
A Related work

Traditional web search techniques follow a two-stages paradigm including document retrieval and
document ranking. The first stage aims to select a collection of documents relevant to a given query,
which requires an ingenious trade-off between efficiency and recall. Then, the document ranking
stage takes more advanced features and deeper models to calculate a fine-grained ranking score
for each query and document pair. In the following, we first discuss related works for document
retrieval and ranking respectively. Afterwards, we introduce recent works that incorporate pre-trained
language models into these two stages. At last, the attempts on end-to-end retrieval will be discussed.

A.1 Document retrieval

Traditional document retrieval methods are based on Sparse Retrieval, which is built upon inverted
index with term matching metrics such as TF-IDF [45], query likelihood [33] or BM25 [44]. In
industry-scale web search, BM25 is a difficult-to-beat baseline owing to its outstanding trade-off
between accuracy and efficiency. In recent years, there are some attempts to incorporate the power of
neural networks into inverted index. The Standalone Neural Ranking Model (SNRM) [57] learns
high-dimensional sparse representations for queries and documents, which enables the construction of
inverted index for efficient document retrieval. Doc2Query [41] predicts relevant queries to augment
the content of each document before building the BM25 index, and DocT5Query [40] improves the
performance of query generation by the pre-trained language model T5 [5]. Furthermore, DeepCT [9]
calculates context-aware term importance through neural networks to improve the term matching
metrics of BM25.

Another line of research lies in Dense Retrieval, which presents query and documents in dense vectors
and models their similarities with inner product or cosine similarity. These methods benefit from
recent progresses of pre-trained language models, such as BERT [14] and RoBERTa [35] to obtain
dense representations for queries and documents. At inference time, efficient Approximate Nearest
Neighbor (ANN) search algorithms, such as k-dimensional trees [3], locality-sensitive hashing [10],
and graph-based indexes (e.g., HNSW [38], DiskANN [27] and SPANN [7]) can be utilized to retrieve
relevant documents within a sublinear time. Besides, Luan et al. [37] analyze the limited capacity of
dual encoders, and propose a combination of sparse and dense retrieval methods with multi-vector
encoding to achieve better search quality.

A.2 Document ranking

Document ranking has been extensively studied in recent years and experienced a huge improvement
with the booming of deep neural networks. Neural network-based document ranking models mainly
fall into two categories. Representation-based models like DSSM (Deep Structured Semantic
Model) [25] and CDSSM (a convolution-based variant of DSSM) [48] represent query and document
in a shared semantic space and model their semantic similarity through a neural network. In contrast,
Interaction-based models first build interactions between query and document terms, and then utilizes
neural networks to learn hierarchical interaction patterns. For example, DRMM (Deep Relevance
Matching Model) [21] extracts interactive features by matching histograms and utilizing a feed
forward network with term-gating mechanism to calculate the relevance score of a query-document
pair.

A.3 Pre-trained language models

Recently, Pre-trained Language Models (PLMs) like BERT [14] have led to a revolution of web search
techniques. The vanilla BERT model utilizes a single-tower architecture that concatenates query and
document tokens as a whole input to the relevance model. Despite of its superior performance, the high
computational cost hinders its application to industrial-scale web search systems. TwinBERT [36]
tackles this problem by exploiting a Siamese architecture, where queries and documents are first
modeled by two BERT encoders separately, and then an efficient crossing layer is adopted for
relevance calculation. The representation vectors for all documents can be calculated and indexed
offline. In the online serving stage, it calculates the representation vector for the input query and
applies a crossing layer to calculate the relevance score between each query and document. The

16

crossing layer usually adopts simple similarity functions such as dot product or a single feed-forward
layer to achieve a high efficiency.

Moreover, Chang et al. [6] argue that the Masked Language Model (MLM) loss designed for BERT
pre-training is not naturally fitted to embedding-based retrieval tasks. Instead, they propose three
paragraph-level pre-training tasks, i.e., Inverse Cloze Task (ICT), Body First Selection (BFS), and
Wiki Link Prediction (WLP), which demonstrate promising results in text retrieval experiments.
Gao et al. [16] find that a standard LMs’ internal attention structure is not ready-to-use for dense
encoders. Thus, they propose a novel architecture named Condenser to improve the performance
of dense retrieval. ANCE (Approximate nearest neighbor Negative Contrastive Estimation) [54]
leverages hard negatives to improve the effectiveness of contrastive learning, which generates better
text representations for the retrieval task.

A.4 End-to-end retrieval

The deficiency of index-retrieve paradigm lies in that the two stages of document retrieval and
re-ranking are optimized separately. Especially, the document retrieval procedure is often sub-optimal
and hinders the performance of the entire system. Thus, there are some recent attempts to achieve end-
to-end retrieval as a one-stage solution. ColBERT [31] introduces a contextualized late interaction
architecture, which independently encodes query and document through BERT, and performs cross-
term interaction based on the contextualized representations of query and document terms. ColBERT
supports end-to-end retrieval directly from a large document collection by leveraging vector-similarity
indexes in the pruned interaction layer. It can be viewed as a compromise between single-tower and
twin-tower BERT architectures which maintains an effective trade-off between accuracy and latency.
Moreover, the Contextualized Inverted List (COIL) [19] exacts lexical patterns from exact matching
pairs through contextualized language representations. At search time, we build representation vectors
for query tokens and perform contextualized exact match to retrieve relevant documents based on
inverted index.

Although ColBERT and COIL have shown promising results in end-to-end retrieval tasks without
re-ranking, their performance is still not obviously better (if not worse) than a common practice of
“BM25 indexer + BERT re-ranker”, and their efficiency is also not good enough for an industrial
web search engine. Therefore, we resort to a new indexing paradigm to break the bottleneck. We
believe the neural corpus indexer proposed in this paper is a crucial break-through, opening up new
opportunities to optimize the performance of web-scale document retrieval. Moreover, there are a
few attempts that try to build a model-based search index by directly predicting document identifiers.
Tay et al. [50] proposed the DSI (differentiable search index) model based on an encoder-decoder
architecture to generate relevant docids. However, its decoder architecture remains the same as T5,
which is unsuitable to generate semantic ids derived by hierarchical k-means. SEAL [4] uses all
n-grams in a passage as its possible identifiers and build a FM-Index to retrieve documents; but it
is hard to enumerate all n-grams for retrieving relevant documents. In addition, our work is related
to Deep Retrieval [20] for the recommendation task, which learns a deep retrievable network with
user-item clicks without resorting to ANN algorithms constrained by the Euclidean space assumption.

B Reproducibility

We provide our code for reproduction in the supplementary material. We will release it to public
shortly.

B.1 Dataset processing

We conduct experiments on NQ320k and TriviaQA datasets. For NQ320k dataset, the queries are
natural language questions and the documents are Wikipedia articles in HTML format. During dataset
processing, we first filter out useless HTML tag tokens, and extract title, abstract and content strings
of each Wikipedia article using regular expression. The experiments are also conducted on TriviaQA
dataset. For TriviaQA dataset, it includes 78k query-document pairs from the Wikipedia domain,
which are processed almost the same as NQ320k. Then, we detect duplicated articles based on the
title of each article. After that, we concatenate the title, abstract and content strings of each Wikipedia
article, and apply a 12 layers pre-trained BERT model on it to generate document embeddings.

17

Finally, hierarchical k-means is applied on the article embeddings to produce semantic identifiers for
each article.

B.2 Hierarchical k-means for semantic identifier

The pseudo code of hierarchical k-means is detailed in in Algorithm 1.

Algorithm 1: Hierarchical k-means.
Input:

Document embedding X1:N

Number of clusters k
Recursion terminal condition c

Output:
Hierarchical semantic identifier L1:N

Function:
GenerateSemanticIdentifier(X1:N)

C1:k ←KMeansCluster(X1:N , k)
L← ∅
for i ∈ [0, k − 1] do
Lcurrent← [i] ∗ |Ci+1|
if |Ci+1| > c then
Lrest← GenerateSemanticIdentifier(Ci+1)

else
Lrest← [0, ..., |Ci+1| − 1]

end if
Lcluster ← ConcatString(Lcurrent, Lrest)
L← L.Append(Lcluster)

end for
L← reorderToOriginal(L,X1:N , C1:k)
return L

B.3 Constrained beam search

The pseudo code of constrained beam search is detailed in Algorithm 2.

B.4 Baselines

We describe the baseline methods in this section. For most of them, we use their official open-source
implementations.

• BM25. BM25 is currently the mainstream algorithm for calculating the similarity score between
query and document in information retrieval [44]. We calculate BM25 between an original query
Q and a document d which derived from a sum of contributions from each query term qi as,

Score(Q, d) =

t∑
i=1

wi ∗R (qi, d) (7)

where wi denotes the weight of qi, and R(qi, d) is the correlation between qi and d. We use the
open-source implementation from Rank-BM25 2.

• BM25 + DocT5Query. The docT5Query model [40] generates questions that related to a
document. These predicted queries are then appended to the original documents, which are then
indexed. Note that we use the same predicted queries in our query generation module. Queries
are issued against the index as “bag of words” queries, using BM25 for evaluation. We use the
open-source code for DocT5Query3, and the generated queries keep the same with NCI (our
model) to have a fair comparison.

2https://github.com/dorianbrown/rank_bm25
3https://github.com/castorini/docTTTTTquery

18

Algorithm 2: Constrained Beam Search.
Input:

Query embedding x
Beam search size k
Max beam length n
Prefix tree T with root r0, containing all valid identifiers
Log probability function f(ri) = log(p(ri|x, ri−1, ..., r0))

Output:
k documents with the highest probabilities

Function:
prefix={r0}
ResultIds← ∅
B0 ← {⟨prefix,EOS⟩}
for i ∈ [1, n] do

for ⟨prefix, sum_log_prob⟩ ∈ Bi−1 do
if prefix.last().isLeaf() then
doc_id = prefix.toString()
ResultIds.add(⟨doc_id, sum_log_prob/len(prefix)⟩)

else
for ri ∈ prefix.last().child() do

new_prefix = prefix.copy().append(ri)
Bi.add(⟨new_prefix, sum_log_prob+ f(ri)⟩)

end for
end if

end for
Bi ← Bi.rank_by_prob().top(k)

end for
return ResultIds.rank_by_prob().top(k)

• BERT + ANN (Faiss). We use the Flat Index method with the query and document representations
obtained by CoCondenser4[16] which is pretrained on Wikipedia and then finetuned over NQ
dataset. For the Flat Index method, we use the version implemented by Faiss5.

• BERT + BruteForce. In this baseline, we use the CoCondenser [16], pretrained on Wikipedia
and then finetuned over NQ dataset, to encode queries and documents separately. Then, the
Cosine Similarity is computed for each query and document pair. After that, for each query, the
documents with the largest Cosine Similarity score are retrieved.

• ANCE (MaxP & FirstP). ANCE, a training mechanism, that constructs negatives from an
Approximate Nearest Neighbor (ANN) index of the corpus [54]. For BERT FirstP, we concatenate
the title and content of each document by a [SEP] token. For BERT MaxP, we only use the
content of each document. We use the open-source implementation6.

• SEAL (BART-Large). We reproduce SEAL based on the open-sourced implementation7.
• DSI. The DSI model learns a text-to-text model that maps string queries directly to relevant

docids [50]. We report the performance of DSI (T5-Base), DSI (T5-Large) and DSI (T5-XXL)
from its original paper as the implementation has not been open-sourced.

C More Experimental Results

We study the influence of regularization strength and choose the regularization hyper-parameter
α from {0, 0.1, 0.15, 0.2, 0.3}. Table 6 summaries the results with different regularization hyper-
parameter α settings. At convergence, the hyper-parameter α = 0.15 generally achieves better
performance. Therefore, we set the default value as α = 0.15 in NCI.

4https://github.com/luyug/Condenser
5https://github.com/facebookresearch/faiss
6https://github.com/microsoft/ANCE
7https://github.com/facebookresearch/SEAL

19

Table 6: Different regularization hyper-parameter α in loss function. Left: NQ320k; Right: TriviaQA.

Setting Recall@1 Recall@10 Recall@100 MRR@100
α = 0 65.07 82.91 90.65 71.80
α = 0.1 65.51 85.28 92.52 72.76
α = 0.15 65.86 85.20 92.42 73.12
α = 0.2 65.55 84.48 92.61 72.63
α = 0.3 65.44 85.21 92.45 72.83

Setting Recall@5 Recall@20 Recall@100 R-Precision
α = 0 89.01 93.63 96.16 71.59
α = 0.1 90.14 94.15 96.96 72.78
α = 0.15 90.49 94.45 96.94 73.90
α = 0.2 90.44 94.41 96.97 73.22
α = 0.3 90.02 94.09 96.79 73.53

D Miscellaneous

Social Impacts. This work aims at introducing a new learning paradigm that can unify the learning
and indexing stages with an end-to-end deep neural network. Besides, our work has the potential to
inspire more attempts at unifying the retrieval and re-ranking task with an end-to-end framework,
which might have positive social impacts. We do not foresee any form of negative social impact
induced by our work.

Privacy Information in Data. We use the NQ dataset privided by the work [32]. The dataset
only includes questions, rendered Wikipedia pages, tokenized representations of each page, and the
annotations added by our annotators. No privacy information is included. For the TriviaQA [29],
which is a reading comprehension dataset, it includes 78k query-document pairs from the Wikipedia
domain. Again, no privacy information is included.

20

