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Abstract

We study a bandit version of phase retrieval where the learner chooses actions
(At)

n
t=1 in the d-dimensional unit ball and the expected reward is 〈At, θ?〉2 with

θ? ∈ Rd an unknown parameter vector. We prove an upper bound on the minimax
cumulative regret in this problem of Θ̃(d

√
n), which matches known lower bounds

up to logarithmic factors and improves on the best known upper bound by a factor
of
√
d. We also show that the minimax simple regret is Θ̃(d/

√
n) and that this is

only achievable by an adaptive algorithm. Our analysis shows that an apparently
convincing heuristic for guessing lower bounds can be misleading and that uniform
bounds on the information ratio for information-directed sampling [Russo and Van
Roy, 2014] are not sufficient for optimal regret.

1 Introduction

We study an instantiation of the low-rank bandit problem [Jun et al., 2019] that in the statistical
setting is called phase retrieval. Although this model is interesting in its own right, our main focus is
on the curious information structure of this problem and how it impacts algorithm design choices.
Notably, we were not able to prove optimal regret for standard approaches based on optimism,
Thompson sampling or even information-directed sampling. Instead, our algorithm is a variant of
explore-then-commit with an adaptive exploration phase that learns to gain information at a faster
rate than what is achievable with non-adaptive exploration.

Problem setting Let ‖ · ‖ be the standard euclidean norm and Bdr = {x ∈ Rd : ‖x‖ ≤ r} and
Sd−1
r = {x ∈ Rd : ‖x‖ = r}. At the start of the game the environment secretly chooses a vector
θ? ∈ Sd−1

r with r ∈ [0, 1] a constant that is known to the learner. The assumption that r is known can
be relaxed at essentially no cost (Section 8). The game then proceeds over n rounds. In round t the
learner chooses an action At ∈ Bd1 and observes a reward

Xt = 〈At, θ?〉2 + ηt ,

where (ηt)
n
t=1 is a sequence of independent standard Gaussian random variables. As is standard

in bandit problems, the conditional law of At should be chosen as a (measurable) function of the
previous actions (As)

t−1
s=1 and rewards (Xs)

t−1
s=1 and possibly an exogenous source of randomness.

The performance of a policy π is measured in terms of the expected regret,

Rn(π, θ?) = max
a∈Bd1

E

[
n∑
t=1

(
〈a, θ?〉2 − 〈At, θ?〉2

)]
= nr2 − E

[
n∑
t=1

〈At, θ?〉2
]
.

The minimax regret is R?
n = supr∈[0,1] infπ supθ?∈Sd−1

r
Rn(π, θ?), where the infimum is over all

policies.

We also study the pure exploration setting, where at the end of the game the learner uses the observed
data (At)

n
t=1 and (Xt)

n
t=1 to make a prediction Â? ∈ Bd1 of the optimal action. The simple regret of
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policy π is

rn(π, θ?) = max
a∈Bd1

E
[
〈a, θ?〉2 − 〈Â?, θ?〉2

]
= r2 − E

[
〈Â?, θ?〉2

]
.

As expected, the minimax simple regret is r?n = supr∈[0,1] infπ supθ?∈Sd−1
r

rn(π, θ?).

Contributions Our main contribution is an upper bound on R?
n that matches existing lower bounds

up to logarithmic factors. For the simple regret we provide a near-optimal upper bound and a lower
bound showing that non-adaptive policies must be at least a factor of Ω(

√
d) suboptimal. In all of the

following, const is a universal non-negative constant that may vary from one expression to the next.

Theorem 1. R?
n ≤ const d

√
n log(n) log(d).

A corollary of the proof of the lower bound by Kotłowski and Neu [2019] shows that the minimax
regret is at least Ω(d

√
n), so the minimax regret for bandit phase retrieval is now known up to

logarithmic factors. For the simple regret we provide the following upper and lower bounds:

Theorem 2. r?n ≤ const d
√

log(n) log(d)/n.
Theorem 3. Assume that n ≥ d ≥ 8. Then there exists an r ∈ [0, 1] such that for all policies π with
(At)

n
t=1 independent of (Xt)

n
t=1, supθ?∈Sd−1

r
rn(π, θ?) ≥ const

√
d3/n.

We also show that worst-case bounds on the information ratio for information-directed sampling are
not sufficient to achieve optimal regret. Our results suggest that the conjectured lower bounds for
low-rank bandits [Jun et al., 2019, Lu et al., 2021] are not true and that existing upper bounds may
be loose. The same phenomenon may explain the gap between upper and lower bounds for bandit
principle component analysis [Kotłowski and Neu, 2019], as we discuss in Section 8.

Notation The first n integers are [n] = {1, 2, . . . , n} and the standard basis vectors in Rd are
e1, . . . , ed. The span of a collection of vectors is denoted by span(v1, . . . , vm) and the orthogonal
complement of a linear subspace V ⊂ Rd is V ⊥ = {x ∈ Rd : 〈x, y〉 = 0 for all y ∈ V }. The mutual
information between random elements X and Y on the same probability space is I(X;Y ) and the
relative entropy between probability measures P and Q on the same measurable space is KL(P,Q).
The dimension of a set Θ ⊂ Rd is defined as the dimension of the affine hull of Θ.

2 Related work

The most related work is by Huang et al. [2021]. As happens surprisingly often, this is a case where
multiple groups tackled the same problem and developed similar methods to arrive at approximately
the same solution. Their work provides the same upper bound in the cumulative regret setting as we
do using an explore-then-commit principle and the noisy power method. They also generalise the
setting to consider higher powers. For example, when the reward is 〈At, θ?〉3. What is different is
that we use a more ad-hoc (but still interesting) construction during the exploration period and our
work is more focussed on the information-theoretic implications.

Phase retrieval Phase retrieval is a classical problem in signal processing and statistics [Candès
et al., 2015b,a, Cai et al., 2016, Chen and Candès, 2017, Chen et al., 2019, Sun et al., 2018]. These
works are focused on learning θ? where the covariates (At)

n
t=1 are uncontrolled, either random or

fixed design.

Linear bandits Our problem can be written as a stochastic linear bandit by noticing that 〈At, θ?〉2 =
〈AtA>t , θ?θ>? 〉, where the inner product between matrices on the right-hand side should be interpreted
coordinate-wise and the action set is {aa> : a ∈ Bd1}. There is an enormous literature on stochastic
linear bandits [Auer, 2002, Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010b, Chu et al.,
2011, Abbasi-Yadkori et al., 2011]. This reduction immediately yields an upper bound on the minimax
regret of O(d2

√
n log(n)).

Low-rank bandits Low-rank bandits are a kind of linear bandit where the environment is determined
by an unknown matrix and the actions of the learner are also matrices. Let E ⊂ Rd1×d2 and
A ⊂ Rd1×d2 . A low-rank bandit problem over E and with actions A is characterised by a matrix
Θ? ∈ E . The learner plays actions At ∈ A and the reward is Xt = 〈At,Θ?〉+ ηt, where ηt is noise
and the inner product between matrices is interpreted coordinate-wise. So far this is nothing more than
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Table 1: For the low-rank bandits column, p is the rank. We ignore logarithmic factors and universal
constant. Note, the dp

√
n lower bound derived by Lu et al. [2021] does not apply to bandit phase

retrieval because it makes use of the richer structure of the more general model.
Upper bounds Bandit phase retrieval Low-rank bandits Pure exploration
Abbasi-Yadkori et al. [2011] O(d2

√
n) O(d2

√
n) N/A

Jun et al. [2019], Lu et al. [2021] O(d3/2
√
n) O(d3/2√pn) N/A

This work O(d
√
n) N/A O(d/

√
n)

Lower bounds
Lu et al. [2021] N/A Ω(dp

√
n) N/A

Kotłowski and Neu [2019] Ω(d
√
n) N/A N/A

This work N/A Ω(d
√
n) Ω(d/

√
n)

This work (non-adaptive learning) N/A N/A Ω(d3/2/
√
n)

a complicated way of defining a linear bandit. The name comes from the fact that in general elements
of E are assumed to be low-rank. The precise nature of the problem is determined by assumptions
on E and the action set A. Our setup is recovered by assuming that E = {xx> : x ∈ Sd−1

r } and
A = {xx> : x ∈ Bd1}.

Jun et al. [2019] assume that E consists of rank p matrices and A = {xy> : x ∈ X , y ∈ Y} for
some reasonably bounded sets X ⊂ Rd1 and Y ⊂ Rd2 . They prove that the regret is bounded by
Õ((d1 + d2)3/2√pn). These results cannot be applied directly to the phase retrieval bandit because
of the product assumption on the action set. Lu et al. [2021] retain the assumption that E consists
of rank-p matrices, but relax the product form of the action set (while also allowing for generalised
linear models). Relying only on mild boundedness assumptions, they show that the regret can be
bounded by Õ((d1 + d2)3/2√pn). For the bandit phase retrieval problem, d1 = d2 = d and p = 1,
so this algorithm yields an upper bound on the regret for bandit phase retrieval of Õ(d3/2

√
n). Both

Jun et al. [2019] and Lu et al. [2021] conjecture that their upper bounds are optimal. Our results show
that this is not true for this sub-problem, despite the fact that the heuristic argument used by these
authors holds in this case, as we explain in Section 3. We summarize these comparisons in Table 1.

Some authors use a model where the noise is in the parameter rather than additive, which means the
reward is 〈At,Θt〉 with (Θt)

n
t=1 an independent and identically distributed sequence of low-rank

matrices (with unknown distribution). For example, Katariya et al. [2017b,a] and Trinh et al. [2020]
assume that Θt is rank-1 almost surely and A = {eie>j : 1 ≤ i, j ≤ d}, which means the learner is
trying to identify the largest entry in a matrix.

Adversarial setting A similar problem has been studied in the adversarial framework by Kotłowski
and Neu [2019]. They assume that (θt)

n
t=1 is a sequence of vectors chosen in secret by an adversary

at the start of the game and the learner observes 〈At, θt〉2. They design an algorithm for which the
regret is at most Õ(d

√
n), while the best lower bound is Ω(

√
dn).

3 Information-theoretic heuristics and information-directed sampling

Jun et al. [2019, §5] argue by comparing the signal to noise ratios between linear and low-rank
bandits that the minimax regret for problems like bandit phase retrieval should be lower bounded by
Ω(d3/2

√
n). We make this argument a little more formal and explain why it does not yield the right

answer in this instance. Let λ be the uniform (rotational invariant) measure on Sd−1
r and suppose that

θ? is sampled from λ. The learner takes an action A ∈ Bd1 and observes X = 〈A, θ?〉2 + η with η
sampled from a standard Gaussian. What is the information gained by the learner? By symmetry, all
actions on the unit sphere have the same information gain, so let’s just fix an arbitrary A ∈ Sd−1

1 . Let

3



Pθ be a Gaussian with mean 〈A, θ〉2 and variance 1. Then,

I(θ?;X) = E
[
KL

(
Pθ? ,

∫
Sd−1
r

Pθ dλ(θ)

)]
=

∫
Sd−1
r

KL

(
Pα,

∫
Sd−1
r

Pθ dλ(θ)

)
dλ(α)

≤
∫
Sd−1
r

∫
Sd−1
r

KL (Pα,Pθ) dλ(α) dλ(θ) =
1

2

∫
Sd−1
r

∫
Sd−1
r

(
〈A, θ〉2 − 〈A,α〉2

)2
dλ(α) dλ(θ)

=
r4

2

(
3

d2 + 2d
− 1

d2

)
≤ r4

d2
, (1)

where the first inequality follows from convexity of the relative entropy. Note that d2 log(n) bits are
needed to code θ? to reasonable accuracy. So if we presume that the rate of information learned stays
the same throughout the learning process, then over n rounds the learner can only obtain O(nr4/d2)

bits by Eq. (1). By setting r2 = d3/2
√

log(n)/n one could be led to believe that the learner cannot
identify the optimal direction and the regret would be Ω(nr2) = Ω(d3/2

√
n log(n)). The main point

is that the rate of information accumulated by a careful learner increases over time.

Information-directed sampling The combination of our upper bound and the observation above has
an important implication. Suppose as above that θ? is sampled uniformly from Sd−1

r and let A be a
possibly randomised action. Since the learner cannot know the realisation of θ? initially, her expected
regret for any action a ∈ Bd1 is ∆(a) = r2 − E[〈a, θ?〉2] = r2(1− ‖a‖2/d) ≥ r2(1− 1/d). On the
other hand, as outlined above, the information gain about θ? is about r4/d2. Together these results
show that the information ratio is bounded by

Ψ ,
E[∆(A)]2

I(θ?;X,A)
= Θ(d2) .

Since the entropy of a suitable approximation of the optimal action is about d2 log(n), an application
of the information theoretic analysis by Russo and Van Roy [2014] suggests that the Bayesian regret
can be bounded by O(d3/2

√
n log(n)), which is suboptimal. This time the problem is that we have

used the worst-case bound on the information ratio, without taking into account the possibility that
the information ratio might decrease over time. We should mention here that a decreasing information
ratio was exploited by Devraj et al. [2021] in a recent analysis of Thompson sampling for finite-armed
bandits, but there the gain was less dramatic (a logarithm of the number of arms) and no changes to
the algorithm were required.

4 Algorithm for bandit phase retrieval

We start by showing that Theorem 1 holds if the learner is given an action that is constant-factor
optimal. In the next section we explain how such an action can be identified with low regret. Our
algorithm uses the explore-then-commit design principle, which is usually only sufficient for O(n2/3)
regret. The reason we are able to obtain O(n1/2) regret is because of the curvature of the action set,
a property that has been exploited in a similar way in a variety of settings [Rusmevichientong and
Tsitsiklis, 2010a, Huang et al., 2017, Kirschner et al., 2020].

Theorem 4. Suppose the learner is given an action Âw ∈ Bd1 such that 〈Âw, θ?〉2 ≥ αr2 for
some universal constant α ∈ (0, 1]. Then there exists a policy π for which the regret is at most
Rn(π, θ?) ≤ const ·d

√
n log(n).

Proof. By choosing the sign of θ?, assume without loss of generality that 〈Âw, θ?〉 ≥ r
√
α. Let

m =
⌈
4d
√
n log(n)/r2

⌉
and λ = min

(
1

2
,

√
α

4

)
.

If m ≥ n, then the regret of any policy is upper bounded nr2 ≤ const d
√
n log(n), so for the

rest of the proof we assume that m < n. For the first m rounds the policy cycles over the 2d
actions {(1− λ)Âw ± λek : k ∈ [d]}. The constrained least squares estimator of θ? based on the
data collected over m rounds is

θ̂ = arg min{L(θ) : θ ∈ Bdr and 〈Âw, θ〉 ≥ r
√
α} , (2)
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where L(θ) = 1
2

∑m
t=1(Xt − 〈At, θ〉2)2. For the remaining n − m rounds the algorithm plays

At = Â = θ̂/‖θ̂‖. Then,

β , 9 + d log(98m) (3)

≥ E

[
m∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2
]

(by Corollary 10)

≥ α‖θ?‖2

4
E

[
m∑
t=1

〈At, θ̂ − θ?〉2
]

(4)

≥ αλ2‖θ?‖2

2

(m
2d
− 1
)
E
[
‖θ̂ − θ?‖2

]
. (5)

where in Eq. (4) we used that for some k ∈ [d],

〈At, θ̂ + θ?〉 = 〈(1− λ)Âw ± λek, θ̂ + θ?〉 ≥ (1− λ)〈Âw, θ̂ + θ?〉 − λ‖θ̂ + θ?‖

≥ 2(1− λ)
√
αr − 2λr ≥

√
α

2
‖θ?‖ . (by definition of λ)

Eq. (5) follows because for any k ∈ [d],∑
σ∈±1

〈(1− λ)Âw + σλek, θ̂ − θ?〉2 = 2(1− λ)2〈Âw, θ̂ − θ?〉2 + 2λ2〈ek, θ̂ − θ?〉2

≥ 2λ2〈ek, θ̂ − θ?〉2 ,
which implies that

m∑
t=1

〈At, θ̂ − θ?〉2 ≥
⌊m

2d

⌋ d∑
k=1

(
2λ2〈ek, θ̂ − θ?〉2

)
≥ 2λ2

(m
2d
− 1
)
‖θ̂ − θ?‖2 .

Rearranging Eq. (5) and using the definition of β shows that

E
[
‖θ̂ − θ?‖2

]
≤ 2β

αλ2‖θ?‖2
1

m
2d − 1

≤ const
d2 log(m)

m‖θ?‖2
.

Letting a? = θ?/‖θ?‖ be the optimal action, the regret is bounded by

Rn(π, θ?) ≤ m‖θ?‖2 + nE
[
〈a?, θ?〉2 − 〈Â, θ?〉2

]
= m‖θ?‖2 + nE

[
〈a? − Â, θ?〉〈a? + Â, θ?〉

]
≤ m‖θ?‖2 + 2nE

[∣∣∣〈a? − Â, θ?〉∣∣∣ ‖θ?‖]
≤ m‖θ?‖2 + 4nE

[
‖θ? − θ̂‖2

]
(by Lemma 6)

≤ m‖θ?‖2 + const
nd2 log(m)

m‖θ?‖2
≤ const d

√
n log(n) .

5 Finding a constant-factor optimal action

To establish Theorem 1 we show there exists an algorithm that interacts with the bandit for a random
number of rounds and outputs an action Âw that with high probability satisfies 〈Âw, θ?〉2 ≥ r2/64.
Furthermore, the procedure suffers small regret in expectation.
Theorem 5. Let T be the random number of rounds that Algorithm 1 interacts with the bandit, which
cannot be more than n, and let Âw ∈ Sd−1

1 be its output. Then,

1. E[T ] ≤ const d
2

r4 log(n) log(d).

2. With probability at least 1− 1/n, either T = n or 〈Âw, θ?〉2 ≥ r2

64 .
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1 τ = r/
√
d and m =

⌈
8
τ4 log

(
2n2
)⌉

2 do
3 sample v u n i f o r m l y from Sd−1

1

4 p l a y At = v f o r m r o un ds and compute a v e r a g e reward X̄
5 loop u n t i l X̄ ≥ τ2

6 E = {v
√
X̄}

7 f o r k = 2 to d

8 β = 9(log(98) + 4 log(n)) and m =

⌈
64d2β

kr4

⌉
and u =

∑
w∈E w

‖
∑
w∈E w‖

9 do
10 sample v u n i f o r m l y from span(E)⊥ ∩ Sd−1

1

11 p l a y At ∈ {(u+ v)/
√

2, (u− v)/
√

2, u} f o r 3m r o un ds
12 f i n d l e a s t s q u a r e s e s t i m a t o r θ̂ c o n s t r a i n e d to Bd1
13 loop u n t i l 〈v, θ̂〉2 ≥ τ2

14 E = E ∪ {〈v, θ̂〉v}
15 i f

∑
w∈E ‖w‖2 ≥ r2/16 break

16 end f o r
17 re turn Âw =

∑
w∈E w

‖
∑
w∈E w‖

Algorithm 1: The procedure operates in d iterations. The first iteration is implemented in Lines 1–5
and the remaining d− 1 iterations in Lines 7–15.

What is interesting about Algorithm 1 is that it uses what it has learned in early iterations to increase
the statistical efficiency of its estimation.

Proof. Note that the vectors u and v computed in each iteration are orthogonal, which means that
‖(u+ v)/

√
2‖ = ‖(u− v)/

√
2‖ = ‖v‖ = 1. Hence the actions of the algorithm are always in Bd1.

The main argument of the proof is based on an induction to show that with high probability when the
execution of the algorithm ends, there exists an s ∈ {±1} such that for all w ∈ E ,

(a) w ∈ E , ‖w‖2 ≥ τ2; and

(b) s〈w, θ?〉 ∈ [ 1
2‖w‖

2, 2‖w‖2].

We proceed in five steps. First, we prove that if the above holds and the algorithm halts before n
rounds are over, then the vector returned is a suitable approximation of θ?/‖θ?‖. Second, we upper
bound the probability of certain bad events. In the third and fourth steps we prove the base case and
induction step for (a) and (b). In the last step we bound the expected running time.

Step 1: Correctness Suppose that (a) and (b) above hold and the algorithm halts at the end of
iteration k. Then,

〈Âw, θ?〉2 =

〈 ∑
w∈E w

‖
∑
w∈E w‖

, θ?

〉2

≥ 1

4

∑
w∈E
‖w‖2 ≥ r2

64
.

where the first inequality follows from orthogonality of w ∈ E and (b) above. The second inequality
follows from the stopping condition in Line 15 of Algorithm 1, (a) above and the definition of τ . Part
(2) of the theorem follows by showing that (a) and (b) above hold with probability at least 1− 1/n.

Step 2: Failure events The algorithm computes some kind of estimator at the end of each do/loop.
Since the algorithm cannot play more than n actions, the number of estimators computed is naively
upper bounded by n. A union bound over all estimates and the concentration bounds in Lemma 7 and
Corollary 10 show that with probability at least 1− 1/n the following both hold:
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• For all v sampled in the first iteration and corresponding average rewards X̄ ,∣∣X̄ − 〈v, θ?〉2∣∣ ≤√2 log(2n2)

m
=
τ2

2
, (6)

where m is defined in Line 1 of Algorithm 1.

• Let D = (As)s be the actions played in the inner loop of some iteration k ≥ 2 and θ̂ be the
corresponding least-squares estimator. Then,∑

a∈D
〈a, θ̂ − θ?〉2〈a, θ̂ + θ?〉2 ≤ 9(log(98) + 4 log(n)) , β . (7)

We assume both of the above hold in all relevant iterations for the remainder.

Step 3: Base case The next step is to show that (a) and (b) hold with high probability after the first
iteration. Consider the operation of the algorithm in the inner loop. After sampling v ∈ Sd−1

1 , the
algorithm plays v for m rounds and computes the average reward. Let v be the last sampled action
before the iteration halts and w = v

√
X̄ . By the stopping condition in Line 5, ‖w‖2 = X̄ ≥ τ2.

Without loss of generality, we choose the sign of θ? so that 〈v, θ?〉 ≥ 0. Then by Eq. (6),

〈w, θ?〉 =
√
X̄〈v, θ?〉 ∈

[
1

2
‖w‖2, 2‖w‖2

]
.

This establishes the base case.

Step 4: Inductive step Assume that (a) and (b) above hold for E at the end of iteration k. Let u be
the value computed in Line 8 of Algorithm 1. Then,

〈u, θ?〉 =

∑
w∈E〈w, θ?〉√∑
w∈E ‖w‖2

≥ 1

2

√∑
w∈E
‖w‖2 ≥ τ

√
k

2
.

Let A = {(u + v)/
√

2, (u − v)/
√

2, v}, which is the set of actions played in the inner loop of
iteration k + 1 after sampling v for the last time. Let θ̂ be the corresponding least-squares estimate.
We consider two cases. First, if 〈u, θ̂ + θ?〉 ≥ 2|〈v, θ̂ + θ?〉|, then by Eq. (7),

β

m
≥
∑
a∈A
〈a, θ? − θ̂〉2〈a, θ? + θ̂〉2

≥ 1

16
〈u+ v, θ? − θ̂〉2〈u, θ?〉2 +

1

16
〈u− v, θ? − θ̂〉2〈u, θ?〉2

≥ 1

8
〈v, θ? − θ̂〉2〈u, θ?〉2 ≥

kr2

16d
〈v, θ? − θ̂〉2 .

Rearranging shows that

〈v, θ? − θ̂〉2 ≤
16dβ

mkr2
≤ τ2

4
. (8)

For the second case, 〈u, θ̂ + θ?〉 ≤ 2|〈v, θ̂ + θ?〉|. Then,

β

m
≥
∑
a∈A
〈a, θ? − θ̂〉2〈a, θ? + θ̂〉2 ≥ 1

4
〈v, θ̂ − θ̂〉2〈u, θ̂ + θ?〉 ≥

kr2

8d
〈v, θ? − θ̂〉2 .

And again, Eq. (8) holds. Summarising, 〈v, θ̂〉 is an estimator of 〈v, θ?〉 up to accuracy τ/2. By the
definition of the algorithm, the iteration only ends if |〈v, θ̂〉| ≥ τ . Therefore, with w = 〈v, θ̂〉v, we
have ‖w‖2 = 〈v, θ̂〉2 ≥ τ2. Furthermore, 〈w, θ?〉 = 〈v, θ̂〉〈v, θ?〉 ∈ [‖w‖2/2, 2‖w‖2] . Therefore if
(a) and (b) hold for E computed after iteration k, they also hold for E computed after iteration k + 1.

Step 5: Running time The length of an iteration is determined by the corresponding value of m and
the number of samples of v. The former is an iteration-dependent constant, while the latter depends
principally on how many samples are needed before |〈v, θ?〉| is suitably large. The law of ν is the
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uniform distribution on Sd−1
1 ∩ span(E)⊥, which is the uniform distribution on a sphere of dimension

d− 1− |E| embedded in Rd. The squared norm of the projection of θ? onto span(E)⊥ is

‖θ?‖2 −
∑
w∈E

〈θ?, w〉2

‖w‖2
≥ r2 − 4

∑
w∈E
‖w‖2 ≥ r2

2
,

where we used (a) of the induction and the stopping condition in Line 15. Therefore, when v is
sampled uniformly from Sd−1

1 ∩ span(E)⊥, by Lemma 8,

P
(
〈v, θ?〉2 ≥ 3τ2/2

)
= P

(
〈v, θ?〉2 ≥

3r2

2d

)
≥ const > 0 ,

Furthermore, by the concentration analysis in the previous step, an iteration will end once a v has
been sampled for which 〈v, θ?〉2 ≥ 3τ2/2. Hence, the expected number of times the algorithm
samples v per iteration is constant and a simple calculation using the definition of m in Lines 1 and 8
shows that the expected number of rounds used by the algorithm is at most

E[T ] ≤ const
d2

r4
log (n) log(d) .

6 Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. Run Algorithm 1 and if it halts, feed the returned action to the input of the
explore-then-commit algorithm analysed in Theorem 4. Algorithm 1 fails to return a suitable action
with probability at most 1/n, so the contribution of this event to the regret is negligible. By Theorem 5,
the regret incurred by Algorithm 1 is bounded by

E

[
T∑
t=1

(
r2 − 〈At, θ?〉2

)]
≤ r2E[T ]

≤ min

(
nr2, const

d2

r4
log(d) log(n)

)
≤ const d

√
n log(d) log(n) .

Combining this with the regret bound established in Theorem 4 yields the result.

Proof of Theorem 2. We use a standard reduction [Lattimore and Szepesvári, 2020, Chapter 33].
Let π be the policy used in the proof of Theorem 1 with Â? sampled uniformly from (At)

n
t=1. By

Theorem 1,

rn(π, θ?) =
1

n

(
nr2 − E

[
n∑
t=1

〈At, θ?〉2
])

=
Rn(π, θ?)

n
≤ const d

√
log(n) log(d)

n
.

7 Proof of Theorem 3

Let π be a fixed policy and for θ ∈ Rd let Pθ be the measure on the sequence of outcomes Hn =
(A1, X1, . . . , An, Xn) induced by the interaction between π and the phase retrieval model determined
by θ. Let Eθ denote the expectation with respect to Pθ. Let r be a positive constant to be tuned
subsequently and σ be the uniform (Haar) measure on Sd−1

r . Let Q =
∫
Pθ dσ(θ) be the Bayesian

mixture measure. For θ ∈ Rd, let Eθ be the event given by

Eθ =

{
〈Â?, θ〉2 ≥

3

4
r2

}
.

By Fano’s inequality [Gerchinovitz et al., 2020, Lemma 5],∫
Sd−1
r

Pθ(Eθ) dσ(θ) ≤
log 2 +

∫
Sd−1
r

KL(Pθ,Q) dσ(θ)

− log
(∫

Sd−1
r

Q(Eθ) dσ(θ)
) . (9)
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We now bound the numerator and denominator in Eq. (9) to show that the right-hand side is at most
1/2 and then complete the proof using the definition of the regret and Eθ.

Step 1: Bounding the denominator in Eq. (9) By exchanging the order of integrals in the denomi-
nator of Eq. (9), it follows that

− log

(∫
Sd−1
r

Q(Eθ) dσ(θ)

)
= − log

(∫ ∫
Sd−1
r

1Eθ dσ(θ) dQ
)
. (10)

IfU is sampled uniformly from Sd−1
1 , then by a concentration bound for spherical measures [Dasgupta

and Gupta, 2003, Lemma 2.2],

P
(
U2

1 ≥ δ/d
)
≤ exp(−δ/4) for all δ > 6 .

By scaling and rotating and choosing δ = 3
4d, it follows that for any Â? ∈ Bd1,∫

Sd−1
r

1

(
〈Â?, θ〉2 ≥

3r2

4

)
dσ(θ) ≤ exp (−3d/16) .

Therefore, by Eq. (10),

− log

(∫
Sd−1
r

Q(Eθ) dσ(θ)

)
≥ 3d

16
.

Step 2: Bounding the numerator in Eq. (9) By the convexity of KL-divergence,∫
Sd−1
r

KL(Pθ,Q) dσ(θ) =

∫
Sd−1
r

KL

(
Pθ,
∫
Sd−1
r

Pα dσ(α)

)
dσ(θ)

≤
∫
Sd−1
r

∫
Sd−1
r

KL (Pθ,Pα) dσ(α) dσ(θ) .

By the chain rule of KL-divergence,

KL (Pθ,Pα) = Eθ

[
n∑
t=1

KL (Pθ(Yt = ·|At),Pα(Yt = ·|At))

]
.

A straightforward computation leads to

KL (Pθ,Pα) = Eθ

[
n∑
t=1

1

2

(
(A>t θ)

2 − (A>t α)2
)2]

=
1

2
Eθ

[
n∑
t=1

(
(A>t θ)

4 − 2(A>t θ)
2(A>t α)2 + (A>t α)4

)]
.

Since (At)
n
t=1 are independent of (Xt)

n
t=1, we can interchange the expectation and integral such that∫

Sd−1
r

KL(Pθ,Q) dσ(θ)

≤
n∑
t=1

E
[∫

θ

∫
α

(
(A>t θ)

4 − 2(A>t θ)
2(A>t α)2 + (A>t α)4

)
dσ(α) dν(θ)

]
,

where the expectation is with respect to (At)
n
t=1, which does not depend on θ by assumption. When

θ is uniformly on Sd−1
r and A ∈ Bd1 is arbitrary,∫

Sd−1
r

〈At, θ〉4 dσ(θ) =
3r4

d2 + 2d
and

∫
Sd−1
r

〈At, θ〉2 dσ(θ) =
1

d2
,

where the expectation is taken with respect to θ. Therefore,∫
Sd−1
θ

KL(Pθ,Q) dσ(θ) ≤ 3nr4

d2
. (11)
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Step 3: Lower bounding the regret Let r2 =
√
d3/(32n) Combining the previous two steps shows

that ∫
Sd−1
r

Pθ(Eθ) dσ(θ) ≤ 16nr2

d3
≤ 1

2
.

Therefore there exists a θ ∈ Sd−1
r with Pθ(Eθ) ≤ 1/2, which implies that

rn(π, θ) = r2 − Eθ
[
〈Â?, θ〉2

]
≥ r2

8
≥ const

d3/2

√
n
.

8 Discussion

Unknown radius The assumption that r = ‖θ?‖ is known to the learner is easily relaxed by estimat-
ing ‖θ?‖. Note first that all our analysis holds with only trivial modifications if r ∈ [ 1

2‖θ?‖, ‖θ?‖].
Next, if A is sampled uniformly from Sd−1

1 and X = 〈A, θ?〉2 + η and η is a standard Gaussian, then
E[X] = 1

d‖θ?‖
2 and V[X] = 1 + 2(d− 1)/(d3 + 2d2) = Θ(1). Therefore ‖θ?‖ can be estimated to

within an arbitrary multiplicative factor and at confidence level 1− 1/n using const d2/‖θ?‖4 log(n)
interactions with the bandit.

Computation complexity The only computational challenge is finding the least squares estimates,
which is a non-convex optimisation problem. Candès et al. [2015b] proposed a Wirtinger flow
algorithm that starts with a spectral initialization, and then refines this initial estimate using a local
update like gradient descent. The computational complexity of the Wirtinger flow algorithm with
ε-accuracy is O(nd2 log(1/ε)) where n is the number of samples.

Adversarial setting Kotłowski and Neu [2019] study the adversarial version of this problem, where
the learner observes 〈At, θt〉2 and (θt)

n
t=1 is an adversarially sequence with θt ∈ Bd1 for all t. They

prove an upper bound of Rn = O(d
√
n log(n)) and a lower bound of Ω(

√
dn). Natural attempts at

improving the lower bound all fail. We believe that the upper bound is loose, but proving this remains
delicate. No warm starting procedure will work anymore because the information gained may be
useless in the presence of a change point. New ideas are needed.

Rank-p Perhaps the most natural open question is whether or not our analysis can be extended to
the low rank bandit problem without our particular assumptions on the action set and environments
matrices.

Principled algorithms Can optimism or information-directed sampling be made to work? The main
challenge is to understand the sample paths of these algoritms before learning takes place.
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A Technical lemma

Lemma 6 (Kirschner et al. 2020).
〈

θ
‖θ‖ −

ϕ
‖ϕ‖ , θ

〉
≤ 2
‖θ‖‖θ − ϕ‖

2.

Lemma 7 (Boucheron et al. 2013). Let (Xt)
n
t=1 be independent standard Gaussian random variables

and (at)
n
t=1 be constants. Then,

P

(∣∣∣∣∣ 1n
n∑
t=1

atXt

∣∣∣∣∣ ≥
√

2
∑n
t=1 a

2
t log(2/δ)

n

)
≤ δ .

Lemma 8. Let V ⊂ Rd be am-dimensional subspace and letX be sampled uniformly from Sd−1
1 ∩V .

Then for all ϕ ∈ V ,

P
(
〈X,ϕ〉2 ≥ ‖ϕ‖

2

m

)
≥ const > 0 .

Proof. Use the fact that if Z ∈ Rm is a standard Gaussian, then

〈X,ϕ〉2 d
=
Z1‖ϕ‖2

‖Z‖
.

Then use standard concentration for the Gaussian and χ-squared distributions and naive union
bounding [Laurent and Massart, 2000]. Alternatively, use the explicit form for the distribution of X
in combination with elementary bounds on the regularised incomplete beta function.

B Ordinary least squares

Here we provide some routine results for least-squares estimation of θ?. Suppose that (At)
n
t=1 are

fixed and (ηt)
n
t=1 are independent 1-subgaussian random variables and Xt = 〈At, θ?〉2 + ηt. The

least-squares estimator of θ? constrained to Θ ⊂ Bdr is

θ̂ = arg min
θ∈Bd

L(θ) with L(θ) =
1

2

n∑
t=1

(
Xt − 〈At, θ〉2

)2
.

The symmetry of the problem means that L(θ) = L(−θ) for all θ ∈ Rd, which means there is no
hope that θ̂ might be close to θ?. What is true is that for suitably exploratory (At), θ̂ is close to either
θ? or −θ?.

Theorem 9. Suppose that θ? ∈ Bdr and θ̂ = arg minθ∈Θ L(θ). Then, for any δ ∈ (0, 1), with
probability at least 1− δ,

P

(
n∑
t=1

〈θ̂ − θ?, At〉2〈θ̂ + θ?, At〉2 ≥ 9 log

(
N1/(32n)(Θ)

δ

))
≤ δ ,

where Nε(Θ) = min{|C| : C ⊂ Rd,∀x ∈ Θ,miny∈C ‖x− y‖ ≤ ε}.

Proof. Since θ? ∈ Bd by assumption, it follows that

0 ≤ L(θ?)− L(θ̂)

= −1

2

n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 +

n∑
t=1

ηt〈At, θ̂ − θ?〉〈At, θ̂ + θ?〉 .

Let ε = 1/(32n) and C ⊂ Rd be such that for all x ∈ Θ there exists a y ∈ C such that ‖x− y‖ ≤ ε
and |C| = Nε(Θ). Since At are fixed, by a union bound and standard Gaussian tail bounds, with
probability at least 1− |C|δ,∣∣∣∣∣

n∑
t=1

ηt〈At, α− θ?〉〈At, α+ θ?〉

∣∣∣∣∣ ≤
√√√√2

n∑
t=1

〈At, α− θ?〉2〈At, α+ θ?〉2 log

(
1

δ

)
.
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On this event and letting α ∈ C be such that ‖α− θ̂‖ ≤ ε. Then, with ∆ = α− θ̂,

n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 ≤

√√√√8

n∑
t=1

〈At, α− θ?〉2〈At, α+ θ?〉2 log

(
1

δ

)

=

√√√√8

n∑
t=1

〈At,∆ + θ̂ − θ?〉2〈At,∆ + θ̂ + θ?〉2 log

(
1

δ

)

≤

√√√√8

n∑
t=1

(
〈At, θ̂ − θ?〉2 + 2ε+ ε2

)(
〈At, θ̂ + θ?〉2 + 4ε+ ε2

)
log

(
1

δ

)

≤

√√√√8

n∑
t=1

(
〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 + 12ε+ 13ε2 + 6ε3 + ε4

)
log

(
1

δ

)

≤

√√√√8

n∑
t=1

(
〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 + 32ε

)
log

(
1

δ

)

≤

√√√√(1 + 8

n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2
)

log

(
1

δ

)
,

where in the final inequality we chose ε = 1/(32n). Solving for the left-hand side and naive
simplification shows that

n∑
t=1

〈At, θ̂ − θ?〉2 ≤ 9 log

(
1

δ

)
.

To summarise we have shown that with probability at least 1− δ,
n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 ≤ 9 log

(
|C|
δ

)
= 9 log

(
Nε(Θ)

δ

)
.

Standard results show that when Θ ⊂ Bd1 has dimension k, then logNε(Θ) ≤ m log(3/ε). From this
one obtains the following corollary:
Corollary 10. Under the same conditions as Theorem 9 and when Θ ⊂ Bd1 and
dim(span(A1, . . . , An)) = k:

(a) P

(
n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2 ≥ 9 (log(1/δ) + k log(98n))

)
≤ δ.

(b) E

[
n∑
t=1

〈At, θ̂ − θ?〉2〈At, θ̂ + θ?〉2
]
≤ 9 (1 + k log(98n)).

13


	Introduction
	Related work
	Information-theoretic heuristics and information-directed sampling
	Algorithm for bandit phase retrieval
	Finding a constant-factor optimal action
	Proof of thm:main and thm:simple-upper
	Proof of thm:simple-lower
	Discussion
	Technical lemma
	Ordinary least squares

