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ABSTRACT
Recovering the complete shape of a 3D object from limited view-
points plays an important role in 3D vision. Encouraged by the
effectiveness of feature extraction using deep neural networks, re-
cent point cloud completion methods prefer an encoding-decoding
architecture for generating the global structure and local geometry
from a set of input point proxies. In this paper, we introduce an in-
novative completion method aimed at uncovering structural details
from input point clouds and maximizing their utility. Specifically,
we improve both Encoding and Decoding for this task: (1) Key
Context Fusion Encoding extracts and aggregates homologous key
context by adaptively increasing the sampling bias towards salient
structure and special contour points that are more representative
of object structure information. (2) Semantic-based Decoding intro-
duces a semantic EdgeConv module to prompt next Transformer
decoder, which effectively learns and generates local geometry
with semantic correlations from non-nearest neighbors. The experi-
ments are evaluated on several 3D point cloud and 2.5D depth image
datasets. Both qualitative and quantitative evaluations demonstrate
that our method outperforms previous state-of-the-art methods.
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1 INTRODUCTION
With the popularity and development of 3D scanning equipment,
3D point clouds have wide applications in computer vision, such
as autonomous driving [4], robotics [15], and industrial detection
[19]. However, the original point clouds captured by 3D scanners
or depth cameras in real-world are often incomplete due to self-
occlusion, limited viewpoints, and low resolution. Therefore, recov-
ering the complete and dense 3D shape from partial point clouds is
important in many downstream 3D tasks [18, 20].
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Figure 1: Illustration of our main idea. We first compare
the point cloud generated by a traditional down-sampling-
based method (a) with that produced by our ’Key Contour
Point Sampling’ enhanced feature extraction (b). We further
investigated the application of a fused encoding (c) and the
semantic Interest Area Prompt (IAP) decoding (d), which also
represents our proposed Key-Prompt model which provides
more details and reduces the Chamfer distance metrics.

Since deep neural networks have been successful in extracting
features from 3D coordinates of point clouds, recent point cloud
completion methods [14, 39] tend to use an encoding-decoding
architecture for the coarse-to-fine generation. The encoding phase
extracts features from the partial point cloud utilizing methods
such as PointNet [22] or DGCNN [30]. A set of sparse points is
generated via input features to sketch the global structure (called
seeds), while the decoding phase generates a complete point cloud
by refining the seed’s local geometry. However, during the above
processing, existing methods have two problems that still need
to be solved: 1) The initially dense input point cloud needs to be
aggregated several times during encoding, a process that often
loses abundant geometric details. (2) Features are extracted from
the incomplete input point cloud, posing challenges in directly
generating the geometry of the correlated missing parts.

In the encoding phase, the necessary pre-processing downsam-
pling strategy tends to abstract the spatial structure by merging a
dense given point cloud into a component-level coarse point. Here,
Farthest Point Sampling (FPS) [8] is a widely used method, which
has an even sampling rate at each part, as illustrated in Fig. 1(a). To
enhance the representativity of these point centers, methods vary
the down-sample resolution or use different neighborhood scales
for richer contexts. However, they neglected the fact that points
that are located on contours or on complex structures often bring
great help to the structural representation of the point cloud.

In the decoding phase, geometries of the missing parts are often
recovered by constructing a relationship between sparse seed and
input. The existing modeling of dependencies between seeds and
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input points relies solely on neighboring geometric relationships,
making it hard to learn long-distance correlation input information
for seeds. Recent methods[17, 42] directly transformed the local
features of the input part after self-attention coding into the features
of missing part. AdaPoinTr[37] uses the geometry-aware module
with both self-attention and cross-attentionmechanisms to let seeds
learn structural knowledge and detailed information. However, they
pay more attention to the position and geometry embedding, and
their usual correlations are built in the neighboring areas. In this
case, those sparse seeds, especially of missing parts are hard to
focus similarity local representation from incomplete input.

To solve the above problems, we propose a novel point cloud com-
pletion method with improved encoding-decoding architectures,
as shown in Fig. 1. Firstly, a new adaptive down-sampling method
is employed to maximize the preservation of key edge contours.
Compared with FPS, the detailed geometries are well represented
with the same ratio of down-sampled points (Fig. 1(b)). Then, two
kinds of homologous down-sampling point cloud features are fused
by a kind of self Vector Attention crosswise in our encoding phase
to discover more input key context (Fig. 1(c)). After the encoding
phase generates a set of seeds, we notice that semantic similarity
is an essential cue for building local correlations between seeds
and the partial point cloud, but it is always ignored. For example,
similar semantic structures sometimes occur in symmetrical but
distant locations. Thus, we design a semantic cross-attention de-
coding. This module initially acquires semantic structure for each
seed proxy and then selectively acquires knowledge on the local
geometry of missing parts via point-to-area attention learning as
a prompt for the next transformer decoder. With richer feature
extraction encoding and enhanced semantic guidance decoding,
our method performs excellently for point cloud completion (Fig.
1(d)).

The main contributions of this work are summarized as follows:
• We propose a KCPS method that preserves richer geome-
try details via dynamically enforcing larger sampling biases
toward key contour. Integrating KCPS and FPS extractor
strategies, we transform given point clouds into input local
proxies without sacrificing its contour descriptions.

• We propose a semantic-based IAP decoding method that
introduces semantics cues into the dependency inference
among given and inferred points, thus significantly improv-
ing point cloud completion with richer structure priors.

• Our method achieves state-of-the-art performance on vari-
ous benchmarks, including 3D point cloud datasets such as
PCN, Project shapenet55-34 and KITTI, as well as Redwood
RGBD datasets.

2 RELATEDWORK
2.1 Point Cloud Representation and Completion
Most of the early work in point cloud completion utilized 3D voxel
grids [7, 13, 16, 25, 29] as an intermediate representation for each
voxel block, which was then processed by methods such as 3D
convolution. However, the voxelization will lose details of the point
cloud, and the computational cost increases heavily in voxel reso-
lution. The advent of PointNet revolutionized this landscape [22],
enabling direct feature extraction from unstructured and disordered

point clouds using deep neural networks. Unlike PointNet, which
operates on individual points, PointNet++ [23] leverages k-nearest
neighbor search and maximum pooling operations to aggregate
neighborhood context information, progressively abstracting local
regions along hierarchical scales by repeatedly employing Farthest
Point Sampling [8]. DGCNN [30] introduces the EdgeConv mod-
ule, which maps the representation of edges into the feature space
and dynamically aggregates point cloud neighborhoods multiple
times. This dynamic graph structure enhances the network’s ability
to learn point cloud representations with semantics. PCN [39] is
the first learning-based method for point cloud completion. After
PCN, many methods [14, 27, 32, 42] adopt a similar coarse-to-fine
architecture to enhance the real details of point cloud generation.
SD-Net [3] introduces an end-to-end disentangled completion struc-
ture comprising two subnetworks for input refinement and missing
part prediction, facilitating detail cross-recovery at various scales.
Similarly, CRAPCN [24] incorporates a local attention mechanism
during the encoding and decoding phase to fuse contextual infor-
mation from multi-resolution point clouds. However, many of these
methods incorporate various point contexts through different scales
of down-sampling resolution or different numbers of neighbor ag-
gregations, which often leads to overlooking detailed structures
and crucial contour points. This oversight can have a significant
impact on the representation and generation of whole structures.

2.2 Transformer in Point Cloud Completion
With the remarkable success of Transformer [28] in natural lan-
guage processing, numerous applications have surged into the
realm of computer vision. In the realm of point cloud completion,
the unstructured set nature of point clouds prompted the introduc-
tion of Transformers to more effectively address the limitations of
previous architectures in exploring associations within collections.
Guo et al. [12] introduced PCT, which enhances the self-attention
mechanism and incorporates local point cloud neighborhood in-
formation for embedding, making the Transformer more suitable
for point cloud’s vector attention. Therefore, many models based
on the Transformer architecture accomplish detail completion by
constructing relationships between seeds and inputs. Point Trans-
former combined the Vector Attention [41] with a U-Net style
encoder-decoder framework. Seedformer [42] introduces a feature
Up-Transformer module and the novel representation concept of
patch seed, efficiently integrating spatial relations between neigh-
boring points transformed into seeds. However, the self-attention
decoding in Seedformer makes it hard to extract meaningful infor-
mation from sparse seed points. Consequently, many Transformer-
based models [2, 5, 17, 35] facilitate more detailed completion by
establishing correlations between seeds and input data. PoinTr [37]
and its variant [38] reformulate the point cloud completion prob-
lem as a set-to-set transformation and adopt a novel Transformer
architecture to realize efficient completion. During the decoding
phase, they utilize the geometry-aware module to establish a link
between seed and input data, leveraging attention mechanism to
learn implicit correlation from the input. However, due to the in-
herent disparities between input and seed representing missing
parts, the set-to-set attention mechanism and current decoding
architecture do not solve the problem of establishing associations
between the two sets for interactive learning.
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Figure 2: The overall architecture of Key-Prompt. We use double extractors with FPS and KCPS to learn and fuse these
homologous features with different focuses. While generating seeds, the architecture preserves semantic information of the
feature extractors and the component association in the global structure as much as possible. The embedded semantic Edgeconv
will prompt interest input areas for the seed proxy, facilitating richer eventual refinement.

3 METHOD
3.1 Problem Formulation
There are multiple task representations of point cloud completion.
Following the design of [37, 38], we define the point cloud com-
plete task as a set-to-set transform task, which is well suited to
the attention mechanism. Consider an input F-dimensional point
cloud with N points, denoted by P𝑖𝑛 =

{
𝑝1
𝑖𝑛
, . . . , 𝑝𝑁

𝑖𝑛

}
⊆ R𝑁×𝐹 , in

the simplest setting of 𝐹 = 3, each point contains 3D coordinates
𝑝𝑖
𝑖𝑛

= (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ). The final point cloud of the complete M points is
represented as Y = {𝑦1, . . . , 𝑦𝑀 } ⊆ R𝑀×𝐹 .

The overall network architecture of Key-Prompt is shown in Fig.
2, and we next introduce a few of the critical processing variables
follow our architecture. To take advantage of the rich local details,
Key Contour Point Sampling (KCPS) is used to construct a new point
cloud P′ ⊆ R𝑁1×𝐹 in parallel with the FPS point cloud P ⊆ R𝑁1×𝐹

for subsequent feature extraction and fusion. Here both the subset
P′ and P are down-sampled from input point cloud P𝑖𝑛 . Local points
are converted into feature vectors representing a localized region,
called input point proxy F =

{
F1, . . . , F𝑁1

}
⊆ R𝑁1×𝐶 , which

means that C-dimensional point cloud with 𝑁1 down-sampled
points. We transform the input point proxies into seeds P𝑞 and
seed proxies Q via a global feature G for semantic preserving. The
Interest Area Prompt decoding structure selects valid information
from the interest input to enrich the representation of the seed
proxy. Finally, we recover the local structure near each seed based
on its proxy to generate the final point cloud Y.

3.2 Key Context Fusion Encoding
3.2.1 Key Contour Point Sampling. Currently, down-sampling is
often performed to aggregate fine-grained point clouds in the lo-
cal vicinity during feature extraction. Traditional Farthest Point
Sampling (FPS) [8] tends to result in the loss of points on delicate
structures and contours, as shown in Fig. 3. Compared to flat sur-
faces, these points usually carry more structure information and
local variations in computing neighbor edge vectors, which are
particularly crucial for understanding an object’s details and global
structure.

(b) Traditional Sampling
256 Points

(c) Key Contour Point Sampling
256 Points

(a) Original Point Cloud      
2048 Points

Figure 3: Our Sample Method. Figure (a) shows the difference
between points on the contour and inside the structure calcu-
lating the offset; (b) and (c) are the results we obtained using
traditional FPS method and our KCPS method.

Such points are defined as ’Key Contour Points’.We have adapted
and refined Ahmed’s method [1], which defines contour points
based on the offset from their neighborhood centers, allowing us to
identify critical pointsmore effectively. The neighborhood of a point
𝑝𝑖 is identified through a k-nearest neighbor search, represented
as V𝑖 = {𝑛1, 𝑛2, . . . .𝑛𝑘 }. Subsequently, the center coordinates 𝐶𝑖
of these neighboring points are calculated by incorporating each
point 𝑛𝑖 within the vicinity:

𝐶𝑖 =
1
𝑘

𝑘∑︁
𝑗=1

𝑛 𝑗 (1)

To mitigate differences in density between regions and ensure
scale invariance, the point dispersion distance 𝐷𝑖 of the region is
calculated as follows:

𝐷𝑖 ( V𝑖 ) = max
𝑛∈V𝑖

∥𝑝𝑖 − 𝑛𝑖 ∥ (2)

Then, a degree of importance 𝐼𝑖 is defined to quantify the offset
from the center while adaptive by vicinity densities as follows:

𝐼𝑖 =
∥ 𝑝𝑖 −𝐶𝑖 ∥

𝐷𝑖
(3)
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The input point cloud is sorted and sampled by the importance
level 𝐼𝑖 to dynamically distinguish their differences in computing
neighboring point edges. The top 𝑞

2 points are sampled as keypoints,
for the remaining points, we use the FPS, stitching the two point
clouds together to obtain the reconstructed point cloud P′.

In contrast to Ahmed’s method [1], we use the maximum value
in calculating 𝐷𝑖 to achieve greater robustness, especially with
non-uniform point distributions. We also find that calculating too
few neighborhood points may only select points to outline shapes,
while too many can obscure critical structural areas. A moderate
number of neighbors is often best for identifying salient contour
keypoints. Fig. 3 illustrates that our method results in more accu-
rately capturing intricate structures with the same sampling ratio.

3.2.2 Double Extractor and Context Fusion. Aimed at capturing
both the broad structure and intricate details, we propose a dual-
extractor framework depicted in Fig. 2. Starting with the embedded
input point cloud, two sampling techniques are applied for the next
feature extraction. We utilize FPS to obtain coordinates P, which
helps in understanding the overall shape, while KCPS acquires
coordinates P′, focusing on structure details. Then, points and their
corresponding embedded features are fused to ensure that the detail-
focused insights are integrated with the overall view provided.

In each feature extractor, we follow DGCNN [30], first build a
local graph structure based on local neighborhoods for the point
cloud, noting the edge vector connecting the neighbor 𝑝 𝑗 of the 𝑝𝑖
as 𝑝 𝑗 − 𝑝𝑖 . We connect the edge vector with 𝑝𝑖 and feed them into
the neural network. The steps are as follows:

F𝑖 𝑗 = ReLU
(
𝐿𝑖𝑛𝑒𝑟

(
x𝑖 , x𝑗 − x𝑖

) )
(4)

F𝑖 = 𝑀𝑎𝑥 (𝐹𝑝𝑖 𝑗 ),∀𝑗 : 𝑝 𝑗 ∈ 𝜅 (𝑝𝑖 ) (5)
where x𝑖 , x𝑗 represents the point’s embedded feature, we gather
the features using max-pooling as𝑀𝑎𝑥 for whose coordinates 𝑝 𝑗
locates within the k-neighborhood of 𝑝𝑖 , represented as 𝜅 (𝑝𝑖 ). For
ease of writing, we combine these two EdgeConv steps and write
them in a formula as follows:

F𝑖 = EdgeConv(𝑥𝑖 , 𝑥 𝑗 ),∀𝑗 : 𝑝 𝑗 ∈ 𝜅 (𝑝𝑖 ) (6)

It is worth emphasizing here that similar geometrical structures will
yield similar semantics. EdgeConv is actually a dynamic graph atten-
tion mechanism based on subtraction relations. Our dual-extraction
strategy, using multiple EdgeConv layers, conducts a secondary
sampling based on each distinct sampling method, thereby dynami-
cally updating the graph structure independently. This process not
only refreshes the information in the salient structure but also dy-
namically disseminates details and semantic information through-
out the point cloud.

We innovatively use Vector Attention [41] to fuse KCPS and FPS-
derived features and coordinates. Vector Attention was initially
used for self-attention in one point cloud, but our two point clouds
are homologous which makes it easy to extend it to cross-point
cloud feature fusion. Instead of learning each point in the set glob-
ally, we refine each point proxy F𝑖 , based on its local neighborhood
spatial coordinates 𝑝′

𝑗
and corresponding proxy F𝑗 , enhancing the

structural comprehension of the whole point cloud. Compared to
the dot product, the 𝛽-subtracted relational function are better re-
flection. Relative position coding denoted as 𝛿 is additionally added

into fusion:

𝛿 = Liner(𝑝𝑖 − 𝑝′𝑗 ),∀𝑗 : 𝑝
′
𝑗 ∈ 𝜅 (𝑝𝑖 ) (7)

F𝑖 = 𝜌
(
𝛾
(
𝛽
(
𝜙 (F𝑖 ) ,𝜓

(
F𝑗

) )
+ 𝛿

)
⊙ 𝛼

(
F𝑗 + 𝛿

) )
(8)

where 𝜙,𝜓 , and 𝛼 are linear projection functions, and the map-
ping function 𝛾 is an MLP with two linear layers and one ReLU
nonlinearity. 𝜌 is a normalization function such as softmax. There-
fore, we apply the neighbor area attention mechanism to fuse each
query point cloud 𝑝𝑖 with 𝑝′𝑗 , while incorporating more locally
informative features 𝐹 𝑗 into final input local proxy F𝑖 .

3.3 Semantic-based Decoding
In this section, we innovatively introduce an Interest Area Prompt
Decoding shown in Fig. 2 that significantly helps seed to achieve
selective learning of relevant information in the input.We define the
seed proxy as Q, incomplete input feature as K , V , and formulate
the Transformer encoderM𝐸 and decoderM𝐷 layers processes as
follows:

V = M𝐸 (F ), H = M𝐷 (Q,V) (9)
The current decoding method [5, 38] only builds correlations

based on geometric distances, ignoring the missing parts’ seeds to
focus on the most relevant areas, as shown in Fig. 4 (b). Our method
recovers the seed semantic information shown in Fig. 4 (c) while
successfully focusing on the input empennage and wing located on
the symmetric side using the similarity of the semantic features

(c) Semantic Structure Based Interest Input Area

(b) Geometric Distance Based Geometry Input Area
Liner&Aggregation

Geometry Knn

Self attention

Input proxy
With semantic

Seed
Proxy

Seed Proxy
With Semantic

(a)  Semantic Recovery Module Details

Edge Sub&Concat

Seed
Proxy

Global
Seed 

Position

Embedding

Figure 4: We show details of semantic recovery module and
the difference of input Area of interest for geometric-based
and semantic-based EdgeConv.

We detail the process of recovering potential semantic informa-
tion, utilizing geometric and self-attention mechanisms, in Fig. 4 (a).
Each input local proxy are initially through Transformer Encoder
and embedding, subsequently aggregating them into global features
denoted as G. Following this step, we proceed to generate a sparse
seed P𝑞 along with its corresponding seed proxy, represented as Q:

Q𝑖 = [G, 𝑝𝑖𝑞] = [𝑀𝑎𝑥 (V), 𝑝𝑖𝑞] (10)

The input proxy F and global features G could encompass se-
mantic structures, thanks to our dynamic EdgeConv extractor’s ca-
pability to infuse features with semantic significance. This principle
is rooted in observation that regions with geometrical similarities
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also tend to exhibit similar local neighborhood graph structures dur-
ing feature extraction. Semantic similarity is evident in geometric
structures found within one component or between similar com-
ponents, such as empennage and the wings of an airplane. Then,
using geometric distance-based EdgeConv, we quickly capture the
semantic features of neighboring inputs, aiding in the retrieval of
semantic information from the input:

𝜙 (Q𝑖 ) = EdgeConv(Q𝑖 ,K𝑗 − Q𝑖 ),∀𝑗 : 𝑝 𝑗𝑘 ∈ 𝜅
(
𝑝𝑖𝑞

)
, (11)

Further, we use self-attention to assist in self-similar structural
associations originating from global features G, with the ability to
capture long-range dependencies:

Q = M𝐸 (Q) (12)

In this way, points in the same or related structure can learn
similar semantics from each other.We use the distance in the feature
space to measure the degree of semantic similarity, as shown Fig. 4
(c). So we could use seed local proxy Q with semantic information
to construct new graph structure relations with an interest area of
input proxy K in the feature space:

𝜏 (Q𝑖 ) = EdgeConv(Q𝑖 ,K𝑙 − Q𝑖 ),∀𝑙 : 𝐾𝑙 ∈ 𝜅 (𝑄𝑖 ) , (13)

This brings the semantically corresponding partial features closer
to missing parts, which amounts to a directed cue to the decoder of
the subsequent set to set. So we call it Interest Area Prompt (IAP).
We then perform a more focal and effective Transformer decoder
of Q andV , as shown in Eq. 9.

Afterwards, we refine the sparse seed into a dense and complete
point cloud by converting the seed proxy Q into the displacement
deviation H of the neighborhood point through a simple MLP
module. The final point cloud is represented as:

Y𝑘𝑖 = H𝑘
𝑖 + 𝑝𝑖𝑞, 𝑘 =

𝑀

𝑚
(14)

where𝑚 and k are the number of seed points and each seed localized
points, resulting in a point cloud Y ⊆ R𝑀×3 of M points.

3.4 Loss Function
Fan et al. [9] proposed the Chamfer Distance (CD) as an evaluation
metric for the 3D reconstruction task:

𝑑CD (𝑃1, 𝑃2) =
1
𝑃1

∑︁
min
𝑦∈𝑃2

∥𝑥 − 𝑦∥22 +
1
𝑃2

∑︁
min
𝑥∈𝑃1

∥𝑦 − 𝑥 ∥22 (15)

The CD distance is used to measure the nearest-square distance
between the predicted point cloud 𝑃1 and the ground-truth point
cloud 𝑃2, which is computed for each of the two point cloud sets
and averaged.

To ensure the sparse seed p𝑞 adequately represents the ground
truth shape, the ground truth is down-sampled to match the seed
point count denoted by Y1𝑔𝑡 . This step allows for the calculation of
the loss L𝑠 by comparing p𝑞 with 𝑌 1

𝑔𝑡 . For assessing the quality of
the finally refined generated result, the comparison with the ground
truth generates the final result loss, L𝑓 . In addition, following the
denoising strategy from AdaPoinTr [38], noise is introduced to the
seed points during training. The goal is to predict the distribution of
these noise to ground truth values in order to make the Transformer
decoder more robust to the initial seed. The CD between the noise-
adjusted generation and the corresponding amount of ground truth,

denoted by Y2𝑔𝑡 , is then evaluated to quantify the noise elimination
effectiveness, resulting in the loss L𝑑 :

L𝑠 = 𝑑CD (𝑝𝑞,Y1𝑔𝑡 ),L𝑓 = 𝑑CD (𝑝𝑞,Y𝑔𝑡 ),L𝑑 = 𝑑CD (𝑝𝑞,Y2𝑔𝑡 ) (16)

The training loss function L is finally defined as:

L = L𝑠 + L𝑓 + 𝜆L𝑑 (17)

4 EXPERIMENTS
In this section, we conducted experiments on point cloud comple-
tion, including real-world scenes, with validation on more chal-
lenging 2.5D depth images. We compared our approach to baseline
methods on benchmark datasets like PCN and the more challenging
Project-ShapeNet-55/34. We also pre-trained our model on PCN
and tested it on real-world datasets like KITTI and Redwood RGBD,
outperforming existing approaches both qualitatively and quantita-
tively.

4.1 Experimental Settings
4.1.1 Implementation Details. We implement Key-Prompt with
Pytorch [21]. All models are trained using two NVIDIA Tesla V100
gpus. The ablation study and complexity analysis are conducted
under the same experimental conditions. For the training phase, we
utilize AdamW for optimizing our model, setting the initial learning
rate to 10−4, and 400 epochs will be conducted with a learning rate
decay set to 0.9. Moreover, considering that the local neighborhood
of the KCPS point cloud is denser and richer, we incorporate a
larger number of neighbors (24) to extract meaningful key context
for feature extraction while using 16 neighbors for point clouds of
FPS.

4.1.2 EvaluationMetrics. We adhere to prior research practices and
utilize the average Chamfer distance(CD) as our primary evaluation
metric, which is widely referenced in the field. As mentioned in sec-
tion 3.4, a higher average CD indicates a greater disparity between
the two point cloud sets. Specifically, the CD significantly increases
when the generated point cloud contains extra or missing parts
compared to the ground truth. Additionally, we employ the F-score
metric, following the methodology introduced by Tatarchenko et al.
[26], to evaluate the proportion of similar components. This metric
gauges similarity by assessing whether a point from one set falls
within a certain threshold of another set.

4.2 Point Cloud Completion
4.2.1 Evaluation on PCN Dataset. Data. The PCN dataset [39]
is one of the most commonly used datasets in the field of point
cloud completion. It is a subset of ShapeNet including 8 categories
with a total of 30974 CAD models. To emulate real-world sensor
data, incomplete point clouds were generated by back-projecting
2.5D depth images from 8 viewpoints. These created incomplete
point clouds consist of 2048 points, while the ground truth contains
16,384 points sampled from the complete point cloud. We adopt
the identical experimental setting as PCN [39] to ensure a fair
comparison with existing models.

Results. We provide Chamfer Distance and F-Score@1% results
for the L1 norm (×1000) in Tab. 1, comparing recent models. Our
method consistently outperforms prior state-of-the-art methods
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Table 1: Completion results on PCN dataset in terms of per-point L1 Chamfer Distance ×1000 (lower is better) and F1-score.

Plane Cabinet Car Chair Lamp Couch Table Boat CD-ℓ1 F-Score@1%

FoldingNet [36] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31 0.322
TopNet [27] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15 0.503
AtlasNet [11] 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61 10.85 0.616
PCN [39] 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64 0.695
GRNet [34] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83 0.708
PoinTr [37] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38 0.745
NSFA [40] 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06 -

PMP-Net++ [31] 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52 7.56 -
SnowflakeNet [33] 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21 -
SeedFormer [42] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74 -
ProxyFormer [17] 4.01 9.01 7.88 7.11 5.35 8.77 6.03 5.98 6.77 -
AdaPoinTr [38] 3.68 8.82 7.47 6.85 5.47 8.35 5.80 5.76 6.53 0.845
Key-Prompt 3.43 8.70 7.30 6.56 5.05 8.20 5.76 5.55 6.32 0.857

Input PCN GRNet PoinTr SeedFormer Ours G.T.

(b)

(c)

(d)

AdaPoinTr

(a)

Figure 5: Qualitative comparisons on the PCN dataset are shown. Each method completes the object from the incomplete point
cloud shown at the far left of each row. Our method produces completion that most closely matches the ground truth.

across all categories, with notably superior average metrics. Addi-
tionally, in Fig. 5, we visually compare shapes from chair, plane,
boat, and table categories with SeedFormer [42], AdaPoinTr [38],
and other methods[34, 37, 39]. These comparisons highlight Key-
Prompt’s ability to generate highly specific and realistic results
with richer detailed information, especially for missing parts. For in-
stance, as seen in the chair backrest example in Fig. 5(a), our method
delineates a much clearer structure. More visualization results and
shows of semantic interest areas are available in the Appendix.

4.2.2 Evaluation on Project ShapeNet-55/34. Data. The Project-
ShapeNet-55 dataset encompasses a wider array of object categories
and introduces different methods of simulating incomplete point
clouds. It incorporates the entirety of ShapeNet’s 55 categories,

where both training and testing are conducted on this comprehen-
sive set. The unique aspect of Project-ShapeNet-55 is its method
of generating partial inputs, specifically through a noisy back pro-
jection technique. This process involves rendering each sample
from 16 randomly selected viewpoints to create depth images. Sub-
sequently, these depth images are utilized to simulate incomplete
point clouds by employing a noisy back projection method, ef-
fectively replicating scenarios encountered in the real world. The
Project-ShapeNet-34 dataset is designed to test the generalization
capabilities of various models. Utilizing 34 categories for training
purposes sets up a unique challenge for models to accurately pre-
dict an additional unseen 21 categories during the training phase
while the remaining design is consistent with Project-ShapeNet-55.



Dig into Detailed Structures: Key Context Encoding and Semantic-based Decoding for Point Cloud Completion MM ’24, October 28-November 1, 2024, Melbourne, Australia

Table 2: Completion results on Project-ShapeNet-55 dataset

Many-Shot categories Few-Shot categories
Table Chair Airplane Car Sofa Microwaves Bag Pillow Keyboard Rocket CD-ℓ1 F-Score

PCN [39] 14.79 15.33 9.07 12.85 17.12 39.54 18.64 20.04 13.69 10.98 16.64 0.403
TopNet [27] 14.40 16.29 9.85 13.61 16.93 26.64 18.69 19.57 11.05 10.45 16.35 0.337
GRNet [34] 12.01 12.57 8.30 12.13 14.36 18.35 14.67 15.15 9.71 8.58 12.81 0.491
SnowflakeNet [33] 10.49 11.07 6.35 11.20 12.59 16.92 12.86 14.02 8.12 7.49 11.34 0.594
PoinTr [37] 9.97 10.43 6.02 10.58 12.11 17.06 12.15 12.57 7.61 6.86 10.68 0.615
AdaPoinTr [38] 8.81 9.12 5.18 9.77 10.89 17.43 10.93 11.82 6.79 5.58 9.58 0.701

Key-Prompt 8.69 8.96 5.13 9.60 10.77 13.64 10.06 11.21 6.64 5.44 9.35 0.714

Table 3: Completion results on Project-ShapeNet-34 dataset

21 unseen categories

Pillow Skateboard Earphone CD-ℓ1 F-Score

PCN [39] 23.45 17.27 24.82 21.44 0.307
TopNet [27] 17.55 12.59 19.34 15.98 0.358
GRNet [34] 18.64 10.60 15.00 15.03 0.439
SnowflakeNet [33] 15.35 9.58 15.19 12.82 0.551
PoinTr [37] 14.82 8.98 14.23 12.43 0.555
AdaPoinTr [38] 13.72 8.34 12.30 11.37 0.642

Key-Prompt 13.32 7.43 11.39 10.97 0.654

For the evaluation strategy, we align with the methodology de-
scribed by Yu et al. [37], where the ground truth point clouds are
represented by 8,192 points. The generated incomplete point clouds
used as input are configured to contain 2,048 points.

Results on Projected-ShapeNet-55 The introduction of noise
into the input point cloud contributes to the dataset’s complexity
and realism, thus presenting a heightened challenge for completion.
We provide an analysis of our models and existing methodolo-
gies, outlining the class-specific Chamfer Distance (CD) and overall
CD for each approach. Specifically focusing on ten categories, we
present detailed results. Tab. 2 demonstrates that Key-Prompt out-
performs other approaches across these categories and in terms of
overall CD. The Many-Shot categories on the left have more than
2500 train samples, while the Few-Shot categories contain less than
80 train samples. Our results greatly outperform AdaPoinTr [38],
suggesting that our method is able to mine more valid information
from fewer training sets.

Results on Projected-ShapeNet-34 In Tab. 3, we present the
performance of our model and compare it with existing models.
The data clearly indicate that our model outperforms others in all
unseen categories. Importantly, our model not only could improve
results in familiar categories but also significantly better identify
unseen categories, such as Pillow, Skateboard, and Earphone. This
performance highlights our model’s strong generalization ability,
showing its effectiveness in classifying new object types that were
not included in the training dataset.

4.3 Real Scene Point Cloud Completion
4.3.1 Evaluation on KITTI. Data. To evaluate our model’s perfor-
mance with real-world data, we conducted experiments on the

KITTI [10] dataset sourced from LIDAR scans. The KITTI dataset,
widely recognized in autonomous driving research, presents a chal-
lenge due to the sparsity of LIDAR-derived data. Thus, generating
complete and dense point clouds is crucial for downstream tasks,
such as 3D target detection. Specifically, we extracted and localized
the point clouds of car objects as input by employing a 3D bounding
box within each frame. Since this dataset does not have a complete
point cloud as ground truth, we follow the GRNet [34] using Fi-
delity Distance (FD) and Minimal Matching Distance (MMD) as
evaluation metrics.

Results. Following the GRNet’s [34] setup, we pre-trained our
model on the Car category of the PCN [39] dataset to complement
the incomplete cars in KITTI. As shown in Tab. 4, our model out-
performs several baseline models. The car point clouds generated
by our model accurately depict windows and tires while capturing
intricate details, such as reflectors, as evidenced in Fig. 6.

Case-1

View-1 View-2

Case-2

View-1 View-2

Input

AdaPoinTr

Our
Method

Figure 6: Qualitative results on the KITTI dataset. We show
two different views of each object while our method can
recover a car with more accurate contour and details.
4.3.2 Depth Image Completion to 3D. Exploring the efficacy of
models pre-trained on the PCN [39] dataset, we engaged with real
object scans from the Redwood 3D Scans [6] dataset, focusing on
localized shapes of chairs, sofas, and cars derived from depth images
captured with an RGB-D camera. Unlike LiDAR data, point clouds
from real-depth images typically suffer from lower accuracy, more
noise, and increased occlusion complexities. Given the scarcity of
complete meshes in the Redwood 3D Scans dataset, our evaluation
was qualitative, assessing the model’s ability to recover original
object shapes and details with high fidelity. The experimental re-
sults in Fig. 7, illustrate that our predictions demonstrate superior
recovery of the original object shape and local details.
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Table 4: KITTI Dataset results. The comparison between the following models is based on the FD and MMDmetrics.

CDl2(x1000) AtlasNet [11] PCN [39] FoldingNet [36] TopNet [27] PFNet [14] GRNet [34] SeedFormer [42] AdaPoinTr [38] Key-Prompt

Fidelity 1.759 2.235 7.467 5.354 1.137 0.816 0.151 0.237 0.136
MMD 2.108 1.366 0.537 0.636 0.792 0.872 0.516 0.392 0.380

RGB image Depth image Our method

Chair

Sofa

Car

GT

(NO Car’s GT Mesh)

AdaPoinTr

Figure 7: Results of the chair, sofa, and car in Redwood. We
show the input point cloud and ground truth, as well as the
prediction results from AdaPoinTr and our method.

4.4 Ablation Study
In this section, we demonstrate the effectiveness of several module
designs in Key-prompt. We replace our method with some tradi-
tional modules for ablation experiments, and all our networks are
trained and tested on PCN datasets with the same settings.

Sampling Methods. We take different sampling methods for
feature extraction.We perform separate (A) Farthest Point Sampling
and (A1) Key Contour Point Sampling, and we find that using
KCPS alone gives only a slight boost but could better recover some
detailed structures. Therefore, we utilize both sampling methods as
follows: (B) Certain key contour points are directly incorporated
into the output of the farthest point sampling as spatial fusion, and
they persist as input for the subsequent Feature Extractor.

Fusion Encoding. Our other strategy is to use two feature
extractors to take the two sampling methods separately and fuse
the output features. We have alternative fusion schemes for feature
fusion:(C) Feature fusion using traditional attentional mechanism
fusion and (D) Vector Attention (VA) based feature fusion method.
Experiments have shown that Vector Attention mechanism gives
better results. We found that the method of VA fusion originally
used for one point cloud can be better applied to our type of fusion
of homologous point clouds and features.

Interest Area Prompted Decoding. Traditional point cloud
completion models based on transformer cross-decoder use the
basic set to set Transformer in the decoding phase. We designed
the IAP module to change this decoding structure, which allows
for models with fewer parameters. Results in Tab. 5 show clear
improvement of our IAP design (6.32 vs 6.53).

4.5 Accuracy-Complexity Trade-Offs
Our dual-feature extractor architecture, operating in parallel, adds
little to the computational complexity. Thanks to the IAP module,
which significantly enhances the efficiency of the Transformer
decoder architecture by sharpening the focus of attention. We are

Table 5: Ablation Study. The table proves the validity of our
three module designs respectively.

Model Sample Fusion IAP CD F1-score

A FPS - - 6.95 0.805
A1 KCPS - - 6.93 0.810
B FPS+KCPS Spatial - 6.72 0.819
C FPS+KCPS Attn - 6.64 0.821
D FPS+KCPS VA - 6.55 0.842

Key-Prompt FPS+KCPS VA ✓ 6.32 0.857

able to decrease the number of decoder layers without substantial
accuracy loss. Consequently, we introduce a lightweight variant of
Key-Prompt, equipped with only 5 Transformer decoders compared
to AdaPoinTr’s 8 decoders, achieving over a 20% reduction in FLOPS
and a nearly 1.5 times faster computation, all while incurring a mere
1% dip in accuracy. We compared the model with existing GRNet
[34], Seedformer [42], AdaPoinTr [38]. Our lightweight version of
Key-Prompt achieves a better result than AdaPoinTr [38] with fewer
FLOPs, and our method can process more than 40 point clouds in
one second (using a batch size of 1). In our testing environment,
Key-Prompt stands out as the fastest among recent models.

Table 6: Complexity Analysis. Comparisons of GFLOPS and
Throughput of our models with other models.

Models FLOPs Throughput CD
GRNet [34] 40.4 G 32.4 pc/s 6.74
Seedformer [42] 53.8 G 12.7 pc/s 6.74
AdaPoinTr [38] 15.1 G 31.8 pc/s 6.53
Key-Prompt 18.2 G 28.1 pc/s 6.32
Key-Prompt* 14.2 G 40.2 pc/s 6.39
Model marked with * represent our light version of Key-Prompt.

5 CONCLUSION
In this study, we introduce an innovative architecture named Key-
Prompt, focusing on the detailed structures often overlooked by
previous methodologies. During the encoding phase, we imple-
ment a novel sampling technique known as KCPS. Based on this
method, we perform a deep fusion of point cloud features by in-
tegrating different sampling methods. Moreover, we designed a
unique Semantic-based Interest Area Prompt decoding phase to en-
able coarse point cloud seed to learn key local details from the input
accurately. Our method has achieved state-of-the-art performance
on several challenging benchmark datasets through comprehensive
experimental validation. Notably, the exceptional generalization
ability of our model is underscored in tasks involving few-shot
learning and predictions for unseen categories. Additionally, our
model exhibits enhanced suitability for real-world applications,
highlighting its practical significance and potential for broad adop-
tion.
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