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Abstract

Graph neural networks (GNNs) have achieved great success in representing data1

with dependencies by recursively propagating and aggregating messages along2

the edges. However, edges in real-world graphs often have varying degrees of3

difficulty, and some edges may even be noisy to the downstream tasks. Therefore,4

existing GNNs may lead to suboptimal learned representations because they usually5

treat every edge in the graph equally. On the other hand, curriculum learning6

(CL), which mimics the human learning principle of learning data samples in a7

meaningful order, has been shown to be effective in improving the generalization8

ability and robustness of representation learners by gradually proceeding from easy9

to more difficult samples during training. Unfortunately, existing CL strategies10

are designed for independent data samples and cannot be trivially generalized to11

handle data dependencies. To address these issues, we propose a novel CL method12

to gradually incorporates more edges into training according to their difficulty from13

easy to hard, where the degree of difficulty is measured by how well the edges14

are expected given the model training status. We demonstrate the strength of our15

proposed method in improving the generalization ability and robustness of learned16

representations through extensive experiments on nine synthetic datasets and nine17

real-world datasets.18

1 Introduction19

Inspired by cognitive science studies [7, 28] that humans can benefit from the sequence of learning20

basic (easy) concepts first and advanced (hard) concepts later, curriculum learning (CL) [2] suggests21

training a machine learning model with easy data samples first and then gradually introducing more22

hard samples into the model according to a designed pace, where the difficulty of samples can usually23

be measured by their training loss [22]. Many previous studies have shown that this easy-to-hard24

learning strategy can effectively improve the generalization ability of the model [2, 17, 13, 10, 30, 37],25

and some studies [17, 13, 10] have shown that CL strategies can also increase the robustness of the26

learned model against noisy training samples. An intuitive explanation is that in CL settings noisy27

data samples correspond to harder samples and CL learner spends less time with the harder (noisy)28

samples to achieve better generalization performance and robustness.29

Although CL strategies have achieved great success in many fields such as computer vision and30

natural language processing, existing methods are designed for independent data (such as images)31

while designing effective CL methods for data with dependencies has been largely underexplored.32

For example, in a citation network, two researchers with highly related research topics (e.g. machine33

learning and data mining) are more likely to collaborate with each other, while the reason behind34

a collaboration of two researchers with less related research topics (e.g. computer architecture and35

social science) might be more difficult to understand. Prediction on one sample impacts that of36

another, forming a graph structure that encompasses all samples connected by their dependencies.37
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There are many machine learning techniques for such graph-structured data, ranging from traditional38

models like conditional random field [31], graph kernels [32], to modern deep models like GNNs [40].39

However, traditional CL strategies are insufficient for them, which require not only considering the40

difficulty in individual samples but also the difficulty of their dependencies to determine how to41

gradually composite correlated samples for learning.42

As previous CL strategies indicated that an easy-to-hard learning sequence on data samples can43

improve the generalization and robustness performance, an intuitive question is whether a similar44

strategy on data dependencies that iteratively involves easy-to-hard edges in learning can also benefit.45

Unfortunately, there exists no trivial way to directly generalize existing CL strategies on independent46

data to handle data dependencies due to several unique challenges: (1) Difficulty in quantifying47

edge selection criteria. Existing CL studies on independent data often use supervised computable48

metrics (e.g. training loss) to quantify sample difficulty, but how to quantify the difficulties of49

understanding the dependencies between data samples which has no supervision is challenging.50

(2) Difficulty in designing an appropriate curriculum to gradually involve edges. Existing CL51

methods usually design a fixed pacing function to include a certain ratio of samples during training.52

Similar to the human learning process, the model should ideally retain a certain degree of freedom to53

adjust the pacing of including edges according to its own learning status. (3) Difficulty in ensuring54

convergence and a numerical steady process for CL in graphs. Discrete changes in the number of55

edges can cause drift in the optimal model parameters between training iterations. How to guarantee56

a numerically stable learning process for CL on edges is challenging.57

In order to address the aforementioned challenges, in this paper, we propose a novel CL algorithm58

named Relational Curriculum Learning (RCL) to improve the generalization ability and robustness59

of representation learners on data with dependencies. To address the first challenge, we propose an60

approach to select the edges by quantifying their corresponding difficulties in a self-supervised learn-61

ing manner. Specifically, for each training iteration, we choose K easiest edges whose corresponding62

relations are most well-expected by the current model. Second, to design an appropriate learning63

pace for gradually involving more edges in training, we present the learning process as a concise64

optimization model, which automatically lets the model gradually increase the number K to involve65

more edges in training according to its own status. Third, to ensure convergence of optimizing the66

model, we propose a proximal optimization algorithm with a theoretical convergence guarantee and67

an edge reweighting scheme to smooth the graph structure transition. Finally, we demonstrate the68

superior performance of RCL compared to state-of-the-art comparison methods through extensive69

experiments on both synthetic and real-world datasets.70

2 Related work71

Curriculum learning (CL). [2] first proposed the idea of CL in the context of machine learning,72

aiming to improve model performance by gradually including easy to hard samples in training the73

model. Self-paced learning [22] measures the difficulty of samples by their training loss, which74

addressed the issue in previous works that difficulties of samples are generated by prior heuristic75

rules. Therefore, the model can adjust the curriculum of samples according to its own training76

status. Following works [16, 15, 44] further proposed many supervised measurement metrics for77

determining curriculums, for example, the diversity of samples [15] or the consistency of model78

predictions [44]. Meanwhile, many empirical and theoretical studies were proposed to explain why79

CL could lead to generalization improvement from different perspectives. For example, studies such80

as MentorNet [17] and Co-teaching [13] empirically found that utilizing CL strategy can achieve81

better generalization performance when the given training data are noisy. [10] provided theoretical82

explanations on the denoising mechanism that CL learners waste less time with the noisy samples as83

they are considered harder samples. Some studies [2, 30, 37, 11, 21] also realized that CL can help84

accelerate the optimization process of non-convex objectives and improve the speed of convergence85

in the early stages of training.86

Despite great success, most of the existing designed CL strategies are for independent data such as87

images, and there is little work on generalizing CL strategies to handle samples with dependencies.88

Few existing attempts on graph-structured data [23], such as [35, 5, 36, 25], simply treat nodes as89

independent samples and then apply CL strategies on independent data, which ignore the fundamental90

and unique dependency information that carried by the structure in data, thus can not well handle the91

correlation between data samples. Furthermore, these models are mostly based on heuristic-based92

sample selection strategies [5, 36, 25], which largely limit the generalizability of these methods.93

2



Incremental Edge Selection (IES)

1 𝑡𝑡 𝑇𝑇… …Training process0

IES …IES …IES

GNN 

Latent embedding

�𝒚𝒚 𝒚𝒚

0.1
0.1

0.1
0.1 0.1

0.8

0.1

0.9 0.8

0.7 0.8

0.30.3

Residual graph Refined structure
(𝑎𝑎)

(𝑏𝑏)

Top 𝐾𝐾
expected

Decoder

Figure 1: The overall framework of RCL. (a) The Incremental Edge Selection module first extracts
the latent node embedding by the GNN model given the current training structure, then jointly learn
the node prediction label y and reconstructs the input structure by a decoder. A small residual error
on an edge indicates the corresponding dependency is well expected and thus can be added to the
refined structure for the next iteration. (b) The iterative learning process of RCL. The model starts
with an empty structure and gradually includes more edges until the training structure converges to
the input structure.

Graph structure learning. Another stream of existing studies that are related to our work is94

graph structure learning. Recent studies have shown that GNN models are vulnerable to adversarial95

attacks on graph structure [6, 39]. In order to address this issue, studies in graph structure learning96

usually aim to jointly learn an optimized graph structure and corresponding graph representations.97

Existing works [8, 4, 18, 43, 26] typically consider the hypothesis that the intrinsic graph structure98

should be sparse or low rank from the original input graph by pruning “irrelevant” edges. Thus, they99

typically use pre-deterministic methods [6, 45, 8] to preprocess graph structure such as singular value100

decomposition (SVD), or dynamically remove “redundant” edges according to the downstream task101

performance on the current sparsified structure [4, 18, 26]. However, modifying the graph topology102

will inevitably lose potential useful information lying in the removed edges. More importantly, the103

modified graph structure is usually optimized for maximizing the performance on the training set,104

which can easily lead to overfitting issues.105

3 Preliminaries106

Graph Neural Networks Graph neural networks (GNNs) are a class of methods that have shown107

promising progress in representing structured data in which data samples are correlated with each108

other. Typically, the data samples are treated as nodes while their dependencies are treated as edges109

in the constructed graph. Formally, we denote a graph as G = (V, E), where V = {v1, v2, . . . , vN}110

is a set of nodes that N = |V| denotes the number of nodes in the graph and E ⊆ V × V is the set111

of edges. We also let X ∈ RN×b denote the node attribute matrix and A ∈ RN×N represents the112

adjacency matrix. Specifically, Aij = 1 denotes there is an edge connecting nodes vi and vj ∈ V ,113

otherwise Aij = 0. A GNN model f maps node feature matrix X associated with the adjacency114

matrix A to the model predictions ŷ = f(X,A), and get the loss LGNN = L(ŷ,y), where L is the115

objective function and y is the ground-truth label of nodes. The loss on one node vi is denoted as116

li = L(ŷi, yi).117

Curriculum Learning In order to leverage the information carried by the various difficulties of118

data samples into the training process, Curriculum Learning (CL) [2, 22], which is inspired by the119

cognitive process of human learning principles that learning concepts in a meaningful order [7], is a120

popular training strategy that can improve the generalization ability and robustness of representation121

learners. Specifically, instead of randomly presenting all training samples to the model as in traditional122

machine learning algorithms, CL learners start with easy samples and gradually include harder ones123

during the training process, where the difficulty of samples can be measured by a predetermined124

policy or a supervised computable metric (e.g. training loss).125

4 Methodology126

As previous CL methods have shown that an easy-to-hard learning sequence of independent data127

samples can improve the generalization ability and robustness of the representation learner, the goal128
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of this paper is to develop an effective CL method on data with dependencies, which is extremely129

difficult due to several unique challenges: (1) Difficulty in designing a feasible principle to select130

edges by properly quantifying their difficulties. (2) Difficulty in designing an appropriate pace of131

curriculum to gradually involve more edges in training based on model status. (3) Difficulty in132

ensuring convergence and a numerical steady process for optimizing the CL model.133

In order to address the above challenges, we propose a novel CL method named Relational Curriculum134

Learning (RCL). The sequence, which gradually includes edges from easy to hard, is called curricu-135

lum and learned in different grown-up stages of training. In order to address the first challenge, we136

propose a self-supervised module Incremental Edge Selection (IES), which is shown in Figure 1(a), to137

select theK easiest edges at each training iteration that are mostly expected by the current model. The138

details are elaborated in Section 4.1. To address the second challenge, we present a joint optimization139

framework to automatically increase the number of selected edges K given its own training status.140

The framework is elaborated in Figure 1(b) and details can be found in Section 4.2. Finally, to ensure141

convergence of optimization and steady the numerical process, we propose a proximal optimization142

algorithm with theoretical convergence guarantee in Section 4.2 Algorithm 1 and an edge reweighting143

scheme to smooth the discrete edge incrementing process in Section 4.3.144

4.1 Incremental edge selection by quantifying difficulties of sample dependencies145

Here we propose a novel way to select edges by first quantifying their difficulty levels. Existing works146

on independent data typically use supervised metrics such as training loss of samples to quantify their147

difficulty level, but there exists no supervised metrics on edges. To address this issue, we propose a148

self-supervised module Incremental Edge Selection (IES). We first quantify the difficulty of edges by149

measuring how well the edges are expected from the currently learned embeddings of their connected150

nodes. Then the most well-expected edges are selected as the easiest edges for the next iteration of151

training. As shown in Figure 1(a), given the currently selected edges at iteration t, we first feed them152

to the GNN model to extract the latent node embeddings. Then we restore the latent node embeddings153

to the original graph structure through a decoder, which is called the reconstruction of the original154

graph structure. The residual graph R, which is defined as the degree of mismatch between the155

original adjacency matrix A and the reconstructed adjacency matrix Ã(t), can be considered a strong156

indicator for describing how well the edges are expected by the current model. Specifically, a smaller157

residual error indicates a higher probability of being a well-expected edge.158

With the developed self-supervised method to measure the difficulties of edges, here we formulate the159

key learning paradigm of selecting the top K easiest edges. To obtain the training adjacency matrix160

A(t) that will be fed into the GNN model f (t), we introduce a learnable binary mask matrix S with161

each element Sij ∈ {0, 1}. Thus, the training adjacency matrix at iteration t can be represented as162

A(t) = S(t) ⊙A. To filter out the edges with K smallest residual error, we penalize the summarized163

residual errors over the selected edges, which can be represented as
∑

i,j SijRij . Therefore, the164

learning objective can be presented as follows:165

min
w
LGNN + β

∑

i,j

SijRij ,

s.t. ∥S∥1 ≥ K,

(1)

166

where the first term LGNN = L(f(X,A(t);w),y) is the node-level predictive loss, e.g. cross-entropy167

loss for node classification task. The second term
∑

i,j SijRij aims at penalizing the residual errors168

over the edges selected by the mask matrix S. β is a hyperparameter to tune the balance between169

terms. The constraint is to guarantee only the most K well-expected edges are selected.170

More concretely, the value of a residual edge Ã
(t)
ij ∈ [0, 1] can be computed by a non-parametric171

kernel function κ(z(t)i , z
(t)
j ), e.g. the inner product kernel. Then the residual error Rij between172

the input structure and the reconstructed structure can be defined as
∥∥∥Ã(t)

ij −Aij

∥∥∥, where ∥·∥ is173

commonly chosen to be the squared ℓ2-norm.174

4.2 Automatically control the pace of increasing edges175

In order to dynamically include more edges into training, an intuitive way is to iteratively increase176

the value of K in Equation 1 to allow more edges to be selected. However, it is difficult to determine177

an appropriate value of K respect to the training status of the model. Besides, directly solving178
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Relational Curriculum Learning for Graph Neural Network

Algorithm 1 Proximal Alternating Minimization Algorithm for Optimizing Equation 2
Input: Node features X, adjacency matrix A, a stepsize µ and hyperparameter γ
Output: The learnable parameter w of GNN model f

1: Initialize w(0), S(0), λ
2: while Not converged do
3: w(t) = argminw L(f(X,A

(t−1);w),y) + β
∑

i,j Sij

∥∥∥Ã(t−1)
ij −Aij

∥∥∥+ γ
2

∥∥w −w(t−1)
∥∥

4: Given w(t), extract latent nodes embedding Z(t) from GNN model f
5: Calculate reconstructed structure Ã

(t)
ij = κ(z

(t)
i , z

(t)
j ) for all pairs of i, j

6: S(t) = argminS β
∑

i,j Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥+ g(S;λ) + γ
2

∥∥S− S(t−1)
∥∥

7: Compute A(t) = S(t) ⊙A
8: if A(t) ̸= A then
9: Increase λ by stepsize µ

10: end if
11: end while

large γ, any bounded sequence (w(t),S(t)) generated by Algorithm 1 with random initialization will almost surely converges
to a second-order stationary point of F .

Proof. We prove this theorem by Theorem 10 and Corollary 3 from (Li et al., 2019).
[Avoidance of Saddle Points] Because the sequence (w(t),S(t)) is bounded, and the second derivatives of L and g are
continuous, then they are bounded. In other words, we have max{

∥∥∇2
wL(f(X,A

(t);w(t)),y)
∥∥ ,

∥∥∇2
Sg(S

(t);λ)
∥∥} ≤ p,

where p > 0 is a constant. Similarly, it is easy to check that the second derivative of the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2
is

bounded, i.e., max{
∥∥∥∥∇2

w

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2

∥∥∥∥ ,
∥∥∥∥∇2

S

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2

∥∥∥∥} ≤ q, where q > 0 is constant and

Ã is a function of w. Therefore, it means that the objective F is bi-smooth, i.e. max{
∥∥∇2

wF
∥∥},

∥∥∇2
SF

∥∥} ≤ p + q. In
other words, F satisfies Assumption 4 from (Li et al., 2019). Moreover, the second derivative of F is continuous. For any
γ > p+ q, any bounded sequence (w(t),S(t)) generated by Algorithm 1 will not converge to a strict saddle of F almost
surely by Theorem 10 from (Li et al., 2019).
[Second Order Convergence] From the above proof of avoidance of saddle points, we know that F satisfies Assumption 4

from (Li et al., 2019). Moreover, because L and g satisfy the KL property, and the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2
satisfies

the KL property, we conclude that F satisfy the KL property as well. From the proof above, we also know that the second
derivative of F is continuous. Because continuous differentiability implies Lipschitz continuity (Wheeden & Zygmund,
1977), it infers that the first derivative of F is Lipschitz continuous. As a result, F satisfies Assumption 1 from (Li et al.,
2019). Because F satisfies Assumptions 1 and 4, then for any γ > p+ q, any bounded sequence (w(t),S(t)) generated by
Algorithm 1 will almost surely converges to a second-order stationary point of F by Corollary 3 from (Li et al., 2019).

While the convergence of Algorithm 1 entails the second-order optimality conditions of f and g, some commonly used
f such as the GNN with sigmoid or tanh activations and some commonly used g such as the squared ℓ2 norm satisfy
the KL property, and Algorithm 1 is guaranteed to avoid a strict saddle point and converges to a second-order stationary point.

Equation 1 is difficult since S is a binary matrix where each element Sij ∈ {0, 1}, optimizing S179

would require solving a discrete constraint program at each iteration. To address this issue, we first180

relax the problem into continuous optimization so that each Sij can be allowed to take any value181

in the interval [0, 1]. Then we treat the constraint as a Lagrange multiplier and solve an equivalent182

problem by substituting the constraint to a regularization term g(S;λ), thus, our overall loss function183

can be rewritten as:184

min
w,S

LGNN + β
∑

i,j

SijRij + g(S;λ), (2)

where g(S;λ) = λ ∥S−A∥ and ∥·∥ is commonly chosen to be the squared ℓ2-norm. Since the185

training adjacency matrix A(t) = S(t)⊙A, as λ→ ∞, more edges in the input structure are included186

until the training adjacency matrix A(t) converges to the input adjacency matrix A. Specifically, the187

regularization term g(S;λ) controls the learning scheme by the age parameter λ, where λ = λ(t)188

grows with the number of iterations. By monotonously increasing the value of λ, the regularization189

term g(S;λ) will push the mask matrix gradually converge to the input adjacency matrix A, resulting190

in more edges automatically involved in the training structure.191

Optimization of learning objective. It is worth noting that optimizing our objective function in192

Equation 2 requires jointly optimizing parameter w of GNN model f and the mask matrix S. In193

order to address this problem, we propose a proximal alternating optimization schema to iteratively194

update w and S in sequence. The full algorithm is presented in Algorithm 1. As we can see, our195

algorithm takes the input of node feature matrix X and original adjacency matrix A, a stepsize µ196

to control the increasing pace of age parameter λ, and a hyperparameter γ to tune the proximal197

terms. After initializing the parameters w and S, it alternates between two updating steps until it198

finally converges: (1) Step 3 first learns the optimal parameter of GNN model f with the current199

training adjacency matrix; (2) Step 4 & 5 extracts the latent node embedding by fixing the GNN200

model parameter and build the reconstructed adjacency matrix by the kernel function; (3) Step 6201

learns the optimal mask matrix S with the reconstructed adjacency matrix and regularization term;202

(4) Step 7 refines the training adjacency matrix with respect to the updated mask matrix; (5) The203

age parameter λ is increased when the training adjacency matrix A(t) is still different from the input204

adjacency matrix A, thus more edges will be included in the next iteration of the training.205

Theorem 4.1. We have the following convergence guarantees for Algorithm 1:206

• Avoidance of Saddle Points. If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are207

continuous, then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm208

1 with random initializations will not converge to a strict saddle point of F almost surely.209

• Second Order Convergence. If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are210

continuous, and L(f(X,A(t);w),y) and g(S;λ) satisfy the Kurdyka-Łojasiewicz (KL) property211

[33], then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm 1 with212

random initialization will almost surely converge to a second-order stationary point of F .213

The detailed proof can be found in Appendix B.214
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4.3 Smooth structure transition by edge reweighting215

Note that in the Algorithm 1, the optimization process requires iteratively updating the parameters216

w of the GNN model f and training adjacency matrix A(t), where A(t) varies discretely between217

iterations. However, GNN models mostly work in a message-passing fashion, which computes218

node representations by recursively aggregating information along edges from neighboring nodes.219

Discretely modifying the number of edges will result in a great drift of the optimal model parameters220

between iterations. Therefore, it can increase the difficulty of finding optimal parameters and even221

hurt the generalization ability of the model in some cases. Besides the numerical problem caused222

by discretely increasing the number of edges, another issue raised by the CL strategy in Section 4.1223

is the trustworthiness of the estimated edge difficulty, which is inferred by the residual error on the224

edges. Although the residual error can reflect how well edges are expected in the ideal case, the225

quality of the learned latent node embeddings may affect the validity of this metric and compromise226

the quality of the designed curriculum by the CL strategy.227

To address both issues, we propose a novel edge reweighting scheme to (1) smooth the transition228

of the training structure between iterations, and (2) reduce the weight of edges that connect nodes229

with low-confidence latent embeddings. Formally, we use a smoothed version of structure Ā(t) to230

substitute A(t) for training the GNN model f in step 3 of Algorithm 1, where the mapping from A(t)231

to Ā(t) can be represented as:232

Ā
(t)
ij = π

(t)
ij A

(t)
ij , (3)

where π(t)
ij is the weight imposed to edge eij at iteration t. π(t)

ij is calculated by considering the233

counted occurrences of edge eij until the iteration t and the confidence of the latent embedding for234

the connected pair of nodes vi and vj :235

π
(t)
ij = ψ(eij)ρ(vi)ρ(vj), (4)

where ψ is a function that reflects the number of edge occurrences and ρ is a function to reflect the236

degree of confidence for the learned latent node embedding. The details of these two functions are237

described as follow.238

Smooth the transition of the training structure between iterations. In order to obtain a smooth239

transition of the training structure between iterations, we take the learned curriculum of selected edges240

into consideration. Formally, we model ψ by a smooth function of the edge selected occurrences241

compared to the model iteration occurrences before the current iteration:242

ψ(eij) = t(eij)/t, (5)

where t is the number of current iterations and t(eij) represents the counting number of selecting243

edge eij . Therefore, we transform the original discretely changing training structure into a smoothly244

changing one by taking the historical edge selection curriculum into consideration.245

Reduce the influence of nodes with low confidence latent embeddings. As introduced in our246

Algorithm 1 line 6, the estimated structure Ã is inferred from the latent embedding Z, which is247

extracted from the trained GNN model f . Such estimated latent embedding may possibly shift from248

the true underlying embedding, which results in the inaccurately reconstructed structure around the249

node. In order to alleviate this issue, we model the function ρ by the training loss on nodes, which250

indicates the confidence of their learned latent embeddings. This idea is similar to previous CL251

strategies on inferring the difficulty of data samples by their supervised training loss. Specifically, a252

larger training loss indicates a low confident latent node embedding. Mathematically, the weights253

ρ(vi) on node vi can be represented as a distribution of their training loss:254

ρ(vi) ∼ e−li (6)

where li is the training loss on node vi. Therefore, a node with a larger training loss will result in a255

smaller value of ρ(vi), which reduces the weight of its connecting edges.256

5 Experiments257

In this section, the experimental settings are introduced first in Section 5.1, then the performance258

of the proposed method on both synthetic and real-world datasets are presented in Section 5.2. We259

further present the robustness test on our CL method against topological structure adversarial attack in260

Section 5.3. Intuitive visualizations of the edge selection curriculum are shown in Section 5.4. In addi-261

tion, we verify the effectiveness of framework components through ablation studies in Appendix A.2262

and measure the parameter sensitivity in Appendix A.2 due to the space limit.263
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Homo ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GCN 50.84±1.03 56.50±0.50 65.17±0.48 77.94±0.54 87.15±0.44 93.27±0.24 97.48±0.25 99.10±0.17 99.93±0.03

GNNSVD 54.96±0.76 58.45±0.56 63.06±0.63 70.23±0.61 80.51±0.41 85.02±0.46 90.31±0.27 94.23±0.22 96.74±0.23
ProGNN 47.87±0.87 54.59±0.55 65.39±0.44 76.96±0.49 87.76±0.51 93.16±0.34 97.60±0.31 99.04±0.19 99.94±0.03

NeuralSparse 51.42±1.35 57.99±0.69 65.10±0.43 75.37±0.34 87.40±0.29 93.54±0.28 97.16±0.15 99.01±0.22 99.83±0.07
PTDNet 48.21±1.98 55.52±2.82 65.82±0.94 79.37±0.45 89.17±0.39 94.19±0.18 98.61±0.12 99.51±0.09 99.81±0.05
CLNodes 50.37±0.73 56.64±0.56 65.04±0.66 77.52±0.48 86.85±0.44 93.10±0.47 97.34±0.25 99.02±0.18 99.88±0.04

RCL 57.57±0.43 62.06±0.28 73.98±0.55 84.54±0.75 92.69±0.09 97.42±0.17 99.62±0.05 99.89±0.02 99.93±0.06
GIN 48.33±1.89 53.62±1.39 64.08±0.99 77.55±1.10 85.31±0.75 90.57±0.36 97.82±0.18 99.59±0.11 99.91±0.02

GNNSVD 43.21±1.60 45.68±1.66 54.90±1.16 68.29±0.79 79.76±0.52 85.63±0.44 93.65±0.39 97.22±0.17 98.94±0.17
ProGNN 45.76±1.40 52.96±1.01 64.12±1.07 76.95±0.87 85.13±0.71 89.96±0.55 96.54±0.48 99.51±0.12 99.78±0.05

NeuralSparse 50.23±2.05 54.12±1.52 62.81±0.75 76.98±1.17 85.14±0.94 92.57±0.44 98.02±0.20 99.61±0.12 99.91±0.05
PTDNet 53.23±2.76 56.12±2.03 65.81±1.38 77.81±1.02 86.14±0.65 93.21±0.74 97.08±0.41 99.51±0.18 99.91±0.03
CLNodes 45.36±1.42 51.10±1.15 62.53±0.88 75.83±1.07 87.76±0.90 94.25±0.44 98.30±0.26 99.60±0.09 99.92±0.03

RCL 57.63±0.66 62.08±1.17 71.02±0.61 80.61±0.69 88.62±0.43 94.88±0.36 98.19±0.19 99.32±0.08 99.89±0.04
GraphSage 62.57±0.55 67.33±0.64 71.06±0.74 80.88±0.54 85.88±0.51 91.42±0.37 95.26±0.33 97.78±0.16 99.52±0.13
GNNSVD 64.42±0.80 65.71±0.39 67.12±0.58 68.47±0.50 77.70±0.65 82.86±0.50 87.81±0.71 91.61±0.55 95.01±0.50
ProGNN 58.57±2.09 66.75±0.91 72.14±0.64 81.27±0.44 86.89±0.47 92.10±0.39 95.21±0.30 97.51±0.23 99.50±0.11

NeuralSparse 61.70±0.77 66.65±0.66 70.60±0.79 79.65±0.45 84.19±0.91 91.31±0.54 94.86±0.53 97.16±0.23 99.55±0.19
PTDNet 65.72±1.08 69.25±0.92 72.60±0.77 79.65±0.45 86.54±0.56 91.79±0.53 96.10±0.58 97.98±0.13 99.78±0.08
CLNodes 69.41±0.66 70.83±0.58 75.51±0.36 82.65±0.43 87.08±0.56 91.58±0.41 95.91±0.38 98.33±0.26 99.57±0.14

RCL 68.03±0.37 71.39±0.51 76.99±0.99 83.76±0.55 88.24±0.30 93.34±0.56 97.66±0.52 98.86±0.28 99.64±0.08

Table 1: Node classification accuracy on synthetic datasets (%). The best-performing method on
each backbone GNN model is highlighted in bold, while the second-best method is underlined. In
situations where RCL’s performance is not strictly the best among all methods, we can see that almost
all methods can achieve a near-perfect performance and RCL is still close to the best methods.

5.1 Experimental settings264

Synthetic datasets. To evaluate the effectiveness of our proposed method on datasets with ground-265

truth difficulty labels on edges, we follow previous studies [19, 1] to generate a set of synthetic266

datasets, where the formation probability of an edge is designed to reflect its likelihood to positively267

contribute to the node classification job, which indicates its ground-truth difficulty level. Specifically,268

the nodes in a generated graph are divided into 10 equally sized node classes 1, 2, . . . , 10, and the269

node features are sampled from overlapping multi-Gaussian distributions. Each generated graph is270

associated with a homophily coefficient (homo) which indicates the probability of a node forming271

an edge to another node with the same label. For the rest edges that are formed between nodes with272

different labels, the probability of forming an edge is inversely proportional to the distances between273

their labels. Nodes with close classes are more likely to be connected since the formation probability274

decreases with the distance of the node label, and connections from nodes with close classes can275

increase the likelihood of accurately classifying a node due to the homophily property of the designed276

node classification task. Therefore, an edge with a high formation probability indicates a higher277

chance to positively contribute to the node classification task because it connects a node with a close278

class, and thus can be considered an easy edge. We vary the value of homo to generate nine graphs in279

total. More details and visualization about the synthetic dataset can be found in Appendix A.1.280

Real-world datasets. To further evaluate the performance of our proposed method in real-world281

scenarios, nine benchmark real-world attributed network datasets, including four citation network282

datasets Cora, Citeseer, Pubmed [42] and ogbn-arxiv [14], two coauthor network datasets CS and283

Physics [29], two Amazon co-purchase network datasets Photo and Computers [29], and one protein284

interation network ogbn-proteins [14]. We follow the data splits from [3] on citation networks and285

use a 5-fold cross-validation setting on coauthor and Amazon co-purchase networks. All datasets286

are publicly available from Pytorch-geometric library [9] and Open Graph Benchmark (OGB) [14],287

where basic statistics are reported in Table 2.288

Comparison methods. We incorporate three commonly used GNN models, including GCN [20],289

GraphSAGE [12], and GIN [41], as the baseline model and also the backbone model for RCL. In290

addition to evaluating our proposed method against the baseline GNNs, we further leverage two291

categories of state-of-the-art comparison methods in the experiments: (1) We incorporate four graph292

structure learning methods GNNSVD [8], ProGNN [18], NeuralSparse [43], and PTDNet [26]; (2)293

We further compare with a curriculum learning method named CLNode [36] which gradually select294

nodes in the order of the difficulties defined by a heuristic-based strategy. More details about the295

comparison methods can be found in Appendix A.1.296

Initializing graph structure by a pre-trained model. It is worth noting that the model needs297

an initial training graph structure A(0) in the initial stage of training. An intuitive way is that we298

can initialize the model to work in a purely data-driven scenario that starts only with isolated nodes299

where no edges exist. However, an instructive initial structure can greatly reduce the search cost and300

computational burden. Inspired by many previous CL works [37, 11, 17, 44] that incorporate prior301

knowledge of a pre-trained model into designing curriculum for the current model, we initialize the302
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Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-proteins
# nodes 2,708 3,327 19,717 18,333 34,493 7,650 13,752 169,343 132,534
# edges 10,556 9,104 88,648 163,788 495,924 238,162 491,722 1,166,243 39,561,252

# features 1,433 3,703 500 6,805 8,415 745 767 100 8
GCN 85.74±0.42 78.93±0.32 87.91±0.09 93.03±0.32 96.55±0.15 93.25±0.70 88.09±0.40 71.74±0.29 72.51±0.35

GNNSVD 83.24±1.03 74.80±0.87 88.81±0.38 93.79±0.11 96.11±0.13 89.63±0.73 86.49±0.77 67.44±0.51 66.92±0.64
ProGNN 85.66±0.61 74.78±0.55 87.22±0.33 94.04±0.19 96.75±0.26 92.07±0.67 88.72±0.59 - -

NeuralSparse 85.95±0.98 76.24±0.48 86.83±0.40 92.31±0.47 95.56±0.30 90.57±0.90 88.62±0.83 - -
PTDNet 83.84±0.95 77.54±0.42 87.89±0.08 93.60±0.43 96.56±0.09 88.92±0.87 87.52±0.70 - -
CLNode 85.67±0.33 78.99±0.57 89.50±0.28 93.83±0.24 95.76±0.16 93.39±0.83 89.28±0.38 70.95±0.18 71.40±0.32

RCL 87.15±0.44 79.79±0.55 89.79±0.12 94.66±0.32 97.02±0.23 94.41±0.76 90.23±0.23 74.08±0.33 75.19±0.26
GIN 84.43±0.65 74.87±0.20 85.72±0.40 91.48±0.36 95.62±0.30 93.02±0.91 86.94±1.58 69.26±0.34 74.51±0.32

GNNSVD 82.23±0.65 72.11±0.70 88.31±0.15 91.40±0.87 95.30±0.29 89.49±1.11 82.66±2.26 67.79±0.41 70.65±0.53
ProGNN 85.02±0.41 78.12±0.93 87.82±0.51 - - 92.23±0.67 83.54±1.48 - -

NeuralSparse 84.92±0.58 75.44±0.87 86.11±0.49 89.66±0.82 95.05±0.57 93.28±0.83 87.22±0.54 - -
PTDNet 83.02±1.01 75.00±0.74 88.04±0.29 91.01±0.21 95.57±0.40 90.70±0.76 87.08±0.65 - -
CLNode 83.52±0.77 75.82±0.58 86.92±0.61 91.71±0.41 95.75±0.46 92.78±0.90 85.93±1.53 70.58±0.17 73.97±0.31

RCL 86.64±0.39 77.60±0.18 89.17±0.29 93.92±0.27 96.75±0.17 93.88±0.51 89.76±0.19 72.55±0.15 78.76±0.22
GraphSage 86.22±0.27 77.27±0.23 88.50±0.16 94.22±0.18 96.26±0.34 93.82±0.51 88.62±0.21 71.49±0.27 77.68±0.20
GNNSVD 83.11±0.82 73.19±0.49 88.42±0.38 93.86±0.36 95.96±0.12 89.31±0.53 81.46±1.15 69.82±0.34 71.82±0.39
ProGNN 86.23±0.42 74.45±0.83 88.52±0.45 - - 90.89±0.69 89.34±0.54 - -

NeuralSparse 84.60±0.52 76.32±0.55 89.02±0.39 93.89±0.58 96.67±0.20 90.78±1.06 88.37±0.37 - -
PTDNet 86.03±0.60 76.07±0.58 86.78±0.45 93.78±0.43 95.32±0.31 92.96±0.87 84.89±1.47 - -
CLNode 86.60±0.64 77.23±0.54 88.76±0.57 94.13±0.34 96.87±0.45 93.90±0.42 89.57±0.62 71.54±0.20 78.40±0.41

RCL 86.90±0.39 78.95±0.18 90.14±0.43 95.05±0.23 96.88±0.19 95.06±0.52 90.47±0.38 73.13±0.14 79.89±0.35

Table 2: Node classification results on real-world datasets (%). The best-performing method on each
backbone is highlighted in bold and second-best is underlined. (-) denotes an out-of-memory issue.

training structure A(0) by a pre-trained vanilla GNN model f∗. Specifically, we follow the same303

steps from line 4 to line 7 in the algorithm 1 to obtain the initial training structure A(0) but the latent304

node embedding is extracted from the pre-trained model f∗.305

Implementation Details We use the baseline model (GCN, GIN, GraphSage) as the backbone306

model for both our RCL method and all comparison methods. For a fair comparison, we require all307

models follow the same GNN architecture with two convolution layers. For each split, we run each308

model 10 times to reduce the variance in particular data splits. Test results are according to the best309

validation results. General training hyperparameters (such as learning rate or the number of training310

epochs) are equal for all models.311

5.2 Effectiveness results312

Table 1 presents the node classification results of the synthetic datasets. We report the average313

accuracy and standard deviation for each model against the homo of generated graphs. From the314

table, we observe that our proposed method RCL consistently achieves the best or most competitive315

performance to all the comparison methods over three backbone GNN architectures. Specifically,316

RCL outperforms the second best method on average by 4.17%, 2.60%, and 1.06% on GCN, GIN,317

and GraphSage backbones, respectively. More importantly, the proposed RCL method performs318

significantly better than the second best model when the homo of generated graphs is low (≤ 0.5), on319

average by 6.55% on GCN, 4.17% on GIN, and 2.93% on GraphSage backbones. These demonstrate320

that our proposed RCL method significantly improves the model’s capability of learning an effective321

representation to downstream tasks especially when the edge difficulties vary largely in the data.322

We report the experimental results of the real-world datasets in Table 2. The results demonstrate the323

strength of our proposed method by consistently achieving the best results in all 9 datasets by GCN324

backbone architecture, all 9 datasets by GraphSage backbone architecture, and 8 out of 9 datasets by325

GIN backbone architecture. Specifically, our proposed method improved the performance of baseline326

models on average by 1.86%, 2.83%, and 1.62% over GCN, GIN, and GraphSage, and outperformed327

the second best models model on average by 1.37%, 2.49%, and 1.22% over the three backbone328

models, respectively. The results demonstrate that the proposed RCL method consistently improves329

the performance of GNN models in real-world scenarios.330

Our experimental results are statically sound. In 43 out of 48 tasks our method outperforms the331

second-best performing model with strong statistical significance. Specifically, we have in 30 out of332

43 cases with a significance p < 0.001, in 8 out of 43 cases with a significance p < 0.01, and in 5333

out of 43 cases with a significance p < 0.05. Such statistical significance results can demonstrate334

that our proposed method can consistently perform better than the baseline models in both scenarios.335

5.3 Robustness analysis against adversarial topological structure attck336

To further examine the robustness of the RCL method on extracting powerful representation from337

correlated data samples, we follow previous works [18, 26] to randomly inject fake edges into338

real-world graphs. This adversarial attack can be viewed as adding random noise to the topological339

structure of graphs. Specifically, we randomly connect M pairs of previously unlinked nodes in the340
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Figure 2: Node classification accuracy (%) on Cora and Citeseer under random structure attack.
The attack edge ratio is computed versus the original number of edges, where 100% means that the
number of inserted edges is equal to the number of original edges.
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Figure 3: Visualization of edge selection process during training.

real-world datasets, where the value of M varies from 10% to 100% of the original edges. We then341

train RCL and all the comparison methods on the attacked graph and evaluate the node classification342

performance. The results are shown in Figure 2, we can observe that RCL shows strong robustness to343

adversarial structural attacks by consistently outperforming all compared methods on all datasets.344

Especially, when the proportion of added noisy edges is large (> 50%), the improvement becomes345

more significant. For instance, under the extremely noisy ratio at 100%, RCL outperforms the second346

best model by 4.43% and 2.83% on Cora dataset, and by 6.13%, 3.47% on Citeseer dataset, with347

GCN and GIN backbone models, respectively.348

5.4 Visualization of learned edge selection curriculum349

Besides the effectiveness and robustness of the RCL method on downstream classification results,350

it is also interesting to verify whether the learned edge selection curriculum satisfies the rule from351

easy to hard. Since real-world datasets do not have ground-truth labels of difficulty on edges, we352

conduct visualization experiments on synthetic datasets, where the difficulty of each edge can be353

indicated by its formation probability. Specifically, we classify edges into three balanced categories354

according to their difficulty: easy, medium, and hard. Here, we define all homogenous edges that355

connect nodes with the same class as easy, edges connecting nodes with adjacent classes as medium,356

and the remaining edges connecting nodes with far away classes as hard. We report the proportion of357

edges selected for each category during training in Figure 3. We can observe that RCL can effectively358

select most of the easy edges at the early stage of training, then more easy edges and most medium359

edges are gradually included during training, and most hard edges are left unselected until the end360

stage of training. Such edge selection behavior is highly consistent with the core idea of designing361

a curriculum for edge selection, which verifies that our proposed method can effectively design362

curriculums to select edges according to their difficulty from easy to hard.363

6 Conclusion364

This paper focuses on developing a novel CL method to improve the generalization ability and365

robustness of GNN models on learning representations of data samples with dependencies. The366

proposed method Relational Curriculum Learning (RCL) effectively addresses the unique challenges367

in designing CL strategy for handling dependencies. First, a self-supervised learning module is368

developed to select appropriate edges that are expected by the model. Then an optimization model is369

presented to iteratively increment the edges according to the model training status and a theoretical370

guarantee of the convergence on the optimization algorithm is given. Finally, an edge reweighting371

scheme is proposed to steady the numerical process by smoothing the training structure transition.372

Extensive experiments on synthetic and real-world datasets demonstrate the strength of RCL in373

improving the generalization ability and robustness.374
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A Additional experimental settings and results496

A.1 Additional experimental settings497

Synthetic datasets To evaluate the effectiveness of our proposed method on datasets with ground-498

truth difficulty labels on structure, we first follow previous studies [19, 1] to generate a set of synthetic499

datasets, where the difficulty of edges in generated graphs are indicated by their formation probability.500

Specifically, as shown in Figure 4, each generated graph is with 5,000 nodes, which are divided into501

10 equally sized node classes 1, 2, . . . , 10. The node features are sampled from overlapping multi-502

Gaussian distributions. Each generated graph is associated with a homophily coefficient (homo) which503

indicates the likelihood of a node forming a connection to another node with the same label (same504

color in Figure 4). For example, a generated graph with homo = 0.5 will have on average half of the505

edges formed between nodes with the same label. For the rest edges that are formed between nodes506

with different labels (different colors in Figure 4), the probability of forming an edge is inversely507

proportional to the distances between their labels. Mathematically, the probability of forming an508

edge between node u and node v follows pu→v ∝ e−|cu−cv|, where the distances between labels509

|cu − cv| means shortest distance of two classes on a circle. Therefore, the probability of forming510

an edge in the synthetic graph can reflect how well this edge is expected. Specifically, edges with511

a higher formation probability, e.g. connecting nodes with the same label or close labels, meaning512

that there is a higher chance that this connection will positively contribute to the prediction (less513

chance to be a noisy edge). Conversely, edges with a lower formation probability, e.g., connecting514

nodes with faraway labels, mean that there is a higher chance that this connection will negatively515

contribute to the prediction (higher chance to be a noisy edge). We vary the value of homo from516

0.1, 0.2, . . . , 0.9 to generate nine graphs in total. Similar to previous works [19, 1], we randomly517

partition each synthetic graph into equal-sized train, validation, and test node splits.518

Figure 4: Visualization of synthetic datasets. Each color represents a class of nodes. Node attributes
are sampled from overlapping multi-Gaussian distributions, where the attributes of nodes with close
labels are likely to have short distances. Homogeneous edges represent edges that connect nodes of
the same class (with the same color). The probability of connecting two nodes of different classes
decreases with the distance between the center points of their class distribution. Therefore, the
formation probability of a node denotes the edge difficulty, since edges between nodes with close
classes are more likely to positively contribute to the prediction under the homogeneous assumption.
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Initializing graph structure by a pre-trained model. It is worth noting that the model needs519

an initial training graph structure A(0) in the initial stage of training. An intuitive way is that we520

can initialize the model to work in a purely data-driven scenario that starts only with isolated nodes521

where no edges exist. However, an instructive initial structure can greatly reduce the search cost and522

computational burden. Inspired by many previous CL works [37, 11, 17, 44] that incorporate prior523

knowledge of a pre-trained model into designing curriculum for the current model, we initialize the524

training structure A(0) by a pre-trained vanilla GNN model f∗. Specifically, we follow the same525

steps from line 4 to line 7 in the algorithm 1 to obtain the initial training structure A(0) but the latent526

node embedding is extracted from the pre-trained model f∗.527

Implementation Details We use the baseline model (GCN, GIN, GraphSage) as the backbone528

model for both our RCL method and all comparison methods. For a fair comparison, we require all529

models follow the same GNN architecture with two convolution layers. For each split, we run each530

model 10 times to reduce the variance in particular data splits. Test results are according to the best531

validation results. General training hyperparameters (such as learning rate or the number of training532

epochs) are equal for all models. For the pre-trained model to initialize the training structure, we533

utilize the same model as the backbone model utilized by our method. For example, if we use GCN534

as the backbone model for RCL, the pre-trained model to initialize is also GCN. All experiments are535

conducted on a 64-bit machine with four NVIDIA Quadro RTX 8000 GPUs. The proposed method is536

implemented with Pytorch deep learning framework [27].537

The following describes the details of our comparison models.538

Graph Neural Networks (GNNs). We first introduce three baseline GNN models as follows.539

(i) GCN. Graph Convolutional Networks (GCN) [20] is a commonly used GNN, which introduces a540

first-order approximation architecture of the Chebyshev spectral convolution operator;541

(ii) GIN. Graph Isomorphism Networks (GIN) [41] is a variant of GNN, which has provably powerful542

discriminating power among the class of 1-order GNNs;543

(iii) GraphSage. GraphSage [12] is a GNN method that computes the hidden representation of the544

root node by aggregating the hidden node representations hierarchically from bottom to top.545

Graph structure learning. We then introduce four state-of-the-art methods for jointly learning the546

optimal graph structure and downstream tasks.547

(i) GNNSVD. GNNSVD [8] first apply singular value decomposition (SVD) on the graph adjacency548

matrix to obtain a low-rank graph structure and apply GNN on the obtained low-rank structure;549

(ii) ProGNN. ProGNN [18] is a method to defend against graph adversarial attacks by obtaining a550

sparse and low-rank graph structure from the input structure;551

(iii) NeuralSparse. NeuralSparse [43] is a method to learn robust graph representations by iteratively552

sampling k-neighbor subgraphs for each node and sparsing the graph according to the performance553

on the node classification;554

(iv) PTDNet. PTDNet [26] learns a sparsified graph by pruning task-irrelevant edges, where sparsity555

is controlled by regulating the number of edges.556

Curriculum learning on graph data. We introduce a recent curriculum learning work on node557

classification as follows.558

(i) CLNode. CLNode [36] regards nodes as data samples and gradually incorporates more nodes into559

training according to their difficulty. They apply a heuristic-based strategy to measure the difficulty of560

nodes, where the nodes that connect neighboring nodes with different classes are considered difficult.561

Searching space for hyperparameters.562

Number of epochs trained: {150, 500};563

Learning rate for model: {1e−2, 5e−3, 1e−3};564

Number of GNN layers: {2};565

Dimension of hidden state: {64};566

Age parameter λ : {1, 2, 3, 4, 5} (A larger value indicates faster pacing for adding edges, where 1567

denotes the training structure will converge to the input structure at the final iteration).568
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Synthetic Citeseer Computers ogbn-arxiv ogbn-proteins
Vanilla 7.32s 3.90s 16.88s 55.22s 1438.23s
GNNSVD 11.49s 3.82s 35.96s 135.72s 2632.42s
CLNode 6.29s 3.96s 17.02s 58.53s 1545.53s
ProGNN 220.25s 72.42s 1953.23s (-) (-)
NeuralSparse 310.02s 88.91s 6553.34s (-) (-)
PTDNet 153.43s 48.42s 2942.02s (-) (-)
Ours 4.07s 2.42s 14.62s 71.49s 2239.05s

Table 3: Running time of our method and comparison methods. Here (-) denotes an out-of-memory
error and Vanilla denotes the standard GNN model.

Synthetic1 Synthetic2 Citeseer CS Computers
Full 73.98±0.55 97.42±0.17 79.79±0.55 94.66±0.22 90.23±0.23

Curriculum-linear 70.93±0.54 95.19±0.19 79.04±0.38 94.14±0.26 89.28±0.21
Curriculum-root 70.13±0.72 95.50±0.18 78.27±0.54 94.47±0.34 89.27±0.15
Random-linear 58.76±0.46 89.78±0.11 77.43±0.49 92.76±0.14 88.76±0.18
Random-root 61.04±0.20 91.04±0.09 76.81±0.35 92.92±0.15 88.81±0.28
w/o edge appearance 70.70±0.43 95.77±0.16 77.77±0.65 94.39±0.21 89.56±0.30
w/o node confidence 72.38±0.41 96.86±0.17 78.72±0.72 94.34±0.13 90.03±0.62

w/o pre-trained model 72.56±0.69 93.89±0.14 78.28±0.77 94.50±0.14 89.80±0.55
Table 4: Ablation study. Here “Full” represents the original method without removing any component.
The best-performing method on each dataset is highlighted in bold.

A.2 Additional experiments569

570 Time complexity analysis Here we consider GCN as the backbone. First, the time complexity of571

an L-layer GCN is O(L|E|b+ L|V|b2) , where b is the number of node attributes. Second, the time572

complexity of measuring the difficulty levels of edges by reconstruction is O(|E|d) where d is the573

number of latent embedding dimensions. Third, the time complexity of selecting the edges to add is574

O(|E|) . Therefore, the total time complexity of our algorithm is O(|E|(Lb+ d) + L|V|b2) .575

In addition, we compare the total running time of our method and all comparison methods in the576

Table 3. We can observe that the running time of our proposed method is comparable to that of577

standard GNN models in all datasets. Notably, our method is even faster than standard GNN models578

in some datasets. One possible reason is that at the beginning of training, the graphs in our model579

have much fewer edges than those in standard GNN models. Therefore, the computational cost of the580

GNN model is also reduced.581

Ablation study To investigate the effectiveness of our proposed model with some simpler heuristics,582

we deploy a series of synthetic analysis. We first train the model with node classification task purely583

and select the top K expected edges as suggested by the reviewer. Specifically, we follow previous584

works [34, 36] using two classical selection pacing functions as follows:585

Linear : Klinear(t) =
t

T
|E|;

Root : Kroot(t) =

√
t

T
|E|,

where t is the number of current iterations and T is the number of total iterations, and |E| is586

the number of total edges. We name these two variants Curriculum-linear and Curriculum-root,587

respectively. In addition, we also remove the edge difficulty measurement module and use random588

selection instead. Specifically, we gradually incorporate more edges into training in random order589

to verify the effectiveness of the learned curriculum. We name two variants as Random-linear and590

Random-root with the above two mentioned pacing functions, respectively.591

In order to further investigate the impact of the proposed components of RCL. We also first consider592

variants of removing the edge smoothing components mentioned in Section 4.3. Specifically, we593

consider two variants w/o EC and w/o NC, which remove the smoothing function of the edge594

occurrence ratio and the component to reflect the degree of confidence for the latent node embedding595

in RCL, respectively. In addition to examining the effectiveness of edge smoothing components, we596

further consider a variant w/o pre-trained model that avoids using a pre-trained model to initialize597

15



model, which is mentioned in Appendix A.1, to initialize the training structure by a pre-trained model598

and instead starts with inferred structure from isolated nodes with no connections.599

We present the results of two synthetic datasets (homophily coefficient= 0.3, 0.6) and three real-world600

datasets in Table 4. We summarize our findings from the above table as below: (i) Our full model601

consistently outperforms the two variants Curriculum-linear and Curriculum-root by an average of602

1.59% on all datasets, suggesting that our pacing module can benefit model training. It is worth603

noting that these two variants also outperform the baseline vanilla GNN model Vanilla by an average604

of 1.92%, which supports the assumption that even a simple curriculum learning strategy can still605

improve model performance. (ii) We observe that the performance of the two variants Random-linear606

and Random-root on all datasets drops by 3.86% on average compared to the variants Curriculum-607

linear and Curriculum-root. Such behavior demonstrates the effectiveness of our proposed edge608

difficulty quantification module by showing that randomly involving edges into training cannot benefit609

model performance. (iii) We can observe a significant performance drop consistently for all variants610

that remove the structural smoothing techniques and initialization components. The results validate611

that all structural smoothing and initialization components can benefit the performance of RCL on612

the downstream tasks.613

Parameter sensitivity analysis Recall that RCL learns a curriculum to gradually add edges in614

a given input graph structure to the training process until all edges are included. An interesting615

question is how the speed of adding edges will affect the performance of the model. Here we conduct616

experiments to explore the impact of age parameter λ which controls the speed of adding edges to617

the model performance. Here a larger value of λ means that the training structure will converge to618

the input structure earlier. For example, λ = 1 means that the training structure will probably not619

converge to the input structure until the last iteration, and λ = 5 means that the training structure will620

converge to the input structure around half of the iterations are complete, and then the model will621

be trained with the full input structure for the remaining iterations. We present the results on two622

synthetic datasets (homophily coefficient= 0.3, 0.6) and two real-world datasets in Figure 5. As can623

be seen from the figure, the classification results are steady that the average standard deviation is only624

0.41%. It is also worth noting that the peak values for all datasets consistently appear around λ = 3,625

which indicates that the best performance is when the training structure converges to the full input626

structure around two-thirds of the iterations are completed.
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Figure 5: Parameter sensitivity analysis on four datasets. Here a larger value of λ means the training
structure will converge to the original structure at an earlier training stage.

627

B Mathematical proof628

Theorem 1. We have the following convergence guarantees for Algorithm 1:629

• Avoidance of Saddle Points If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are630

continuous, then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm631

1 with random initializations will not converge to a strict saddle point of F almost surely.632

• Second Order Convergence If the second derivatives of L(f(X,A(t);w),y) and g(S;λ) are633

continuous, and L(f(X,A(t);w),y) and g(S;λ) satisfy the Kurdyka-Łojasiewicz (KL) property634

[33], then for sufficiently large γ, any bounded sequence (w(t),S(t)) generated by Algorithm 1 with635

random initialization will almost surely converges to a second-order stationary point of F .636

Proof. We prove this theorem by Theorem 10 and Corollary 3 from [24].637

[Avoidance of Saddle Points] Because the sequence (w(t),S(t)) is bounded, and the second638

derivatives of L and g are continuous, then they are bounded. In other words, we have639
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max{
∥∥∇2

wL(f(X,A
(t);w(t)),y)

∥∥ ,
∥∥∇2

Sg(S
(t);λ)

∥∥} ≤ p, where p > 0 is a constant. Simi-640

larly, it is easy to check that the second derivative of the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2
is bounded,641

i.e., max{
∥∥∥∥∇2

w

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2

∥∥∥∥ ,
∥∥∥∥∇2

S

∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2

∥∥∥∥} ≤ q, where q > 0 is642

constant and Ã is a function of w. Therefore, it means that the objective F is bi-smooth, i.e.643

max{
∥∥∇2

wF
∥∥},

∥∥∇2
SF

∥∥} ≤ p+ q. In other words, F satisfies Assumption 4 from [24]. Moreover,644

the second derivative of F is continuous. For any γ > p + q, any bounded sequence (w(t),S(t))645

generated by Algorithm 1 will not converge to a strict saddle of F almost surely by Theorem 10 from646

[24].647

[Second Order Convergence] From the above proof of avoidance of saddle points, we know that F648

satisfies Assumption 4 from [24]. Moreover, because L and g satisfy the KL property, and the term649
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥
2

2
satisfies the KL property, we conclude that F satisfy the KL property as650

well. From the proof above, we also know that the second derivative of F is continuous. Because651

continuous differentiability implies Lipschitz continuity [38], it infers that the first derivative of652

F is Lipschitz continuous. As a result, F satisfies Assumption 1 from [24]. Because F satisfies653

Assumptions 1 and 4, then for any γ > p + q, any bounded sequence (w(t),S(t)) generated by654

Algorithm 1 will almost surely converges to a second-order stationary point of F by Corollary 3 from655

[24].656

While the convergence of Algorithm 1 entails the second-order optimality conditions of f and g,657

some commonly used f such as the GNN with sigmoid or tanh activations and some commonly used658

g such as the squared ℓ2 norm satisfy the KL property, and Algorithm 1 is guaranteed to avoid a strict659

saddle point and converges to a second-order stationary point.660

661
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