
A Additional Implementation Details378

A.1 Robot Pose Prediction379

To account for the robot’s future ego-motion, we need to predict the future pose of the robot at380

prediction time step t+ n. Since the constant velocity motion model is the most widely used motion381

model for tracking [29], we use it as our robot motion model and assume that the robot keeps constant382

motion in a relatively short period (i.e., less than 1 second). Note that other more suitable robot383

motion models can be used to provide better robot pose predictions. Then, we can easily predict384

the future pose of the robot xt+n at prediction time step t+ n using the robot’s current pose xt and385

velocity ut:386 [
xt+n

yt+n

θt+n

]
=

[
xt

yt
θt

]
+

[
vt cos(θt)
vt sin(θt)

wt

]
n∆t+

[
σx

σy

σθ

]
, (6)

where ∆t is the sampling interval, σ· is the Gaussian noise.387

A.2 Coordinate Transformation388

To compensate for the ego-motion of the robot, we first use a homogeneous transformation matrix to389

transform the robot poses xt−τ :t to the robot’s local future coordinate frame R:390 xR
t−τ :t

yRt−τ :t
1

 =

[
cos(θt+n) − sin(θt+n) xt+n

sin(θt+n) cos(θt+n) yt+n

0 0 1

]−1 [
xt−τ :t

yt−τ :t

1

]
, (7a)

θRt−τ :t = θt−τ :t − θt+n. (7b)

Then, by adding these ego-motion displacements, we convert the observed lidar measurements yt−τ :t391

from Polar to Cartesian coordinates:392

yR
t−τ :t =

[
xz
t−τ :t

yzt−τ :t

]
=

[
xR
t−τ :t

yRt−τ :t

]
+ rt−τ :t

[
cos(bt−τ :t + θRt−τ :t)
sin(bt−τ :t + θRt−τ :t)

]
. (8)

Finally, we implement the transformation function (3d) and obtain a set of observed lidar measure-393

ments yR
t−τ :t at the robot’s local future coordinate frame R. The benefit of ego-motion compensation394

is that we can treat these lidar measurements from a moving lidar sensor as observations from a395

stationary lidar sensor at R. This significantly reduces the difficulty of OGM predictions and improves396

accuracy.397

A.3 GPU-accelerated Conversion Function c(·)398

Algorithm 1 shows the pseudo-code for the GPU-accelerated conversion function c(·)399

(i.e., (3b)) to convert the lidar measurements to the binary occupancy grid maps.400

Algorithm 1: Converting lidar points to OGMs

Input: compensated lidar measurements yR
t−τ :t

Input: grid cell size s
Input: the physical size of the OGMs S
Input: the lower left corner of the OGMs (x0, y0)
Output: OGMs ot−τ :t

1: initialize: ot−τ :t = 0
2: for all parallel beams z ∈ yR

t−τ :t do
3: i = ⌊(xz

t−τ :t − x0)/s⌋
4: j = ⌊(yzt−τ :t − y0)/s⌋
5: if i, j ∈ [0, S/s] then
6: ot−τ :t(i, j) = 1
7: end if
8: end for

401

12

A.4 GPU-accelerated OGM Mapping Algorithm g(·)402

Algorithm 2 shows the pseudo code for the GPU-accelerated and parallelized OGM map-403

ping algorithm g(·) (i.e., (3c)) that parallelizes the independent cell state update operation.404

Note that li is the log odds representation of occupancy in the occupancy grid map m [20].405

Algorithm 2: GPU-accelerated OGM mapping

Input: compensated lidar measurements yR
t−τ :t

Output: local environment map m
1: for all time steps n from t− τ to t do
2: for all parallel grid cells mi in the perceptual field of yR

n do
3: li = li + log

p(mi|yR
n)

1−p(mi|yR
n)

− log p(mi)
1−p(mi)

4: end for
5: end for

406

A.5 Dataset Collections407

A.5.1 OGM-Turtlebot2 Dataset408

A simulated Turtlebot2 equipped with a 2D Hokuyo UTM-30LX lidar navigates around an indoor409

environment with 34 moving pedestrians using random start points and goal points, as shown in410

Figure 6. The Turtlebot2 uses the dynamic window approach (DWA) planner [28] and has a maximum411

speed of 0.8 m/s. The Turtlebot2 robot was set up to navigate autonomously in the 3D simulated lobby412

environment to collect the OGM-Turtlebot2 dataset. The moving pedestrians in the human-robot413

interaction Gazebo simulator [23] are driven by a microscopic pedestrian crowd simulation library,414

called the PEDSIM, which uses the social forces model [30, 31] to guide the motion of individual415

pedestrians:416

Fp = Fdes
p + Fobs

p + Fper
p + Frob

p , (9)

where Fp is the resultant force that determines the motion of a pedestrian; Fdes
p pulls a pedestrian417

towards a destination; Fobs
p pushes a pedestrian away from static obstacles; Fper

p models interactions418

with other pedestrians (e.g., collision avoidance or grouping); and Frob
p pushes pedestrians away419

from the robot, modeling the way people would naturally avoid collisions and thereby allowing our420

control policy to learn this behavior. More details can be found in Xie and Dames [23].

ZED Camera

Hokuyo Lidar

Wheel Odometry

Figure 6: Gazebo simulated environment, where the Turtlebot2 robot was used to collect the OGM-
Turtlebot2 dataset.

421

13

We collected the robot states {x,u} and raw lidar measurements y at a sampling rate of 10 Hz.422

We collected a total of 94,891 (x,u,y) tuples, dividing this into three separate subsets for training423

(67,000 tuples), validation during training (10,891 tuples), and final testing (17,000 tuples).424

A.5.2 OGM-Jackal and OGM-Spot Datasets425

Figure 7 shows the real-world outdoor environment at UT Austin and the Jackal robot used to collect426

the raw SCAND dataset to construct the OGM-Jackal dataset. Figure 8 shows the real-world indoor427

environment at UT Austin and the Spot robot used to collect the raw SCAND dataset to construct the428

OGM-Spot dataset. Note that the SCAND dataset was collected by humans manually operating the429

Jackal robot and the Spot robot around the indoor/outdoor environments at UT Austin. More details430

can be found in Karnan et al. [22].431

RGB Camera

Velodyne Lidar

Wheel Odometry

Stereo Camera

Figure 7: Outdoor environment at UT Austin, where the Jackal robot was used to collect the OGM-
Jackal dataset.

Grayscale Cameras

Velodyne Lidar

Visual
Odometry

Joint Angle

RGB Camera

Figure 8: Indoor environment at UT Austin, where the Spot robot was used to collect the OGM-Spot
dataset.

14

A.6 Experiment Details for OGM Prediction432

A.6.1 Evaluation Metrics433

To comprehensively evaluate the performance of OGM predictors, we define the predicted OGM as ō434

and the ground truth OGM as o, and use the following three metrics:435

• Weighted mean square error (WMSE) [32]:436

WMSE =

∑N
i=1 wi (ōi − oi)

2∑N
i=1 wi

, (10)

where N is the number of cells in the OGM, and wi is the weight for the cell i in the OGM,437

calculated by the median frequency balancing method [33]. This metric is used to evaluate438

the weighted absolute errors (balancing the imbalance in the percentage of occupied and439

free cells) between the predicted OGM and its corresponding ground truth OGM, describing440

the predicted quality of single OGM cell.441

• Structural similarity index measure (SSIM) [34]:442

SSIM =
(2µōµo + C1) (2δōo + C2)

(µ2
ō + µ2

o + C1) (δ2ō + δ2o + C2)
, (11)

where µ(·) and δ(·) denote the mean and variance/covariance, respectively, and C(·) denotes443

constant parameters to avoid instability. We use C1 = 1e−4 and C2 = 9e−4. This metric is444

used to evaluate the structural similarity between the predicted OGM and its corresponding445

ground truth OGM, describing the predicted quality of the scene geometry.446

• Optimal subpattern assignment metric (OSPA) [19]:447

OSPA =

(
1

n
min
π∈Πn

m∑
1

dc(ōi,oπ(i))
p + cp(n−m)

) 1
p

, (12)

where c is the cutoff distance, p is the norm associated to distance, dc(ō,o) = min(c, ∥ō−448

o∥), and Πn is the set of permutations of {1, 2, ..., n}. We use c = 10 (i.e., 1 m) and p = 1.449

This metric is used to evaluate the target tracking accuracy between the predicted OGM450

and its corresponding ground truth OGM, describing the predicted quality of multi-target451

localization and assignment.452

It is worth noting that while other OGM prediction works [7–11, 15–18] only use the computer vision453

metrics (e.g., MSE, F1 Score, and SSIM) to evaluate the quality of predicted OGMs, we are the first454

to evaluate the predicted OGMs from the perspective of multi-target tracking (i.e., OSPA). We believe455

that since it takes into account multi-target localization error and cardinality error, it can give a more456

accurate and comprehensive evaluation than only evaluating the image quality.457

A.6.2 Evaluation Pipeline for Calculating OSPA Error on OGMs458

This evaluation pipeline about how to extract targets from OGMs to calculate their OSPA errors is459

shown in Figure 9. First, we binarize the predicted OGMs with an occupancy threshold pfree = 0.3,460

which is set by referencing the occ thresh default parameter of 0.25 from the gmapping ROS461

package. Second, we use the density-based spatial clustering of applications with noise (DBSCAN)462

[35] algorithm to cluster the obstacle points in the OGMs. Finally, we use the mean position of each463

cluster as the target to calculate the OSPA error (with cutoff distance 10 cells, or 1 m). Note, we get464

the ground truth target by applying the same process on the ground truth OGMs.465

A.7 Experiment Details for Uncertainty Characterization466

A.7.1 Evaluation Metrics467

To comprehensively characterize the uncertainty information of our SOGMP and SOGMP++ pre-468

dictors, we define the predicted OGM as ō and the ground truth OGM as o and use the Shannon469

15

Binarize DBSCAN Mean

Ground Truth Binarized Clusters Targets

Binarize DBSCAN Mean

Prediction Binarized Clusters Targets

OSPA Error

Figure 9: Evaluation pipeline for calculating OSPA error on predicted OGMs.

entropy [36] as the metric:470

H(ō) =
1

N

N∑
i=1

[ōi log ōi + (1− ōi) log(1− ōi)], (13)

where N is the number of cells in the predicted OGM ō, and ōi is the value of the cell i in the471

predicted OGM ō.472

A.7.2 Experiment Setup473

Since our SOGMP/SOGMP++ network predicts a bunch of binary OGM samples (i.e., cell value474

is 0 or 1) rather than a probabilistic OGM, we first combine these binary OGM samples to create a475

single probabilistic OGM and then use Shannon entropy to characterize its uncertainty. Note that the476

number of samples we draw can be scaled according to the robot’s available computational resources.477

Before we conduct our uncertainty experiments, we first compute the number of objects in each478

input sequence of the OGM-Turtlebot test dataset at the 5th prediction time step using the evaluation479

pipeline shown in A.6.2, where we classify these input sequences into 12 categories according to the480

number of objects in them. Then, we randomly select 20 input sequences for each number of objects481

(i.e., from 1 to 12) and generate a total of 1,024 OGM samples for each input sequence at the 5th482

prediction time step.483

To analyze the relationship between the entropy of the predicted OGM and its sample size, we use all484

selected test sequences and calculate the average entropy over the number of samples growing as an485

exponential power of 2. To analyze the relationship between the entropy of the predicted OGM and486

the number of objects in it, we first use 1,024 OGM samples for each input sequence to generate the487

final probabilistic OGM and then calculate the average entropy over the number of objects from 1 to488

12.489

A.8 Experiment Details for Robot Navigation490

A.8.1 Evaluation Metrics491

To comprehensively evaluate the performance of navigation control policies, we use the following492

four metrics from [23, 26]:493

• Success rate: the fraction of collision-free trials.494

• Average time: the average travel time of trials.495

• Average length: the average trajectory length of trials.496

• Average speed: the average speed during trials.497

16

A.8.2 Experiment Setup498

For the robot navigation experiments, we use the Turtlebot2 robot with a maximum speed of 0.5 m/s,499

equipped with a Hokuyo UTM-30LX lidar and an NVIDIA Jetson AVG Xavier embedded computer.500

Considering the computational resources of the Turtlebot2 robot, we use the SOGMP predictor to501

generate 8 predicted OGM samples at the 6th prediction time step (i.e., 0.6 s). Based on these 8502

predicted OGM samples, we generate a prediction map (mean) and an uncertainty map (standard503

deviation), which are used to generate the prediction costmap layer and uncertainty costmap layer504

respectively for our predictive uncertainty-aware planner (i.e., DWA-PU), as shown in Figure 5.505

Note that each costmap grid cell has an initial constant cost, and we map each occupied grid cell506

of prediction costmap and uncertainty costmap to a Gaussian obstacle value rather than a “lethal”507

obstacle value. This is because the predicted obstacles and uncertainty regions are not real obstacle508

spaces.509

17

B Additional Results510

B.1 Inference Speed Results511

Before we focus on quantitative results on the quality of these OGM predictions, we first talk about512

the inference speed and model size of these predictors. This is because robots are resource-limited,513

and smaller model sizes and faster inference speeds mean robots have a faster reaction time to face514

and handle dangerous situations in complex dynamic scenarios.515

Table 2 summarizes the inference speed and model size of six predictors tested on an NVIDIA Jetson516

TX2 embedded computer. We can see that although DeepTracking [6] has the smallest model size,517

our proposed SOGMP models are about 1.4 times smaller than the ConvLSTM [12] and 4 times518

smaller than the PhyDNet [14], and their inference speed is the fastest (up to 24 FPS).519

Table 2: Inference Speed and Model Size

Models ConvLSTM [12] PhyDNet [14] DeepTracking [6] SOGMP NEMC SOGMP SOGMP++

FPS 2.95 4.66 5.32 24.83 23.29 10.68

of Params 12.44 M 37.17 M 0.95 M 8.84 M 8.84 M 8.85 M

B.2 Qualitative Prediction Results520

Figure 10, Figure 11, Figure 12, and the accompanying Multimedia illustrate the future OGM predic-521

tions generated by our proposed predictors and the baselines. We observe two interesting phenomena.522

First, the image-based baselines, especially the PhyDNet, generate blurry future predictions after 5523

time steps, with only blurred shapes of static objects (i.e., walls) and missing dynamic objects (i.e.,524

pedestrians). We believe that this is because these two baselines are deterministic models that only525

treat time series OGMs as images/video and ignore the kinematics and dynamics of the robot itself,526

dynamic objects, and static objects. Second, the SOGMP++ with a local environment map has a527

sharper and more accurate surrounding scene geometry (i.e., right walls) than the SOGMP without a528

local environment map. This difference indicates that the local environment map for static objects is529

beneficial and plays a key role in predicting surrounding scene geometry.530

SO
G

M
P+

+
G

ro
un

d
tr

ut
h

Ph
yD

N
et

SO
G

M
P

C
on

vL
ST

M

n = 1 n = 2 n = 3 n = 4 n = 6n = 5 n = 7 n = 8 n = 9 n = 10

SO
G

M
P_

N
EM

C
D

ee
pT

ra
ck

in
g

Figure 10: A prediction showcase of the four predictors tested on the OGM-Turtlebot2 dataset over
the prediction horizon. The black area is the free space and the white area is the occupied space.

18

SO
G

M
P+

+
G

ro
un

d
tr

ut
h

Ph
yD

N
et

SO
G

M
P

C
on

vL
ST

M

n = 1 n = 2 n = 3 n = 4 n = 6n = 5 n = 7 n = 8 n = 9 n = 10

SO
G

M
P_

N
EM

C
D

ee
pT

ra
ck

in
g

Figure 11: A prediction showcase of the four predictors tested on the OGM-Turtlebot2 dataset over
the prediction horizon. The black area is the free space and the white area is the occupied space.

SO
G

M
P+

+
G

ro
un

d
tr

ut
h

Ph
yD

N
et

SO
G

M
P

C
on

vL
ST

M

n = 1 n = 2 n = 3 n = 4 n = 6n = 5 n = 7 n = 8 n = 9 n = 10

D
ee

pT
ra

ck
in

g
SO

G
M

P_
N

EM
C

Figure 12: A prediction showcase of the four predictors tested on the OGM-Turtlebot2 dataset over
the prediction horizon. The black area is the free space and the white area is the occupied space.

B.3 Qualitative Navigation Results531

Figure 13 shows the difference of nominal paths and costmaps generated by three different planners532

in the simulated lobby environment. The default DWA planner [28] only cares about the current state533

of the environment and generates a costmap based on the perceived obstacles. The predictive DWA534

planner (i.e., DWA-P) using the prediction map of our proposed SOGMP predictor can generate a535

costmap with predicted obstacles. The predictive uncertainty-aware DWA planner (i.e., DWA-PU)536

using both the prediction map and uncertainty map of our proposed SOGMP predictor can generate a537

safer costmap with predicted obstacles and uncertainty regions. These additional predicted obstacles538

and uncertainty regions of our proposed DWA-PU planner enable the robot to follow safer nominal539

19

paths and reduce collisions with obstacles, especially moving pedestrians. See the accompanying540

Multimedia for a detailed navigation demonstration.541

(a) DWA [28] (b) DWA-P (c) DWA-PU

Figure 13: Robot reactions and their corresponding costmaps generated by different control policies
in the simulated lobby environment. The robot (black disk) is avoiding pedestrians (colorful square
boxes) and reaching the goal (red disk) according to the nominal path (green line) planned by the
costmap (square white map).

20

	Introduction
	Stochastic Occupancy Grip Map Predictor
	Problem Formulation
	System Overview
	Robot Motion
	Dynamic Objects
	Static Objects
	VAE Predictor

	Experiments and Results
	Prediction Results
	Quantitative Results
	Uncertainty Characterization

	Navigation Results
	Simulation Results
	Hardware Results

	Limitations and Future Work
	Additional Implementation Details
	Robot Pose Prediction
	Coordinate Transformation
	GPU-accelerated Conversion Function c()
	GPU-accelerated OGM Mapping Algorithm g()
	Dataset Collections
	OGM-Turtlebot2 Dataset
	OGM-Jackal and OGM-Spot Datasets

	Experiment Details for OGM Prediction
	Evaluation Metrics
	Evaluation Pipeline for Calculating OSPA Error on OGMs

	Experiment Details for Uncertainty Characterization
	Evaluation Metrics
	Experiment Setup

	Experiment Details for Robot Navigation
	Evaluation Metrics
	Experiment Setup

	Additional Results
	Inference Speed Results
	Qualitative Prediction Results
	Qualitative Navigation Results

