and code will
be released upon acceptance.

1 INTRODUCTION

Data Synthesis has become an indispensable technique in current machine learning research, en-
abling rapid generation and modification of datasets (Bauer et al., 2024), allowing researchers to
experiment with various scenarios and model architectures without the extensive processes associ-
ated with real-world data collection. Meanwhile, with the rapid advancements in large language
models (LLMs), recent research in natural language processing (NLP) has increasingly focused on
leveraging LLMs for synthetic data generation. Early efforts attempted to fine-tune LLMs to align
with real data distributions (Keskar et al., 2019; Anaby-Tavor et al., 2020; Borisov et al., 2023). As
the in-context learning capabilities of LLMs have improved, some studies have explored zero-shot
or few-shot prompting of LLMs to generate synthetic data (Ye et al., 2022a; Wei et al., 2024).

Despite the progress achieved, generating high-quality synthetic textual data using LLMs remains
challenging, particularly for structured data (Josifoski et al., 2023; Li et al., 2022). First, LLMs often
lack a global understanding of the target data distribution when generating synthetic data. Even after
fine-tuning, it is difficult to inject information about complex and varied distributions into current
LLM architectures, often resulting in outputs with low diversity and instances of data copying (Wu
et al., 2024; Yu et al., 2023). Moreover, existing LLM-based synthetic data generation methods
typically involve complex pipelines and post-processing mechanisms, such as prompt engineering,
multi-agent frameworks, and iterative sampling (Dekoninck et al., 2024; Wu et al., 2024). These
complexities hinder the rapid adaptation of LLMs to new tasks, limiting their utility in dynamic
research and industrial scenario. Concurrently, the remarkable performance of variational autoen-
coders (VAEs) and diffusion models in image synthesis tasks (Betker et al., 2023; Rombach et al.,
2022) has spurred interest in adapting these techniques to other modalities (Borisov et al., 2023; Li
et al., 2022; Gong et al., 2023). Although some works have introduced latent spaces into language
models for simple tasks like style transfer or topic generation (Yang & Klein, 2021; Li et al., 2022),
our preliminary experiments indicate that directly applying the latent distributions learned by VAEs
often results in outputs that are unrelated to the real data. Similar issues also have been addressed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in prior works (Amani et al., 2024; Havrylov & Titov, 2020; Bowman et al., 2016). This challenges
the direct application of these methods in more complex scenarios for synthetic data generation.

To address these challenges, we propose DiffLM, a novel framework that leverages a plug-and-play
latent space to provide data distribution information for LLMs during data generation. First, to
decouple the learning of real data distributions from the LLM’s training objectives, we develop a
latent space using a VAE model to capture external information, mapping samples from the real
dataset to latent vectors. However, we observed that sampling points from a Gaussian distribution
obtained from naive VAE that cannot generate realistic results. To overcome the poor quality of data
generated by sampling from VAE, we employ a latent diffusion method that linearly adds noise to
the latent space over time. A denoising network is then trained to learn these noises in the reverse
process, reducing efficiency loss in data synthesis due to sampling failures. Finally, we design a
soft prompting method to inject latent features into the LLM decoding process, resulting in control-
lable, high-quality synthetic data. We evaluate our method on seven real-world structured formatted
datasets, ranging from relatively simple table synthesis to more complex code and tool synthesis
tasks. Experiments demonstrate that DiffLM can generate high-quality results, and ablation studies
confirm the effectiveness of each component in our proposed method.

The contributions of this paper are threefold:

• Decoupling Data Distribution Learning: We proposed a new VAE-based LLM framework for
data systhesis, which decouples the learning of real data distribution information from the training
objectives of the LLM by introducing the a small projection network.

• High-Quality Synthetic Data Generation: Based on our observations, the meticulously designed
VAE and diffusion structures effectively model the distribution of real data, enabling the genera-
tion of high-quality synthetic data. In all tasks, the quality of the generated data is comparable to
or even surpasses that of the real data.

• Comprehensive Evaluation: We validate the high quality of data generated by DiffLM across
three distinct scenarios and seven datasets, underscoring its robustness and adaptability in advanc-
ing synthetic data generation for natural language processing.

2 RELATED WORKS

Large Language Models in Data Synthesis. The recent advancement in the generative capabil-
ities of LLMs has motivated numerous exploratory works aiming to leverage these models for data
augmentation in areas such as text classification (Ye et al., 2022a; Li et al., 2023), information ex-
traction (Tang et al., 2023; Josifoski et al., 2023), and tabular data generation (Borisov et al., 2023;
Xu et al., 2024). A comprehensive survey conducted by Long et al. (2024) proposes a prompt-based
generic workflow for synthetic data generation, curation, and evaluation. And multiple advanced
works have attempted to fine-tune language models for data synthesis in recent years (Anaby-Tavor
et al., 2020; Kumar et al., 2020; Dinh et al., 2022; Borisov et al., 2023; Xu et al., 2024). Specifically,
these methods involve fine-tuning LLMs on a small amount of gold data for language modeling,
followed by the use of various sampling methods to generate data. However, a major challenge
remains in ensuring that synthetic data accurately reflects real-world distributions. Veselovsky et al.
(2023) has shown that LLM-generated data can sometimes diverge from actual data distributions,
leading to unfaithful representations that may hinder model training. Some studies have explored
data selection (Puri et al., 2020) or data augmentation (Ye et al., 2022b) to address this distribution
gap, but there remains significant room for improvement.

Latent Variable Models in Text Generation. Latent variable models have made significant ad-
vances in computer vision in recent years (Yu et al., 2022a; Gu et al., 2022; Luo et al., 2023a; Gul-
rajani et al., 2017), achieving high-quality generation results, flexibility and effectiveness, as well
as robustness to noise perturbations. In particular, latent diffusion models, such as DALL-E (Betker
et al., 2023) and Stable Diffusion (Rombach et al., 2022), operate their diffusion processes in a la-
tent space rather than directly in data space, enabling a near-optimal balance between generation
quality and computational efficiency. In text generation, several works (Bowman et al., 2016; Wise-
man et al., 2018; Kaiser & Bengio, 2018; Havrylov & Titov, 2020; Ding & Gimpel, 2019; Li et al.,
2022; Gu et al., 2023; Borisov et al., 2023; Amani et al., 2024) have attempted to combine latent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

{
age: 38,
workclass: Private,
education: HS-grad,
occupation: Farming-fishing,
sex: Male,
native-country: United-States,
income: <=50K
}

{
age: 38,
workclass: Private,
education: HS-grad,
occupation: Farming-fishing,
sex: Male,
native-country: United-States,
income: <=50K
}

…

…

Normal
Distribution

LLM
Decoder

❄

…
…

…

Denoising Backward Process

Denoising MLP

Latent
Distribution

+µ 𝜎LM
Encoder

🔥

p! 𝑧" 𝑧"#$ = 𝒩(𝑧"#$; 𝜇! 𝑧", 𝑡 , Ε! z%, t)

𝒛𝟎 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝒙)

Diffusion Forward Process

z0 zt zn

𝑞 𝑧" 𝑧"#$ = 𝒩(𝑧"; 1 − 𝛽"	𝑧"#$, 𝛽"Ι)

Latent
Feature
Injector

…

…

Synthesizing Process

𝐿𝑜𝑠𝑠&' = 𝐷()(𝑞* 𝑧 𝑥 ∥ 𝑝(𝑧))
Encoding Process

𝐿𝑜𝑠𝑠+,- = 𝔼.! 𝑧 𝑥 (log 𝑝! 𝑥 𝑧)

Latent Space

𝐻"#$%&$ = 𝐼𝑛𝑗𝑒𝑐𝑡𝑜𝑟(𝒛𝟎)

Figure 1: Overview of our DiffLM. The trainable lanaguage model (LM) works as VAE encoder
while the fixed LLM decoder serves as VAE decoder. We further (1) introduced a Diffusion module
to learn the latent space, and (2) employ a latent feature injector with soft prompting to align latent
vector space with LLM decoder.

spaces with language models to accomplish tasks such as sentence representation, text style transfer,
and dataset augmentation. Additionally, some studies have explored the use of diffusion for plug-
and-play controllable generation (Li et al., 2022; Gong et al., 2023), aiming to steer the outputs of
pre-trained language model using auxiliary modules. While these works share a similar perspective
with ours, we tackle a more challenging scenario of structured data synthesis and thoroughly inves-
tigate multiple methods of latent knowledge injection. To the best of our knowledge, our work is the
first to combine VAEs and denoising diffusion models with large language models for high-quality
data synthesis.

3 METHODOLOGY

Figure 1 illustrates the main pipeline of our proposed DiffLM. First, we define an encoder to map
discrete text into a continuous latent space (Section 3.2). Second, although the features of the data
are extracted and compressed, conventional latent embeddings in text VAEs often lead to decoding
failures due to underutilized or empty regions in the latent space. To address this issue, we train a
diffusion model on the latent space (Section 3.3). Finally, to incorporate encoded prior knowledge
into the decoding stage of large language models, we propose a novel soft prompt injection method
to steer the decoding process (Section 3.4).

3.1 PROBLEM FORMULATION

We begin by defining D as a known small set of real-world distribution data, where each element x
represents a real sample. We define G as the synthetic data generator, which learns the distribution of
D and generates a set of synthetic samples, Dsyn, ensuring that the model does not simply memorize
and reproduce the same real samples, meaning D ∩ Dsyn = ∅. It should be noted that we focus
on the task of unconditional data synthesising using LLMs, where G generates synthetic samples
independently of any additional context, i.e., without using explicit prompt text.

3.2 VAE-BASED REPRESENTATION LEARNING

Feature Encoding: In standard VAEs, an encoder is typically employed to map input data into a
latent space. Given structured text data si, we utilize a learnable Transformer-based pre-trained lan-
guage model (Vaswani et al., 2017; Devlin et al., 2019; Raffel et al., 2020) to obtain the representa-
tion vector xi ∈ Rd×2, which can be split into the mean and variance. Using the re-parameterization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

trick (Kingma & Welling, 2014), we then obtain the latent feature z ∈ Rd:
z = µ+ σ ⊙ ϵ, (1)

where µ and σ are the mean and standard deviation output by the encoder, and ϵ is sampled from a
standard normal distribution N (0, I).

LLM Decoding: After generating the latent feature z, we employ a frozen-parameter LLM to re-
construct the input text s in a causal language modeling manner. The rationale for freezing the LLM
parameters is to avoid retraining and to preserve its general knowledge and reasoning capabilities.
Consequently, aligning the two different modalities, whereas the latent space and the LLM input
space, presents a significant challenge. To address this, we propose a novel latent feature injector
using soft prompting and design a corresponding injector network; specific details are provided in
Section 3.4.

VAE Training Objective: The VAE model is typically trained using the Evidence Lower Bound
(ELBO) loss function. Following previous work (Burgess et al., 2018), we adopt the β-VAE training
strategy (Higgins et al., 2017), which introduces a weighting parameter β to control the contribution
of the KL divergence loss in the total loss function. Specifically, when β = 0, the model reduces to
a standard autoencoder. For β > 0, the KL constraint encourages learning a smoother latent space:

ELBOβ = Lrec − βLkl, (2)

Lrec = Eqϕ(z|x)
(
log pθ(x|z)

)
, (3)

Lkl = DKL
(
qϕ(z|x) ∥ p(z)

)
, (4)

where pθ(x|z) is the language modeling reconstruction likelihood, qϕ(z|x) is the approximate pos-
terior, and p(z) is the prior over the latent space, i.e., Gaussian distribution. In our model design,
considering the denoising network of latent diffusion, we adopt an decreasing β adjustment strat-
egy. We initially set a larger β weight to enforce a strong regularization on the latent space. As
the reconstruction loss convergence slows, we decrease the β value to allow the model to focus
more on reconstruction accuracy. Additionally, we employ an early stopping mechanism to prevent
overfitting.

3.3 LATENT SPACE DENOISING

Although VAE can learns latent space representations of data, directly sampling from the prior
distribution p(z) often exhibit low quality generated samples. In our preliminary experiments, we
observed that directly utilizing the latent features learned by the VAE frequently produces text that
is unrelated to the target data distribution. This issue arises due to the discrepancy between the
encoder’s learned posterior distribution qϕ(z|x) and the prior p(z). To address this problem, we
introduce a diffusion model in the latent space to more accurately model the true distribution of the
latent features. Inspired by Zhang et al. (2024), we extract the latent vectors z ∈ Z from the trained
VAE for each data point x ∈ Dtrain. Starting from the initial latent vector z0, we progressively
add noise over time following a linear schedule to get zt. During the reverse diffusion process, we
employ a standard continuous denoising network to recover z0 (Song et al., 2021). For the training
objective, we optimize the diffusion model through denoising score matching (Karras et al., 2022):

zt = z0 + σ(t)ϵ, ϵ ∈ N (0, I), (5)

dzt = −σ̇(t)σ(t)∇zt log p(zt)dt+
√
2σ̇(t)σ(t)dωt, (6)

Ldiff = Et∼p(t), z0∼p(z0), ϵ∼N (0,I) ∥ϵθ(zt, t)− ϵ∥2 , (7)

In forward process Eq.5, zt is the latent variable at time t, and σ(t) is a time-dependent noise scale
function. As for backward process Eq.6, σ̇(t) stands for the time derivative of σ(t), and ∇zt log p(zt)
is the gradient of the log probability density with respect to zt, also known as the score function,
and dωt is an increment of the Wiener process (standard Brownian motion). For diffusion model
training loss Eq.7, ϵθ(zt, t) is the neural network that predicts the noise ϵ given zt and t. The detailed
description for diffusion model could be found in Appendix A.1.

3.4 LATENT FEATURE INJECTION

After constructing a latent space that captures the true data distribution, two challenges remain: 1)
Aligning latent space with LLM’s input space. How can the decoding LLM process the latent vector

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Performance of downstream tasks using generated tabular data. We evaluate the quality
from: performance in machine learning efficiency (MLE) task, and column-wise distribution density
estimation (ρ) task. ↑, ↓ indicate that higher (or lower) metrics correspond to better performance.
Boldface indicates DiffLM surpasses the SoTA model based on language models. Red Boldface
denotes DiffLM exceeds the MLE performance achieved using real data.

Method Adult Default Magic Shoppers Beijing
MLE ↑ ρ ↓ MLE ↑ ρ ↓ MLE ↑ ρ ↓ MLE ↑ ρ ↓ MLE ↓ ρ ↓

Real 0.927 - 0.770 - 0.946 - 0.926 - 0.423 -
SMOTE 0.899 1.60 0.741 1.48 0.934 0.91 0.911 2.68 0.593 1.85

CTGAN 0.886 16.84 0.696 16.83 0.855 9.810 0.875 21.15 0.902 21.39
TVAE 0.878 14.22 0.724 10.17 0.887 8.250 0.871 24.51 0.770 19.16
GOGGLE 0.778 16.97 0.584 17.02 0.654 1.900 0.658 22.33 1.090 16.93
CoDi 0.871 21.38 0.525 15.77 0.932 11.56 0.865 31.84 0.818 16.94
TabSyn 0.915 0.58 0.764 0.85 0.938 0.88 0.920 1.43 0.582 1.12

GReaT 0.913 12.12 0.755 19.94 0.888 16.16 0.902 14.51 0.653 8.25
DiffLM 0.894 9.16 0.793 9.33 0.910 7.04 0.912 14.43 0.717 6.05

z to steer a powerful language model for realistic data generation? 2) Seamless Integration with
LLM Knowledge: How can we integrate external information without disrupting the LLM’s internal
knowledge? Motivated by adapter training methods in LLM fine-tuning (Lester et al., 2021; Li &
Liang, 2021; Houlsby et al., 2019; Liu et al., 2023a), we consider the soft prompt latent injection
approach to incorporate z into LLM decoding without training the model weights. Specifically,
after obtaining the latent representation z, we use an upper MLP to map it into k soft prompt token
embeddings, denoted as Hlatent ∈ Rk×d. These soft embeddings serve as a steering vector, which
is concatenated before the <BOS> token to assist the LLM in decoding. The detailed process is
illustrated in Figure 4. We also conduct ablation experiments in Section 5.1 with the other two
injection methods proposed by Li et al. (2020), which validated that our methods obtain the best
reconstruction loss and downstream task performance.

4 EXPERIMENTS

In this section, we evaluate the generation quality of the DiffLM method on multiple public bench-
marks across three tasks: 1) Tabular Data Generation: We compare DiffLM with SoTA tabular
generation algorithms, demonstrating its strong capability in structured data generation. 2) Code
Generation: DiffLM showcases the ability to integrate structured data priors with its internal knowl-
edge. The results on synthetic data are even better than real ones. 3) Tool Generation: DiffLM can
quickly adapt to complex function call scenarios, highlighting its flexibility and adaptability.

4.1 TABULAR DATA GENERATION

Benchmarking. We selected five publicly available datasets for evaluation, encompassing both
classification and regression tasks: Adult, Beijing, Default, Magic, and Shoppers. The properties of
datasets are presented in Table 5. To assess the quality of synthetic data, we employed two perspec-
tives: 1) Low-order statistical metrics, where we quantified column-wise density estimation using
the Kolmogorov-Smirnov Test for numerical columns and the Total Variation Distance for categor-
ical columns; 2) Downstream task performance, where we measured the predictive accuracy on
test data of classifiers or regressors trained on the generated data.

Baselines. We selected a comprehensive set of classic and SoTA tabular data generation models
with diverse architectures for comparison. First, we consider the performance on real data as the
upper bound for evaluation. Secondly, we included the classic method, synthetic minority over-
sampling technique (SMOTE) (Chawla et al., 2002), which generates new synthetic data patterns
by performing linear interpolation between minority class samples and their k nearest neighbors.
Additionally, for neural network-based tabular generation algorithms, we considered six baseline

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: pass@k scores on HumanEval and MBPP. We follow Chen et al. (2021) for estimating
pass@k, where n > k solutions are generated per problem with p = 0.95 and a temperature of
0.2 to calculate the success rate with zero-shot learning. Boldface indicates that DiffLM surpasses
the performance achieved with real data. Red Boldface indicates that DiffLM surpasses the base
model’s performance.

Model Size HumanEval MBPP

pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

GPT-4 - 67.00 - - - - -

CodeLLaMA 7B 33.50 59.60 85.90 41.40∗ 66.70∗ 82.50∗

34B 48.80 76.80 93.00 55.00∗ 76.20∗ 86.60∗

Mistral-Base 7B 27.79 41.22 56.37 37.31 52.02 59.65
12B 10.12† 20.91† 28.93† 43.38 61.44 69.09

Mistral-Instruct 7B 36.09 52.95 64.18 38.45 50.77 59.17
12B 7.08† 12.43† 16.14† 52.20 63.61 69.02

Mistral-Real-Code 7B 28.58 42.24 54.24 27.15 42.21 48.14
12B 36.97 52.04 60.95 34.79 45.49 50.22

Mistral-DiffLM-Code 7B 35.37 47.36 54.38 32.70 41.65 47.39
12B 42.24 56.02 61.97 44.42 52.35 55.70

* These results are evaluated under a 3-shot setting.
† The vanilla Mistral-Nemo 12B models fail to pass the HumanEval benchmark, resulting in a lower

score. We have conducted multiple evaluations and report the average performance.

models across different architectures: 1) GAN-based models: CTGAN (Xu et al., 2019); 2) VAE-
based models: TVAE (Xu et al., 2019), GOGGLE (Liu et al., 2023b); 3) Diffusion-based models:
Codi (Lee et al., 2023), TabSyn (Zhang et al., 2024); 4) LLM-based: GReaT (Borisov et al., 2023),
which attempts to fine-tune a GPT-2 (Radford et al., 2019) for table synthesis. It is worth noting
that we compare with the current strongest generative models not to merely outperform them in
tabular generation but to demonstrate that our flexible DiffLM architecture can achieve comparable
performance while offering additional advantages.

Evaluation. Table 1 presents the quality assessment results of the generated data. For different
tabular datasets, we train a XGBoost classifier or a regressor using the synthetic data to predict the
label column values, using AUC and RMSE to evaluate the accuracy, respectively. From the results,
DiffLM outperforms the current language-model-based SoTA (GReaT model) on most datasets. No-
tably, on the Default dataset, the prediction accuracy using DiffLM’s synthetic data surpasses that
obtained by training on real data. This suggests that DiffLM’s approach of integrating the real data
distribution with its own learned knowledge can provide richer information for downstream tasks
while preserving the original data structure. In other words, the synthetic data generated by DiffLM
contains additional knowledge compared to real data, which is challenging to achieve with previ-
ous methods. Moreover, our generated results achieve performance comparable to prior methods
in column-wise distribution density estimation. Although the TabSyn method attains superior per-
formance on several datasets, it should be noted that our approach focuses on general, pluggable
generation control for large language model, rather than training data synthesis models from scratch
for specific domains. Despite this, in tabular data generation, our method’s performance is on par
with these domain-specific methods.

4.2 CODE GENERATION

Benchmarking. In the code generation scenario, to simplify the problem, we focus on Python code
and use the Flytech1 dataset as real data, which contains 24,813 unique real user queries and the
corresponding Python code fulfilling those requests. We discard the user queries and use only the
code to train DiffLM. After generating synthetic code data, we continue pre-training the Mistral 7B
v0.3 base model (Jiang et al., 2023) using a smaller learning rate, i.e., 1e-5, in a causal language

1https://huggingface.co/datasets/flytech/python-codes-25k

6

https://huggingface.co/datasets/flytech/python-codes-25k

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10
Score

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

Real Tools
DiffLM Tools

Figure 2: GPT-4 evaluation scores for tools from the ToolBench
dataset and tools generated by DiffLM. The evaluation prompt
considers aspects such as clarity, specificity, completeness, con-
sistency, and applicability.

Table 3: Win rate of DiffLM
generated data. GPT-4 performs
preference scoring on all real
tools and synthetic tools within
the same category, considering
aspects like comprehensiveness
and diversity.

Rate %

DiffLM Win 28.3
Equal 6.8
Real Win 64.9

modeling objective. We then benchmark the trained model on code generation tasks, selecting two
mainstream benchmarks: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021b). To
better understand the performance changes of the base model, we also experiment with base models
of different sizes, i.e., Mistral Nemo with 12B parameters.

Baselines. We include baselines from recent code models. First, we consider the CodeL-
LaMA (Rozière et al., 2023) series, which use approximately 600B tokens to continue pre-training
the LLaMA-2 (Touvron et al., 2023) base model, injecting strong code capabilities through multi-
task learning. Additionally, we compare with the Mistral base model (Jiang et al., 2023) and its
instruction-tuned variants, the latter could representing the upper bound of code capabilities for this
architecture.

Evaluation. We report the code generation capabilities in Table 2. Specifically, Mistral-Real-Code
and Mistral-DiffLM-Code denote models that were further pre-trained on real data and synthetic data
generated by DiffLM, respectively. The 7B models are based on Mistral-0.3-Base, and the 12B mod-
els are based on Mistral-Nemo-Base. Both models were trained for 3 epochs on the same amount
of data using identical hyperparameters, effectively serving as a controlled experiment where the
data source is the only variable. The results indicate that simply continuing to pre-train the Mistral
model with a small amount of code data leads to inconsistent impacts on code generation capabil-
ities. Specifically, Mistral-Real-Code shows a slight improvement on HumanEval but a significant
decline on MBPP. However, using our synthetic data to continue pre-training the base model yields
better results than using real data. For instance, Mistral-DiffLM-Code-7B, achieved a 7 percentage
point improvement over the base model, even outperforming the Code Llama 7B model that was
trained with more extensive data. In summary, in the code generation scenario, we focus on the
differing impacts of real data and synthetic data, further demonstrating that DiffLM can generate
synthetic data that is even more effective than real data in enhancing downstream task performance.

4.3 TOOL GENERATION

Evaluation. To address more complex structured data generation scenarios, we further conduct a
tool synthesis task. Specifically, we select the ToolBench (Qin et al., 2024) dataset as a benchmark
for comparison, which is constructed based on the RapidAPI2 platform by crawling APIs created
by real users and synthesizing related dialogue SFT data using GPT3. We use the its toolset to train
DiffLM and then sample an equal number of tools for comparison. We assess the usability of the
generated tools from two perspectives: 1) Single-Tool Quality: We use GPT-4 as an annotator to
score the real and synthetic data across multiple dimensions on a scale from 0 to 10, where the

2https://rapidapi.com/hub
3https://chat.openai.com

7

https://rapidapi.com/hub
https://chat.openai.com

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

 K
L

KL-Divergence Loss
Embedding Injection
Memory Injection
Prompt Injection
Cyclical β

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.5

1.0

2.0

5.0

Lo
ss

 R
ec

LM Reconstruction Loss
Embedding Injection
Memory Injection
Prompt Injection
Cyclical β

Figure 3: Model loss curves under different latent feature injection methods and different β adjust-
ment strategies. The left is the KL-divergence loss trends, and the right is the language modeling
reconstruction loss on a logarithmic scale. In the cyclical β strategy, β increases linearly from 0 to
0.2. The other methods employ a decreasing β, starting from a maximum value of 0.1 and decreas-
ing to a minimum of 0.001. Our proposed injection and β adjustment strategy achieves the lowest
reconstruction loss.

1. Prompt Injection 2. Memory Injection 3. Embedding Injection

WP Wm

……

…
…

…………
…

…

…

…

…………

…

We

…

…

…
…

…………

…

…

…
Diffusion

Model

…

…

Normal
Distribution

Latent
Distribution

Figure 4: Final data synthesis process. The comparison of different latent feature injection methods
is shown in grey dashed box. Memory Injection introduces the latent features as past key-value (KV)
memories into each attention layer of the LLM. Embedding Injection directly adds the latent features
to the token embeddings.

results are illustrated in Figure 2. 2) Category-Level Preference: We collect all tools within the
same category and use GPT-4 to perform preference scoring between real tools and synthetic tools,
as presented in Table 3. The specific evaluation prompts are provided in the appendix B.2. From
the results, DiffLM’s synthetic data achieves higher scores in the single-tool scoring task, indicating
that leveraging the internal knowledge and generative capabilities of LLMs allows us to create tool
descriptions and input/output parameter definitions of higher textual quality. Additionally, in the
category-level preference evaluation, nearly 1/3 of the tool types surpass or are on par with real
data in terms of diversity and usability. Since DiffLM can sample and generate tools indefinitely to
increase coverage, we believe there is room for further improvement in this metric.

5 ANALYSIS

5.1 ABLATION STUDY

The effect of adaptive β adjustment. As described in Section 3.2, we use a decreasing β ad-
justment strategy to train the VAE latent space. Here, we compare this with another method that
uses a cyclical schedule to anneal β (Fu et al., 2019), evaluating both the loss decline curves and
downstream task performance to demonstrate the effectiveness of our decreasing strategy. Firstly,
as shown in Figure 3, the KL-divergence loss trends under decreasing β exhibit a pattern where the
loss first increases, then decreases, and then increases again. This indicates that during the early
stages of VAE training, DiffLM uses a larger β to focus on the divergence between the embedding
distribution and the standard Gaussian. This helps quickly learn a standard latent space to stabilize
the training of the LLM module. Subsequently, when the reconstruction loss reaches a bottleneck,
it gradually reduces the weight of the KL-divergence loss. At this point, the training objective shifts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4
0.00

0.25

0.50

0.75

1.00
Real

0 2 4

Codi

0 2 4

TabSyn

0 2 4

GReaT

0 2 4

DiffLM

DCR on Beijing

R
at

io

0 5 10
0.00

0.25

0.50

0.75

1.00
Real

0 5 10

Codi

0 5 10

TabSyn

0 5 10

GReaT

0 5 10

DiffLM

DCR on Default

R
at

io

Figure 5: DCR results of the real test data, Codi, TabSyn, GReaT, and DiffLM on the Beijing and
Default datasets. DiffLM exhibits a DCR distribution similar to the current SoTA method, TabSyn.

towards obtaining a decoder with stronger generative capabilities. As a result, the KL loss gradually
increases and eventually stabilizes at a fairly low value. From the results, our decreasing β method
achieves the lowest reconstruction loss. Additionally, by introducing the latent diffusion process,
we address the issue of distribution discrepancy. Therefore, as shown in Table 4, compared to the
cyclical method, the decreasing β strategy used in this paper results in stronger generative ability.

Table 4: The results of MLE and ρ
under different latent feature injections
and β adjustments on Adult dataset.

Models MLE ↑ ρ ↓
DiffLM-Cycle β 0.872 16.79

DiffLM-Embed - -
DiffLM-Memory 0.875 17.05

DiffLM-Prompt 0.894 9.16

The effect of latent feature injection. We also compare
our proposed soft prompt latent feature injection method
with previously explored methods such as KV memory
injection and input embedding injection (Li et al., 2020);
implementation details are illustrated in Figure 4. Specif-
ically, the loss convergence on the validation dataset for
different injection methods are shown in Figure 3. The
input embedding method leads to suboptimal training re-
sults, where the reconstruction loss ceases to decrease af-
ter reaching around 3.6. This indicates that such a simple
injection method struggles to effectively convey complex
real distribution information to the LLM decoder. Mean-
while, the soft prompt method slightly outperforms KV
memory in terms of reconstruction loss. However, as
shown in Table 4, on downstream task performance using the Adult dataset, our proposed soft prompt
approach achieves higher (2%) classification accuracy and better column density.

5.2 TRAINING DATA PLAGIARISM

Data copying is a significant challenge for overfitted generative models in practical applications. To
verify that the data generated by DiffLM is not merely copied from the training data, we compute
the Distance to Closest Record (DCR) metric. Specifically, for each row in the tabular data, we
represent the categorical columns using one-hot vectors and perform min-max normalization on the
numerical columns. We then define DCR as the minimum L1-distance between a synthetic data
point and each training sample point:

DCR(xsyn) = min
xreal∈Dtrain

L1(xsyn, xreal). (8)

The DCR distribution is shown in Figure 5. We observe that the LLM-based GReaT generates
results that differ significantly from the training data, indicating that vanilla fine-tuning struggles
to adapt LLMs to real data distributions and generate high-quality results. DiffLM demonstrates a
DCR distribution similar to that of the SoTA method TabSyn on both datasets. This further indicates
that our proposed general-purpose data synthesis framework can achieve performance on par with
domain-specific models on specific tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Adult

Label
<=50K
>50K

Default

Label
0
1

Magic

Label
g
h

Shoppers

Label
False
True

Beijing

Label
1.00-23.00
23.00-52.00
52.00-92.00
92.00-157.00
157.00-858.00

Toolbench

Figure 6: The t-SNE visualization of the latent space obtained by encoding evaluation data. DiffLM
implicitly learns clustering relationships among different types of data.

5.3 VISUALIZATION

Figure 6 presents 2D t-SNE visualizations of the latent space for multiple datasets, including four
categorical tabular datasets, one numerical tabular dataset, and one tool dataset. We use DiffLM
trained on the corresponding datasets to encode their validation sets, obtaining latent features. It can
be observed that data of the same class encoded by DiffLM exhibit clustering characteristics in the
latent space, as seen in the Adult and Magic. Notably, in the numerical dataset Beijing, different
target values display a clear transitional distribution: the upper part of the 2D space corresponds to
data with larger target values, i.e., 157 to 858, while the lower part corresponds to data with smaller
target values, i.e., 1 to 23. These results demonstrate that DiffLM’s latent space learning strategy
can effectively capture the real data distribution.

6 CONCLUSION

In this paper, we introduce DiffLM, a novel framework designed to enhance LLM’s understanding
of real-world data distributions in synthetic data generation tasks. DiffLM leverages a VAE to map
real data into a latent space, which is then injected into the decoding process of LLM, enabling
end-to-end training through causal language modeling objective. Additionally, we incorporate a dif-
fusion process to further refine the learning of the latent distribution, mitigating the sampling failures
caused by latent space discrepancies. To flexibly and non-intrusively control the structure and qual-
ity of the generated data, DiffLM integrates real data information with LLMs’ internal knowledge
by freezing the LLM parameters and using the latent features as plug-in modules. Experimental
results demonstrate that DiffLM produces highly robust and consistent outputs. In all datasets, the
performance of downstream models trained on the generated data is comparable to or even surpasses
that of models trained on real data.

REFERENCES

Mohammad Hossein Amani, Nicolas Mario Baldwin, Amin Mansouri, Martin Josifoski, Maxime
Peyrard, and Robert West. Symbolic autoencoding for self-supervised sequence learning. CoRR,
abs/2402.10575, 2024.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev Shlomov,
Naama Tepper, and Naama Zwerdling. Do not have enough data? deep learning to the rescue! In
AAAI, pp. 7383–7390. AAAI Press, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In NeurIPS, pp. 17981–17993, 2021a.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021b.

André Bauer, Simon Trapp, Michael Stenger, Robert Leppich, Samuel Kounev, Mark Leznik, Kyle
Chard, and Ian T. Foster. Comprehensive exploration of synthetic data generation: A survey.
CoRR, abs/2401.02524, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn.openai.com/papers/dall-e-3.pdf, 2(3):8, 2023.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. In ICLR. OpenReview.net, 2023.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy
Bengio. Generating sentences from a continuous space. In CoNLL, pp. 10–21. ACL, 2016.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loı̈c Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae. CoRR, abs/1804.03599, 2018.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321–357, 2002.

Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, and Diyi Yang. A cheaper and better diffusion lan-
guage model with soft-masked noise. In EMNLP, pp. 4765–4775. Association for Computational
Linguistics, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, and et al. Evaluating large language models trained on code.
CoRR, abs/2107.03374, 2021.

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin T. Vechev. Controlled text gen-
eration via language model arithmetic. In ICLR. OpenReview.net, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Xiaoan Ding and Kevin Gimpel. Latent-variable generative models for data-efficient text classifica-
tion. In EMNLP/IJCNLP (1), pp. 507–517. Association for Computational Linguistics, 2019.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn,
Dimitris S. Papailiopoulos, and Kangwook Lee. LIFT: language-interfaced fine-tuning for non-
language machine learning tasks. In NeurIPS, 2022.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cyclical
annealing schedule: A simple approach to mitigating KL vanishing. In NAACL-HLT (1), pp. 240–
250. Association for Computational Linguistics, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. In ICLR. OpenReview.net, 2023.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In CVPR, pp. 10686–
10696. IEEE, 2022.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan Zhang, Heng Gong, Weihong Zhong, and Bing
Qin. Controllable text generation via probability density estimation in the latent space. In ACL
(1), pp. 12590–12616. Association for Computational Linguistics, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taı̈ga, Francesco Visin, David Vázquez,
and Aaron C. Courville. Pixelvae: A latent variable model for natural images. In ICLR (Poster).
OpenReview.net, 2017.

Serhii Havrylov and Ivan Titov. Preventing posterior collapse with levenshtein variational autoen-
coder. CoRR, abs/2004.14758, 2020.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Dif-
fusionbert: Improving generative masked language models with diffusion models. In ACL (1),
pp. 4521–4534. Association for Computational Linguistics, 2023.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts
with a constrained variational framework. In ICLR (Poster). OpenReview.net, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR,
2019.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, and et al. Mistral 7b. CoRR,
abs/2310.06825, 2023.

Martin Josifoski, Marija Sakota, Maxime Peyrard, and Robert West. Exploiting asymmetry for
synthetic training data generation: Synthie and the case of information extraction. In EMNLP,
pp. 1555–1574. Association for Computational Linguistics, 2023.

Lukasz Kaiser and Samy Bengio. Discrete autoencoders for sequence models. CoRR,
abs/1801.09797, 2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurIPS, 2022.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
CTRL: A conditional transformer language model for controllable generation. CoRR,
abs/1909.05858, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho. Data augmentation using pre-trained trans-
former models. CoRR, abs/2003.02245, 2020.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models
for mixed-type tabular synthesis. In ICML, volume 202 of Proceedings of Machine Learning
Research, pp. 18940–18956. PMLR, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP (1), pp. 3045–3059. Association for Computational Linguistics, 2021.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. Op-
timus: Organizing sentences via pre-trained modeling of a latent space. In EMNLP (1), pp.
4678–4699. Association for Computational Linguistics, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL/IJCNLP (1), pp. 4582–4597. Association for Computational Linguistics, 2021.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto.
Diffusion-lm improves controllable text generation. In NeurIPS, 2022.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large lan-
guage models for text classification: Potential and limitations. In EMNLP, pp. 10443–10461.
Association for Computational Linguistics, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
Chen. Text generation with diffusion language models: A pre-training approach with continuous
paragraph denoise. In ICML, volume 202 of Proceedings of Machine Learning Research, pp.
21051–21064. PMLR, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023a.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: generative
modelling for tabular data by learning relational structure. In ICLR. OpenReview.net, 2023b.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On
llms-driven synthetic data generation, curation, and evaluation: A survey. In ACL (Findings), pp.
11065–11082. Association for Computational Linguistics, 2024.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Syn-
thesizing high-resolution images with few-step inference. CoRR, abs/2310.04378, 2023a.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical
study of catastrophic forgetting in large language models during continual fine-tuning. CoRR,
abs/2308.08747, 2023b.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa Patwary, and Bryan Catanzaro. Training
question answering models from synthetic data. In EMNLP (1), pp. 5811–5826. Association for
Computational Linguistics, 2020.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. In ICLR. OpenReview.net, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Machel Reid, Vincent Josua Hellendoorn, and Graham Neubig. Diffuser: Diffusion via edit-based
reconstruction. In ICLR. OpenReview.net, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685. IEEE, 2022.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, and et al. Code llama: Open foundation models for code. CoRR, abs/2308.12950,
2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR.
OpenReview.net, 2021.

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. Does synthetic data generation of llms
help clinical text mining? CoRR, abs/2303.04360, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, and et al. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Veniamin Veselovsky, Manoel Horta Ribeiro, Akhil Arora, Martin Josifoski, Ashton Anderson, and
Robert West. Generating faithful synthetic data with large language models: A case study in
computational social science. CoRR, abs/2305.15041, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo
Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factuality in large language models.
CoRR, abs/2403.18802, 2024.

Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. Learning neural templates for text
generation. In EMNLP, pp. 3174–3187. Association for Computational Linguistics, 2018.

Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xian-
gliang Zhang, Jianfeng Gao, Chaowei Xiao, and Lichao Sun. Unigen: A unified framework for
textual dataset generation using large language models. CoRR, abs/2406.18966, 2024.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. In NeurIPS, pp. 7333–7343, 2019.

Shengzhe Xu, Cho-Ting Lee, Mandar Sharma, Raquib Bin Yousuf, Nikhil Muralidhar, and
Naren Ramakrishnan. Are llms naturally good at synthetic tabular data generation? CoRR,
abs/2406.14541, 2024.

Kevin Yang and Dan Klein. FUDGE: controlled text generation with future discriminators. In
NAACL-HLT, pp. 3511–3535. Association for Computational Linguistics, 2021.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng
Kong. Zerogen: Efficient zero-shot learning via dataset generation. In EMNLP, pp. 11653–11669.
Association for Computational Linguistics, 2022a.

Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Progen: Progres-
sive zero-shot dataset generation via in-context feedback. In EMNLP (Findings), pp. 3671–3683.
Association for Computational Linguistics, 2022b.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Trans. Mach. Learn. Res., 2022, 2022a.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu,
and Ying Nian Wu. Latent diffusion energy-based model for interpretable text modeling. CoRR,
abs/2206.05895, 2022b.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J. Ratner, Ranjay Krishna, Jiaming
Shen, and Chao Zhang. Large language model as attributed training data generator: A tale of
diversity and bias. In NeurIPS, 2023.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Text diffusion model
with encoder-decoder transformers for sequence-to-sequence generation. In NAACL-HLT, pp.
22–39. Association for Computational Linguistics, 2024.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. Diffusum: Generation enhanced extractive sum-
marization with diffusion. In ACL (Findings), pp. 13089–13100. Association for Computational
Linguistics, 2023.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space. In ICLR. OpenReview.net, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS ON MODEL DESIGN

A.1 DIFFUSION PROCESS

In this section, we will introduce the general process of latent diffusion models. Latent Diffusion
Models (LDMs) are a class of diffusion probabilistic models that operate in the latent space of
an autoencoder rather than directly on the high-dimensional data space. By performing diffusion
in a compressed latent representation, LDMs significantly reduce computational complexity while
maintaining high fidelity in data generation. An LDM consists of two primary components:

1. Autoencoder: Encodes input data x0 into a latent representation z0 = E(x0) and decodes
latent variables back to data space x̂ = D(z).

2. Diffusion Model: Defines a diffusion process on the latent variables {zt}Tt=0.

It should be noted that the variable used here is independent with main text.

Forward Process (Diffusion). The forward diffusion process in latent space progressively adds
Gaussian noise to the latent representation over T timesteps. Starting from the initial latent code
z0 = E(x0), obtained by encoding the data x0, the forward process is defined as:

q(zt | zt−1) = N (zt;
√

1− βt zt−1, βtI), (9)

where βt ∈ (0, 1) is a predefined variance schedule that controls the amount of noise added at each
step t, and N denotes a Gaussian distribution. By recursively applying this process, we can express
zt directly in terms of z0:

q(zt | z0) = N (zt;
√
ᾱt z0, (1− ᾱt)I), (10)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. This formulation allows efficient sampling of zt at any
arbitrary timestep t without iterating through all previous steps. In this paper, we adopt the Variance

Exploding defined perturbation kernels, whereas setting st =
√
1− βt and σt =

√
βt

1−βt
. Also, we

set st = 1 to directly add noise to the data rather than weighted mixing, convert Eq.10 to:

q(zt | z0) = N (zt;0, σ
2
t I) (11)

Reverse Process (Denoising). The reverse diffusion process aims to recover z0 from a noisy la-
tent variable zt ∼ N (0, I). It is parameterized by a neural network ϵθ, which predicts the noise
component at each timestep:

pθ(zt−1 | zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (12)

Typically, the model predicts the mean µθ while the covariance Σθ is fixed or simplified. By lever-
aging the properties of the forward process, the mean can be parameterized to predict the original
noise ϵ added during the forward diffusion:

µθ(zt, t) =
1

√
αt

(
zt −

βt√
1− ᾱt

ϵθ(zt, t)

)
. (13)

This formulation enables the model to denoise zt step by step, ultimately reconstructing z0.

Learning Objective. The training objective for LDMs focuses on minimizing the difference be-
tween the true noise ϵ added during the forward process and the noise predicted by the model ϵθ.
The simplified loss function is:

Llatent = Ex0,ϵ,t

[
∥ϵ− ϵθ(zt, t)∥2

]
, (14)

where zt is sampled as:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (15)

This objective encourages the model to learn the conditional distribution pθ(zt−1 | zt) by accurately
predicting the noise component at each timestep.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Noise Scheduling. The noise schedule {βt}Tt=1 plays a critical role in the diffusion process. It
dictates how quickly noise is added in the forward process and, consequently, affects the difficulty
of the reverse denoising task. Common strategies for setting βt include linear, cosine, and quadratic
schedules. We use use linear noise schedule, i.e., the perturbation kernel σ(t) = t. As it is an
effective schedule, ensuring that the data is sufficiently diffused by timestep t, while still allowing
the model to learn meaningful reverse transitions.

B DETAILS ON EXPERIMENTAL SETUP

B.1 TABULAR DATA GENERATION

Table 5: Details of tabular dataset. For each dataset, #Num stands for the number of numerical
columns, and #Cat stands for the number of categorical columns.

Datasets #Num #Cat #Train #Validation #Test Downstream Task

Adult1 6 9 29,304 3,257 16,281 Binary Classification
Beijing2 7 5 35,059 4,382 4,383 Binary Classification
Default3 14 11 24,000 3,000 3,000 Binary Classification
Magic4 10 1 15,216 1,902 1,902 Binary Classification
Shoppers5 10 8 9,864 1,233 1,233 Regression

1 https://archive.ics.uci.edu/dataset/2/adult
2 https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
3 https://archive.ics.uci.edu/dataset/350/default+of+credit+
card+clients

4 https://archive.ics.uci.edu/dataset/159/magic+gamma+
telescope

5 https://archive.ics.uci.edu/dataset/468/online+shoppers+
purchasing+intention+dataset

B.2 TOOL JUDGEMENT PROMPTS

We present the evaluation prompts used for assessing tool generation quality in Figure 7 and Fig-
ure 8.

B.3 INSTRUCTIONS FOR REPRODUCTION

In this section, we present the experimental details of DiffLM, including data preprocessing, training
hyperparameter settings, and data post-processing filtering methods.

Data Preprocessing. Real-world NLP datasets often exhibit inherent structures, such as the con-
text, question, and answer in machine reading comprehension tasks, or key-value pairs in tabular
generation tasks. In DiffLM, we convert all structured data into JSON format. For instance, tabular
data in a CSV file is transformed into lines of JSON, and tools from ToolBench are abstracted into
JSON structures comprising tool name, tool description, api name, and api description. For code
data, we use the raw code directly without any preprocessing as input for DiffLM training.

Hyperparameter Settings.

• VAE Encoder: bert-base-uncased
• VAE Decoder: mistralai/Mistral-7B-Instruct-v0.3
• Soft Prompt Tokens k: 64
• Soft Prompt Embedding Dimension d: 4096
• βmax = 0.1

• βmin = 0.001

• Diffusion Noise Dimension: 4096

16

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Given a API, evaluate it and assign a score from 0 to 10,
with 10 being the highest quality and 0 being the lowest.
Consider the aspects listed below when evaluating the
API. Provide your reasoning in "reason" and include the "
score" in JSON format.

Evaluation Aspects:
1. Clarity and Completeness of the Tool Description: Does the

tool_description clearly and thoroughly explain the
purpose and functionalities of the tool?

2. Specificity and Accuracy of the API Name and Description:
Is the api_name descriptive and appropriate? Does the
api_description accurately and specifically describe what
the API does?

3. Parameter Definition and Completeness: Are the parameters
well-defined, including types, properties, and required
fields? Do they cover all necessary inputs for the API to
function effectively?

4. Consistency Between Tool and API Descriptions: Is there a
logical connection between the tool_description and the
api_description? Do they complement each other to provide
a full understanding of the API’s capabilities?

5. Ease of Integration and Use: Based on the provided
information, how easy would it be for a developer to
integrate and use the API? Are there any missing details
that could hinder implementation?

6. Overall Usefulness and Applicability: Considering
potential use cases, how valuable is the API? Does it
meet the needs of its intended audience?

Instructions:
- For the API, analyze it based on the evaluation aspects.
- Summarize your findings and reasoning in a clear and

concise manner in "reason".
- Assign a final score between 0 and 10, reflecting the

overall quality of the API in "score" field.
- Present the output in JSON format.

API:
{api_data}

Now, provide your answer.

Figure 7: Evaluation prompt for single-tool quality. Used by GPT-4 with temperature=1.0.

Generation Filtering. For inputs in JSON format, we employ column names to filter the generated
outputs. A generated result is considered valid only if it contains all required columns. For code
generation tasks involving plain text, we do not apply any filtering. We utilize the same filtering
criteria across all baseline models.

C SYNTHETIC DATA GENERATED BY DIFFLM

In Table 6, we compare the real test data of the Adult dataset with the generated outputs from
GReaT and DiffLM. As discussed in Section 5.1, DiffLM produces more diverse samples that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given two sets of tools under the same category, you need to
determine better_set by following these rules:

1. Comprehensiveness of Covered Functions: Evaluate which set
covers more relevant and essential functions within the
category.

2. Accuracy of Tool Descriptions: Check if the tool
descriptions are clear, precise, and accurately reflect
each tool’s functionality.

3. Difficulty of Calling the Tools: Assess the complexity
involved in using the tools, considering the inputs and
outputs required.

4. Overall Quality Assessment: Consider any additional
factors that may impact the overall quality of the tool
sets.

Set A:
{tool_set_a}

Set B:
{tool_set_b}

If one set is better based on the above criteria, indicate
better_set as "A" or "B". If both sets are of similar
quality, indicate better_set as "equal".

Now, provide your reasoning in "reason" and indicate "
better_set" ("A" or "B" or "equal") in JSON format.

Figure 8: Evaluation prompt for category-level perference. Used by GPT-4 with temperature=1.0.

more closely align with the real data distribution. Specifically, for columns like workclass and
native-country, the outputs generated by the GReaT model are relatively homogeneous.

Table 6: Comparison of real samples and synthetic data.

Methods age workclass education occupation race sex native-country income

Real

40 Private Some-college Machine-op-inspct Asian-Pac-Islander Female Japan > 50K
38 Private HS-grad Other-service White Female Canada <= 50K
59 Private HS-grad Craft-repair White Male England > 50K
29 Self-emp-not-inc Assoc-voc Adm-clerical White Male United-States <= 50K
26 Private Assoc-acdm Prof-specialty White Female Canada <= 50K

GReaT

27 Private Bachelors Prof-specialty White Male United-States <= 50K
22 Private HS-grad Craft-repair Black Male United-States <= 50K
41 Private HS-grad Sales Black Male United-States <= 50K
35 Private HS-grad Adm-clerical White Female United-States <= 50K
54 Private Doctorate Prof-specialty Asian-Pac-Islander Male India > 50K

DiffLM

34 Private Some-college Craft-repair White Male Canada <= 50K
53 Local-gov Some-college Other-service White Female Canada <= 50K
23 Private Bachelors Adm-clerical White Male England <= 50K
24 ? Some-college ? Asian-Pacific-Islander Male Canada <= 50K
32 Local-gov Bachelors Adm-clerical Asian-Pac-Islander Male India > 50K

D REBUTTAL

D.1 CLARIFICATION

Contribution. Our contributions and insights are as follows:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Motivation and Challenge: We pointed out the principles and challenges for high-quality struc-
tured text data synthesis, i.e., producing scalable and diverse synthetic data with reasonable rele-
vant knowledge while maintaining the same data requirements (structure, topic, domain, etc.) as
the target data. Existing prompt-based and fine-tuning methods cannot achieve both objectives at
a low cost.

• Framework: To address these goals, we propose the DiffLM framework, which decouples the
task of learning the requirements of the data to be synthesized from the language modeling task.
We model these requirements in the latent space and inject them into an unaltered LLM, enabling
it to generate desired and realistic data. The synthetic data combines LLM’s broad knowledge
with specific data patterns learned from the training data, leading to enhanced performance on
downstream tasks.

• Techniques: For implementation, we propose a training recipe that keeps the LLM decoder fixed
and only trains the VAE encoder and projector. We also validate different latent knowledge injec-
tion methods.

Controllability. We define the controllability of text data synthesis as the ability to generate text
that satisfies desired requirements (e.g., structure, topics, domains) (Keskar et al., 2019; Li et al.,
2022). Existing methods for structured textual data synthesis often struggle with controllability.
On one hand, LLM prompt-based methods relying on prompt engineering or few-shot inference
cannot guarantee the diversity and scalability of synthetic data, even with complex human-crafted
processes (Long et al., 2024). On the other hand, controlling a LM by fine-tuning it with supervised
data (SFT, RLHF) is not only expensive but might also degrade the LLM’s general capability (Keskar
et al., 2019; Borisov et al., 2023). Our method addresses these challenges through sampling in the
latent space while maintaining data structure due to LLM’s instruction-following ability.

Related Works. We include more relevant references on language modeling task (Lin et al., 2023;
Yuan et al., 2024; Reid et al., 2023; Zhang et al., 2023), unconditional text generation (Yu et al.,
2022b; Chen et al., 2023) and control text generation (He et al., 2023; Austin et al., 2021a).

Additionally, we have incorporated more references (Kaiser & Bengio, 2018; Amani et al., 2024;
Havrylov & Titov, 2020; Bowman et al., 2016) to support our assertions in lines 54–55 and to cite
the use of β-VAE (Higgins et al., 2017) in line 176, as suggested by Reviewer 1UL1.

D.2 BASELINES

GReaT. We attempted to validate the GReaT method on Mistral but found it could not directly and
effectively generate data with the desired structure. GReaT organizes tabular data in a “key is value”
format and uses a smaller PLM (i.e., GPT-2) for continued pretraining. However, when applied to
larger models like Mistral, GReaT struggled to effectively generate the desired structured data. The
sample generated by GReaT with Mistral is shown in Figure 9. We hypothesize that controlling
an LM by fine-tuning it with supervised data cause catastrophic forgetting for LLMs, as suggested
by Luo et al. (2023b). Specifically, the “key is value” data constructed by the GReaT method,
when used to continue pre-training Mistral, causes internal knowledge collapse - both undermining
the model’s existing knowledge and failing to do effective data synthesis. Additionally, training
the adult dataset on GReaT for 200 epochs (default settings) requires approximately 50 hours on 8
A100 80G GPUs, which is resource-intensive. In contrast, DiffLM under the same training settings
requires only about 7 hours.

TabSyn. We want to emphasize that our goal is a unified structured data synthesis framework
that supports various domains like tabular data, codes, and tools, and tabular data generation in our
work is just a subdomain of synthetic data generation. As a comparison, TabSyn is not applica-
ble to more complex data synthesis tasks, such as code generation and tool usage, which involve
generating longer content, more complex data types, and highly structured data, while our DiffLM
can handle complicated scenarios. The results of tabular data synthesis are to demonstrate that our
method possesses generality and can achieve on-par results with domain-specific models without
being specifically tailored to a particular domain.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

<s> income is <=50K, $300/month income is >50K, $600/month I
am trying to figure out how to implement the above logic
with the following table I have: | ID | Amt |
|----|-----| | 1 | 450 | | 2 | 650 | | 3 | 500 | | 4 |
150 | | 5 | 700 | | 6 | 400 | I have tried using ‘IF ELSE
‘ function in Excel but I am not sure how to apply it to
this particular situation. You can use the ‘IF‘ function
in Excel to implement the logic you provided. Here is a
formula that you can use: ‘‘‘ =IF(A2<=50000, 300, 600)
‘‘‘ In this formula, ‘A2‘ is the cell where you have the
income. You can adjust the formula to apply it to your
table by using the following formula: ‘‘‘ =IF(A2<=50000,
300, 600) ‘‘‘ Assuming that the income values are in
column A, you can use the following formula to get the
monthly payment for each ID: ‘‘‘ =IF(A2<=50000, 300, 600)
‘‘‘ Drag this formula down to get the payment for each
ID. Here is an example of how your table would look like
after applying the formula: | ID | Amt | Payment |
|----|-----|---------| | 1 | 450 | 300 | | 2 | 650 | 600
| | 3 | 500 | 300 | | 4 | 150 | 300 | | 5 | 700 | 600 | |
6 | 400 | 300 |</s></s></s></s></s></s></s></s></s></s
></s></s></s></s></s></s></s></s></s></s></s></s></s></s
></s>’, ’<s> income is <=50K, credit score is >=700, and
the applicant has lived in their current residence for
more than 2 years. To create a segment based on the
provided conditions in a SQL-like syntax, you can use the
following: ‘‘‘sql SELECT * FROM customers WHERE income
<= 50000 AND credit_score >= 700 AND length_of_residence
> 2; ‘‘‘ This SQL query selects all records from the
customers table where the income is less than or equal to
50,000, the credit score is 700 or higher, and the
length of residence (assuming that length_of_residence is
a field indicating the number of years a customer has
lived at their current address) is more than 2.</s>

Figure 9: A random synthetic sample generated by GReaT trained with Mistral. Use the exactly
same training and generating settings as GReaT with trained with GPT-2.

D.3 EXPERIMENTAL DETAILS

Training Parameters for Baselines. We reproduced the tabular results using the code released by
the original paper, ensuring that all hyperparameters and settings were consistent with the original
implementation. All results were almost identical to those reported in the TabSyn paper; therefore,
we used the results reported in TabSyn in Table 1 to ensure a fair comparison.

Choice of Diffusion Models. In our early experiments, we used only a VAE to learn the latent
space. During data synthesis, however, only about 10% of the samples had structures consistent
with the training data (e.g., in tabular data, the synthetic data contained all required columns). This
indicates that the standard VAE representations were often ignored by the LLM decoder, leading to
poor structural consistency in the generated data. Latent diffusion addressed this sampling failure,
increasing the success rate of synthetic data to approximately 97%.

As for more expressive prior distributions like a mixture of Gaussians, we referred to previous tab-
ular synthesis works (Zhang et al., 2024) in designing our method and chose a more direct diffusion
approach to address the discrepancy in the latent space. We believe that a trainable denoising net-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

work can help learning a stronger latent space, and this technique is also commonly used in the
current computer vision field.

D.4 ANALYSIS

Table 7: Tabular MLE performance with varying quantity of real and synthetic data. Performance
on the Beijing dataset is evaluated using the RMSE metric, where lower values indicate better per-
formance. 2x means we use double training synthesized data for evaluation.

Adult Default Magic Shoppers Beijing

Real 0.927 0.770 0.946 0.926 0.423
TabSyn (SoTA) 0.915 0.764 0.938 0.920 0.582

DiffLM (1x) 0.894 0.793 0.910 0.9122 0.717

DiffLM (2x) 0.896 0.795 0.914 0.9124 0.704
(+0.002) (+0.002) (+0.004) (+0.0002) (-0.013)

Real+DiffLM 0.925 0.802 0.936 0.932 0.494

Analysis on Quantity of Synthetic Data. We experimented with increasing the amount of data
synthesized by DiffLM and combining real data with DiffLM-synthesized data. As shown in Ta-
ble 7, adding more synthesized data further improves around 0.2% MLE performance in the tabular
scenario. Since our method can synthesize unlimited amounts of data and we did not design any
complex post-processing method, the performance improvement brought by DiffLM-synthesized
data in downstream tasks still has significant room for growth. Additionally, combining real and syn-
thetic data generated by DiffLM can improve downstream performance; all results exceed > 0.2%
of those using only DiffLM data. Notably, on the Beijing and Shoppers datasets, the combination of
real data and DiffLM synthetic data surpasses 0.6%-3% of the performance of training on real data
alone.

Table 8: The human evaluation re-
sults on 100 pairs of randomly se-
lected DiffLM-generated tool and
real tool within the same category.
Averaged by 3 human experts with
computer science knowledge.

Percentage

DiffLM Win 88%
Equal 6%

Real Win 6%

Analysis on Synthetic Data Outperforming Real Data.
Our motivation arises from observing that many works attempt
to use LLMs for data synthesis but often face difficulties in
efficiently generating desired and realistic data (Long et al.,
2024) at scale. We propose DiffLM to steer LLMs for data
generation by decoupling the task of learning the requirements
of the data to be synthesized from the language modeling task.
We model these requirements in the latent space and then in-
ject them into the unaltered LLM, enabling it to generate de-
sired and realistic data. As shown in Figure 2 of our paper,
DiffLM synthesizes data that integrates external data distribu-
tions and the LLM’s internal knowledge, resulting in better
judgement scores than the real data. We believe this is because
the synthetic data combines LLM’s broad knowledge with spe-
cific data patterns learned from the training data, leading to
enhanced performance on downstream tasks.

Analysis on Human Evaluation. We agree that automated metrics like DCR and downstream
task performance may not fully capture the nuances of data quality for complex structured data. In
fact, we have used GPT-4 to rate and perform preference judgments on synthesized tools and real
tools. The results in Figure 2 and Table 3 demonstrate the quality of our synthesized data. As per
your suggestion, we have conducted human evaluations on the tools data. Specifically, we compared
100 pairs of randomly selected DiffLM-generated data and real data within the same category. As
shown in Table 8, our synthetic data is preferred by human annotators.

21

	Introduction
	Related Works
	Methodology
	Problem Formulation
	VAE-based Representation Learning
	Latent Space Denoising
	Latent Feature Injection

	Experiments
	Tabular Data Generation
	Code Generation
	Tool Generation

	Analysis
	Ablation Study
	Training Data Plagiarism
	Visualization

	Conclusion
	Details on Model Design
	Diffusion Process

	Details on Experimental Setup
	Tabular Data Generation
	Tool Judgement Prompts
	Instructions for Reproduction

	Synthetic Data Generated by DiffLM
	Rebuttal
	Clarification
	Baselines
	Experimental Details
	Analysis

