
A Additional proof details

Below we introduce Chernoff’s multiplicative bound, that we use in the proof of theorem theo-
rem 4.3

Theorem A.1 (Chernoff multiplicative bound, Theorem D.4. in [26]). Let X1, ..., Xn be indepen-
dent random variables drawn according to some distribution D with mean µ and support in [0,M ].
Then for any γ ∈ [0, M

µ − 1] the following inequalities hold:
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Theorem (theorem 4.3). Let P and Q be two distributions. Let h : Ω ⊆ Y → R be a function
such that supx∈Ω h(x) < C, x = (x1, ..., xn) and y = (y1, ..., yn) be n realizations of P and

Q, respectively, µ1 = EP
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Proof. From Chernoff’s multiplicative bound ( theorem A.1, eq. (8)) we know that for γ1 ∈ [0, M1
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−

1], with probability less than e
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This implies that
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Note that by setting n ≥ 3e(α−1)C log(2/β)
µ1γ2

1
the above bound holds with probability at most β/2. A

similar analysis (using eq. (9)) shows that for n ≥ 2eαC log(2/β)
µ2γ2

2
with probability at most β/2 the

following bound holds:
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Finally, summing eq. (11) and eq. (12), and using the union bound, with probability 1− β we have
that
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The proof follows by letting γ = min(γ1, γ2).
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B Experiment details

B.1 Approximate DP tester [16]

We include the approximate DP tester in

Algorithm 2 ADPTESTER [16]

1: Input: Universe size m, ǫ, δ, η > 0 approximate DP privacy parameters and approximation
error respectively.

2: λ = max
{ 4m(1+e2ǫ)

η2 , 12(1+e2ǫ)
η2

}

3: Sample r ∼ Poisson(λ)
4: Xi ∼ M(D), Yi ∼ M(D′) for i ∈ [r]
5: for j = 1 to m do
6: xj = Number of j’s in {Xi}ri=1
7: yj = Number of j’s in {Yi}ri=1

8: zi =
1
r (xi − eǫyi)

9: end for
10: z =

∑r
i=1 max{0, zi}

11: if z < δ + η then
12: Return Passed

13: else
14: Return False

15: end if

B.2 Further comparison with DP-Sniper

Below we include a more complete comparison against DPSNIPER on SVT mechanisms with
add/remove and ℓ∞ neighboring relations and with different sample complexities. DPSNIPER only
has an adavntage over RENYITESTER when using the ℓ∞ relation and using at least 10 million
samples. For the more common add/remove definition RENYITESTER has the same performance as
DPSNIPER .

Table 3: Comparison between DP-Sniper [5] and RENYITESTER with different sample complexities
using add/remove neighboring relation.

mechanism Renyi Tester DP-Sniper Renyi Tester DP-Sniper

400K samples 10M samples

SVT1 passed passed passed passed

SVT2 passed passed passed passed

SVT3 passed passed passed failed

SVT4 passed passed passed passed

SVT5 failed failed failed failed

SVT6 passed failed passed failed

B.3 RENYITESTER implementation details

Function class. For all auditing mechanisms we used as the underlying function class Φ the
family of fully connected neural network with two dense layers, each with 100 units. To ensure
h ∈ Φ are bounded but contain the real value of the divergence (ǫ for which we test) we add scaled
hyperbolic tangent activations scaled to 16ǫ.

Privacy parameters. Below we show results with different selections of hyperparameters ǫ and
α used for auditing mechanisms. The range of ǫ and α was selected based on sample complexity
sizes that allowed us to run the tests in an efficient manner. Besides NONDPMEAN2, we notice that
results tend to be consistent across the selections of these parameters.

B.4 Exploring the space of datasets

Average number of trials to detect privacy violations. In ?? we provide details on the number
of datasets our algorithm needs to test before finding a dataset where the privacy guarantee is broken.
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