
AGS-Mesh: Adaptive Gaussian Splatting and Meshing with Geometric Priors
for Indoor Room Reconstruction Using Smartphones

Supplementary Material

In this supplementary material, we provide additional
details regarding our AGS-Mesh optimization and the pro-
posed Adaptive TSDF and IsoOctree meshing strategy in
Appendix A. We also give further details about the mesh-
ing strategies in Appendix B. Lastly, we present qualitative
renders for mesh reconstruction and novel-view synthesis in
Appendix D.

A. Implementation Details

A.1. AGS-Mesh Optimization

We implement our regularization terms on top of the open-
source implementations from 2DGS [19] and DN-Splatter
[43]. We enable our DNR and ANR optimization terms at
training iterations Td = 7k (cf . Eq. (6)) and Tn = 15k (cf .
Eq. (7)), respectively. We enable the filtered geometry prior
after a certain number of steps to allow the Gaussians to
be fully supervised during the initial phase and to relax the
training process in later stages. We set the angle thresholds
τd and τN used for filtering inconsistent depths and normals
(refer to cf . Eq. (4) and cf . Eq. (8)) to 10◦. We immediately
apply depth supervision at the beginning of training and en-
able normal regularization only after 7k iterations. The total
number of training iterations is 30k. In the final optimization
loss, we set λd to 0.2 and λn to 0.1. We use the estimated
normals from Omnidata [14] as pre-trained normals, as they
have shown to improve 3D reconstruction performance in
our experiments.

A.2. Adaptive TSDF and IsoOctree Details

Our proposed meshing strategy consists of constructing
an isofunctional inspired by TSDF approaches that is then
meshed using an octree-based Marching Cubes algorithm
IsoOctree.

The meshing stage takes in depth and normal renders
from the Gaussian scene and camera poses. Input depths
are first filtered based on a threshold that determines nearby
depth similarity, if nearby depth values differ by a margin,
they are filtered out. This effectively removes object edges
from the depth maps and allows using linear interpolation
on the remaining valid pixels. The motivation is that depth
maps on the object edges are typically inaccurate and may
represent a random intermediate depth value between the
foreground object and the background. The normal maps are
also filtered using the same mask.

We define the isofunction as

f(x) =
∑
j

wj(dj(x)− d̃j(x)), (11)

where dj(x) is the value of the depth map j at the projection
of point x and d̃j(x) = (x− pj) · cz is the actual depth of x.
Here pj , cz are the center and principal axis of camera j, re-
spectively. The sum is taken over the values where the depth
map is valid and the TSDF value dj(x)− d̂j(x) exceeds a
lower truncation distance −τ · dj(x), which depends on the
projected depth. We use τ = 0.05 as the relative truncation
distance. The weight in the formula is computed using a two-
pass approach where we first compute a maximum weight
normal n(x) = nk, k = argmaxj w

′
j(x) where

w′
j =

(dj(x)− d̃j(x)) · (−rj(x) · nj(x))

dj(x)2
(12)

and, on the second pass, compare the normal map value
nj and camera ray direction rj(x) =

x−pj

|x−pj | to n′ when
computing the final weight wj . The factor dj(x)2 in the
denominator effectively down-weights observations with a
larger distance to the camera, where the uncertainty of the
depth map is also assumed to be the largest.

The isofunction defined above is then meshed using an
IsoOctree [24] approach. We utilize the backprojected point
cloud constructed from rendered depth maps as a point cloud
hint. The point cloud hint serves as a subdivision criteria
for IsoOctree. A uniform grid is first initialized based on an
AABB enclosing the point cloud hint. If a voxel contains
points above a user threshold (set to 50), the voxel is subdi-
vided into an octant. This creates a three-dimensional octree
subdivision structure that contains finer levels of detail at
deeper octree depths. We set the maximum octree depth to
10.

B. Mesh Extraction Methods
In this section, we provide further details on the meshing
strategies shown in Table 5 and Table 1.
TSDF. The Truncated Signed Distance Function (TSDF)
method refers to the ScalableTSDFVolume [61] implemen-
tation from Open3D [62]. The method accepts depth, RGB,
and camera poses as input, identifies points of interest, and
calculates a TSDF from input values to extract a mesh using
Marching Cubes [28]. We set the depth truncation distance
to 10, the voxel size to 0.01, and the SDF truncation distance
to 0.03 for all TSDF marked baselines in Tab. 5 and Tab. 1.
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Table 5. Mesh reconstruction evaluation on ScanNet++. The mesh metrics are averaged over the ”b20a261fdf” and ”8b5caf3398” scenes.
The best results from each category are marked with bold. Time represents training time.

Methods Sensor Depth Meshing Algorithm Accuracy ↓ Completion ↓ Chamfer-L1 ↓ Normal Consistency ↑ F-score ↑ Time (min)

Volumetric Fusion [9] ✓ TSDF .0335 .0429 .0382 .7372 .8526 0.17

Im
pl

ic
it Nerfacto [41] NeRF − Poisson .1305 .1484 .1394 .7153 .4698 8.0

Depth-Nerfacto [41] ✓ Poisson .0731 .1647 .1189 .6848 .5018 8.1
MonoSDF [59] SDF ✓ Marching-Cubes .0303 .0573 .0438 .8881 .8577 47.5

E
xp

lic
it

3DGS [26] 3DGS − TSDF .1795 .1716 .1756 .6578 .1719 14.5
SuGaR [16] − Poisson + IBR .0940 .1011 .0975 .7241 .4367 70
GOF [60] − Tetrahedral .1398 .0976 .1187 .6998 .3239 142
Splatfacto [41] Splatfacto − Poisson .1934 .1503 .1719 .6741 .1790 8.9
DN-Splatter [43] ✓ Poisson .0940 .0395 .0667 .8316 .7658 36.9
DN-Splatter [43] ✓ TSDF .1069 .0251 .0660 .8539 .8296 36.9
Splatfacto [41] + Ours ✓ TSDF .1060 .0251 .0655 .8506 .8314 36.9
2DGS [19] 2DGS − TSDF .1272 .0798 .1035 .7799 .4196 33.5
2DGS [19] + Ours ✓ TSDF .0264 .0305 .0285 .9097 .9030 40.4
2DGS [19] + Ours ✓ SDF + IsoOctree (Ours) .0269 .0282 .0276 .9139 .9028 40.4

Poisson. Poisson refers to the screened variant of Poisson
Reconstruction [22] used to extract a mesh from an oriented
point cloud. Optimized depth and normal maps are back-
projected into world coordinates to obtain oriented points.
Poisson surface reconstruction is sensitive to perturbations
in the oriented point cloud; therefore, noise and multi-view
inconsistencies in depth maps and backprojection can lead
to poor surface generation.
Poisson + IBR. Poisson + IBR (Image Based Rendering)
refers to the optimization strategy proposed in SuGaR [16].
A coarse mesh is first obtained from the Gaussian scene at
7k iterations by Poisson reconstruction from a point cloud
sampled from a level set determined by the density of the
Gaussian scene. The coarse mesh is then further optimized
with differentiable image-based rendering (using PyTorch3D
functionality) for 15k iterations to produce a refined mesh.
Mesh metrics are evaluated on this refined mesh.
Tetrahedral. GOF [60] proposed generating a 3D bounding
box for each Gaussian, then establishing tetrahedral grids
within these 3D bounding boxes. Marching Tetrahedra [40]
is applied to extract triangle meshes from the tetrahedral
grid, using a binary search algorithm to precisely identify
the level set.
SDF + IsoOctree. The SDF + IsoOctree method, proposed
in our paper, utilizes a depth-aware truncated TSDF calcu-
lation combined with the IsoOctree meshing method. The
approach can reduce the number of mesh vertices, for exam-
ple, the size of the mesh extracted with TSDF is 192MB and
the mesh extracted with SDF + IsoOctree is 30MB for the
”vr room” from MuSHRoom dataset.

C. Explanations of Benchmark selection
We choose Splatfacto as the representative of 3DGS-based
baselines as it is an advanced version of 3DGS and well-
suited for indoor room reconstruction. Additionally, we
implement our method on 2DGS to demonstrate its effec-
tiveness. Although methods such as [10, 47, 48] achieve
high-quality object reconstructions, they face significant

challenges in indoor room reconstruction due to their high
computational requirements [10] and suboptimal feature ex-
traction performance [47, 48].

D. More Experiments
D.1. Quantitative 3D Reconstruction Evaluation on

ScanNet++

We show mesh comparison quantitative results on ScanNet++
in Table 5. Our method provides an overall improvement
when added to baselines.

D.2. Visualizations of DNC and ANR

We visualize the output depth and normal maps produced by
the DNC and ANR filtering terms in Fig. 8. We observe that
the DNC and ANR terms successfully filter our unreliable
edges and outlier depth and normal estimates, preventing
them from misleading the Gaussian training process.

D.3. Qualitative Comparision of 3D Reconstruction

Similarly, we show additional qualitative comparisons of
3D mesh reconstruction quality on the ScanNet++ dataset
in Fig. 7. Our method presents a notable improvement in
smoothing flat surfaces on the extracted mesh.

D.4. Qualitative Comparision of Novel View Syn-
thesis

Lastly, we compare the quality of novel view synthesis with
our method along with error visualizations in Fig. 9. We
compare 2DGS with and without our DNC and ANR regular-
ization terms with highlighted details and l2 differences. We
demonstrate that regularization with more accurate geomet-
ric priors not only helps mesh reconstruction, but also aids
in novel view rendering, especially for removing floaters.

E. Limitations and future work
Our method targets 3D reconstruction using RGB sequences
with sensor depth. In future work, the method could be
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extended to only use RGB images. The IsoOctree meshing
technique we propose focuses on reducing the number of
vertices and faces in the mesh while smoothing the surface.
However, it does not consistently enhance the overall quality
of 3D reconstructions.
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Figure 7. Qualitative mesh comparison for the ”8b5caf3398” scene from ScanNet++ dataset.
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GT RGB Sensor depth Depth after DNC Predicted Normal Normal after ANR

Figure 8. Qualitative visuals of our Depth Normal Consistency (DNR) and Adaptive Normal Regularization (ANR) terms. We visualize
sensor depth and normals obtained from a pretrained network [14] after our filtering strategies. Our approach effectively filters out unreliable
depth and normal values, especially in areas near boundaries, edges, and distant regions, leading to a more robust optimization process with
more reliable prior regularization.

5



2DGS[19] 2DGS + Ours Reference l2 contrib. ∆l2
Figure 9. Novel view synthesis comparisons on the MuSHRoom dataset. From left to right: 2DGS [19] baseline, 2DGS with our proposed
DNC and ANR optimization strategies, reference evaluation image, l2 error contributions, 2DGS + Ours (red: 30%, yellow: 60%, white:
10%); l2 error differences 2DGS + Ours vs 2DGS (red: higher error, blue: lower error).
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