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A CODE REPOSITORY AND LICENSING

The code developed for this research work is available at https://anonymous.4open.
science/r/HyperedgeClassification-2E63 and freely distributed under the Apache
2.0 license.4 code for the baselines used in the experimental analysis is available at https://
github.com/Graph-COM/ED-HNN, https://github.com/yxzwang/PhenomNN and
https://github.com/WBZhao98/DHMConv under the MIT license.5

B PROPERTIES OF OUR PROPOSED LAPLACIAN

This section contains the proofs of the theorems and corollaries reported in the main paper.

Theorem 1. If H⃗ is undirected (i.e., H⃗ = H), L⃗N = LN and Q⃗N = QN holds.

Proof. Since H = (V,E) is an undirected hypergraph, B⃗ is binary and only takes values 0 and 1
(rather than being ternary and taking values 0, 1,−i), defining an undirected line graph L(H). In
particular, for each edge e ∈ E we have B⃗ue = 1 if either u ∈ H(e) or u ∈ T (e) and B⃗ue = 0

otherwise. Consequently, the directed incident matrix B⃗ is identical to the non-directed incidence
matrix B, i.e., B⃗ = B. Thus, by construction, L⃗N = LN and Q⃗N = QN .

Theorem 2. Letting 1 be the indicator function, the Euclidean norm induced by L⃗N of a complex-valued
signal x = a+ ib ∈ Cm with a component per hyperedge in E reads:
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Proof. By definition, we have

x∗L⃗Nx = x∗Ix− x∗Q⃗Nx = x∗Ix− x∗D⃗
− 1

2
e W

1
2 B⃗∗D⃗−1

v B⃗W
1
2 D⃗

− 1
2

e .

Scalarly, the expression reads
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where
P

i,j∈E indicates the sum over all ordered pairs i, j in E, including those where i = j. W.l.o.g.,
we can swap the order of the sums in the second term, obtaining:
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Due to QN being Hermitian, QN +Q∗
N = 2QN holds. Thus, substituting 1

2 (QN +Q∗
N ) for QN , we

can rewrite the second term as
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Next, we show that the following holds for the first term:
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4https://www.apache.org/licenses/LICENSE-2.0
5https://choosealicense.com/licenses/mit/
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We show this by showing how to turn the right-hand side into the left-hand side. First, we pre-pone
the sum over i in the right-hand side, obtaining:
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Then, we bring 1
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i xi outside of the inner summation, which leads to the following expression
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Following the calculations reported as underbraces, we deduce that the coefficient that multiplies
x∗
i xj is equal to 1, concluding this part of the proof.

As we did for the second term, we now double the summation in the first term and compensate for it
with a factor of 1

2 , obtaining:

1

2

X

u∈V

1

d(u)

X

i,j∈E:u∈i∧u∈j

�
w(j)

x∗
i xi

δ(i)
+ w(i)

x∗
jxj

δ(j)

�
.

Looking back at both terms, we have at the expression
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After rewriting the second summation in the second term as
P

i,j∈E:u∈i∧∈j (this is w.l.o.g. due to
the summand being 0 if either u /∈ i or u /∈ i), we compactly rewrite the whole expression as
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Now, we proceed by analyzing the three possible cases for the summand.

Case 1.a: u ∈ H(i) ∩ H(j) ⇔ B⃗(u, i) = 1, B⃗(u, j) = 1. We have B⃗(u, i)∗B⃗(u, j) =

B⃗(u, j)∗B⃗(u, i) = 1.

Case 1.b: u ∈ T (i) ∩ T (j) ⇔ B⃗(u, i) = −i, B⃗(u, j) = −i. We have B⃗(u, i)∗B⃗(u, j) =

B⃗(u, j)∗B⃗(u, i) = (−i)∗(−i) = (−i)(i) = 1.

In both cases, we have:
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Letting xi = ai + ibi and xj = aj + ibj , this expression boils down to
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Case 2.a: u ∈ H(i) ∩ T (j) ⇔ B̄(u, i) = 1, B̄(u, j) = −i. We have B̄(u, i)∗B̄(u, j) = (1)∗(−i) =
−i and B̄(u, j)∗B̄(u, i) = (−i)∗(1) = i. In this case, we have:
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Letting xi = ai + ibi and xj = aj + ibj , this expression reads
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Case 2.b: u ∈ T (i)∩H(j)⇔ B̄(u, i) = −i, B̄(u, j) = 1. We have B̄(u, i)∗B̄(u, j) = (−i)∗(1) = i
and B̄(u, j)∗B̄(u, i) = (1)∗(−i) = −i. In this case, we have:
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Letting xi = ai + ibi and xj = aj + ibj , this latter expression reads
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The final equation reported in the statement of the theorem is obtained by combining the four cases
we just analyzed.

Corollary 1. L⃗N is positive semidefinite.

Proof. Since L⃗N is Hermitian, it can be diagonalized as UΛU∗ for some U ∈ Cn×n and Λ ∈ Rn×n,
where Λ is diagonal and real. We have x∗L⃗Nx = x∗UΛU∗x = y∗Λy with y = U∗x. Since
Λ is diagonal, we have y∗Λy =

P
u∈V λuy

2
u. Thanks to Theorem 2, the quadratic form x∗L⃗Nx

associated with L⃗N is a sum of squares of real values and, hence, nonnegative. Combined with
x∗L⃗Nx =

P
u∈L(V ) λuy

2
u, we deduce λu ≥ 0 for all u ∈ L(V ), where L(V ) is the vertex set of

DLG(H⃗).

Corollary 2. λmax(L⃗N ) ≤ 1 and λmax(Q⃗N ) ≤ 1.

Proof. λmax(L⃗N ) ≤ 1 holds if and only if L⃗N − I ⪯ 0. Since L⃗N = I − Q⃗N holds by definition,
we need to prove −Q⃗N ⪯ 0. This is the case due to Theorem 3.

Similarly, λmax(Q⃗N ) ≤ 1 holds if and only if Q⃗N − I ⪯ 0. Since Q⃗N = I − L⃗N holds by definition,
we need to prove −L⃗N ⪯ 0. This is the case due to Theorem 1.

Directed Line Graph Laplacian and The Other Laplacians Examining the behavior of the
Directed Line Graph Laplacian through Equation 10, we observe that it differs from other Laplacians
designed to handle both directed and undirected edges in graphs, such as the Magnetic Lapla-
cian (Lieb &Loss, 1993) and the Sign Magnetic Laplacian (Fiorini et al., 2023). Indeed, the
Directed Line Graph Laplacian exhibits a unique characteristic: both its real and imaginary compon-
ents can be simultaneously non-zero. This is different from the case of the Sign Magnetic Laplacian,
which can only have one of the two components different from zero at any given time, and also
from the case of the Magnetic Laplacian, which coincides with the Sign Magnetic Laplacian when
q = 1

4 and the graph has binary weights. Let us note that the Magnetic Laplacian can also have both
components different from zero, but such a behavior is influenced by both the edge weight and the
value of q, and may lead to the sign-pattern inconsistency described in Fiorini et al. (2023), which
our proposed Directed Line Graph Laplacian does not suffer from.
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C COMPLEXITY OF DLGNET

The detailed calculations for the (inference) complexity of DLGNet are as follows.

1. The Directed Line Graph Laplacian L⃗N is constructed in time O(m2n), where the factor
n is due to the need for computing the product between two columns of B⃗ (i.e., two rows
of B∗) to calculate each entry of L⃗N . After L⃗N has been computed, the convolution matrix
Ŷ ∈ Cm×m is constructed in time O(m2). Note that such a construction is carried out
entirely in pre-processing and is not required at inference time.

2. Constructing the feature matrix X = B⃗∗X ′ requires O(mnc0) elementary operations.

3. Each of the ℓ convolutional layers of DLGNet requires O(m2c+mc2 +mc) = O(m2c+
mc2) elementary operations across 3 steps. Let X l−1 be the input matrix to layer l =
1, . . . , ℓ. The operations that are carried out are the following ones.

(a) L⃗N is multiplied by the hyperedge-feature matrix X l−1 ∈ Cm×c, obtaining P l1 ∈
Cm×c in time O(m2c) (we assume, for simplicity, that matrix multiplications takes
cubic time);

(b) The matrices P l0 = IX l−1 = X l−1 and P l1 are multiplied by the weight matrices
Θ0,Θ1 ∈ Rc×c (respectively), obtaining the intermediate matrices P l01 , P l11 ∈ Cn×c

in time O(mc2) .
(c) The matrices P l01 and P l11 are additioned in time O(mc) to obtain P l2 .
(d) The activation function ϕ is applied component wise to P l2 in time O(mc), resulting

in the output matrix X l ∈ Cm×c of the l-th convolutional layer.

4. The unwind operator transforms Xℓ (the output of the last convolutional layer ℓ) into the
matrix U0 ∈ Rn×2c in linear time O(mc).

5. Call Us−1 the input matrix to each linear layer of index s = 1, . . . , S. The application
of the s-th linear layer to Us−1 ∈ Cm×c′ requires multiplying Us−1 by a weight matrix
Ms ∈ Cc′×c′ (where c′ is the number of channels from which and into which the feature
vector of each node is projected). This is done in time O(mc′2).

6. In the last linear layer of index S, the input matrix US−1 ∈ Rm×c′ is projected into the
output matrix O ∈ Rm×d in time O(nc′d).

7. The application of the Softmax activation function takes linear time O(md).

We deduce an overall complexity of O(mnc0)+O(ℓ(m2c+mc2)+mc+(S−1)(mc′2)+mc′d+md).
Assuming O(c) = O(c′) = O(d) = c̄, such a complexity coincides with O(ℓ(m2c̄)+(ℓ+S)(mc̄2)).

D FURTHER DETAILS ON THE DATASETS

Details on the datasets composition are reported in Tables 3, 4, 5. Most of the elements of
Dataset-1 belong to the first two classes, which concern the addition of functional groups to a
chemical compound: alkyl and aryl groups for Class 1 and acyl groups for Class 2, comprising more
than 17K species. Less populated classes involve specific chemical transformations, such as Class 3
(C–C bond formation) which contains less than 1000 elements.

Dataset-2 presents solely three classes. The elements of the first class (C–C bond formation)
are extracted from two separated collections present in the Open Reaction Database (ORD) Pro-
ject (Kearnes et al., 2021). Those are the Reizman et al. (2016) data for the Pd-catalyzed Su-
zuki–Miyaura cross-coupling reactions and a vast collection of Pd-catalyzed imidazole-aryl coupling
reactions, via C-H arylation. The elements of Class 2 (N-arylation) includes data of Pd-catalyzed
N-arylation (Buchwald-Hartwig) reactions from the AstraZeneca ELN dataset, also generated from
the ORD website. This class has been further divided in 3 sub-classes according to the nature of
the aryl halide used for the coupling. Finally, the third class contains an ORD collection of data for
amide bond formation processes. We have been able to extract sub-categories from two of them.
Those are Class 1 (C–C bond formation) and Class 2 (N-arylation processes) and contain two and
three sub-classes, respectively. The most populated class is Imidazole-aryl coupling, comprising
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around 1500 elements belonging to the class of palladium-catalyzed imidazole C-H arylation. The
chemical diversity in this class is ensured by the use of 8 aryl bromides and 8 imidazole compunds.
Furthermore, in terms of reaction conditions, the collection presents 24 different monophosphine
ligands.

Unlike the previous ones, Dataset-3 has been assembled starting from competitive processes;
therefore it contains almost the same amount of elements (∼ 300) for the two classes: Bimolecular
nucleophilic substitution (SN2) and eliminations (E2). The reactants–which are in common between
SN2 and E2—are substituted alkane compounds and nucleophile agents. The substituents span a
range of electron donating and electron withdrawing effect strengths, including methyl, cyano, amine,
and nitro functional groups. The nucleophiles have been chosen either between halide or hydrogen
anions, while the molecular skeleton is ethane.

Table 3: Distribution of the reactions in the Dataset-1.
Rxn class Rxn name Num rxns
1 Heteroatom alkylation and arylation 15151
2 Acylation and related process 11896
3 C-C bond formation 909
4 Heterocycle formation 4614
5 Protections 1834
6 Deprotections 5662
7 Reductions 672
8 Oxidations 811
9 Functional group interconversion 8237
10 Functional group addition 230

Table 4: Distribution of the reactions in the Dataset-2.
Rxn class Rxn name Num rxns
1 C-C bond formation 1921

- Reizman Suzuki Cross-Coupling 385
- Imidazole-aryl coupling 1536

2 Heteroatom (N) arylation: 657
- Amine + Aryl bromide 278
- Amine + Aryl chloride 299
- Amine + Aryl iodide 80

3 Amide bond formation 960

Table 5: Distribution of reactions in the Dataset-3.
Rxn class Rxn name Num rxns
1 Bimolecular nucleophilic substitution (SN2) 301
2 Bimolecular elimination (E2) 348

E FURTHER DETAILS ON THE EXPERIMENTS

Hardware. The experiments were conducted on 2 different machines:

1. An Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz with 380 GB RAM, equipped with an
NVIDIA Ampere A100 40GB.

2. A 12th Gen Intel(R) Core(TM) i9-12900KF CPU @ 3.20GHz CPU with 64 GB RAM,
equipped with an NVIDIA RTX 4090 GPU.

Model Settings. We trained every learning model considered in this paper for up to 1000 epochs.
We adopted a learning rate of 5 · 10−3 and employed the optimization algorithm Adam with weight
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Figure 4: (Upper panel, left): example from Dataset-1. C–C bond formation via reaction of
alkyne with alkyl halide; only bi-molecular reactant and main product are taken into account (any
byproduct is omitted). (Upper panel, right): example from Dataset-2. C–N bond formation via
Buchwald-Hartwig amination; apart from bi-molecular reactant (amine and aryl halide) and main
product, catalyst (palladium compound), solvent (dioxane) and base (sodium tert-butoxide) structures
are also present. Chemical elements: carbon (C), nitrogen (N), oxygen (O), hydrogen (H), chlorine
(Cl), iodine (I), sodium (Na), phosphorus (P) and palladium (Pd). Single, double and triple black lines:
bonds between C atoms. H, T: Head and Tail of the directed hypergraph. (Lower panel): schematic
representation of Dataset-3 elements. Left side: reactants; right side: competitive outcomes
between bimolecular nucleophilic substitution (SN2) or bimolecular elimination (E2). Thus, each
element is composed either of a bi-molecular reactant and a bi-molecular product (SN2 class), or a
bi-molecular reactant and a tri-molecular product (E2 class). X and Y: leaving group and nucleophile
agent. Groups A-D: different substituents attached to the alkane carbon backbone (black).

decays equal to 5 · 10−4 (in order to avoid overfitting). We set the number of linear layers to 2, i.e.
ℓ = 2, for all the models.

We adopted a hyperparameter optimization procedure to identify the best set of parameters for each
model. In particular, the hyperparameter values are:

• For AllDeepSets and ED-HNN, the number of basic block is chosen in {1, 2, 4, 8}, the
number of MLPs per block in {1, 2}, the dimension of the hidden MLP (i.e., the number of
filters) in {64, 128, 256, 512}, and the classifier hidden dimension in {64, 128, 256}.

• For AllSetTransformer the number of basic block is chosen in {2, 4, 8}, the number of MLPs
per block in {1, 2}, the dimension of the hidden MLP in {64, 128, 256, 512}, the classifier
hidden dimension in {64, 128, 256}, and the number of heads in {1, 4, 8}.

• For UniGCNII, HGNN, HNHN, HCHA/HGNN+, LEGCN, and HCHA with the attention
mechanism, the number of basic blocks is chosen in {2, 4, 8} and the hidden dimension of
the MLP layer in {64, 128, 256, 512}.

• For HyperGCN, the number of basic blocks is chosen in {2, 4, 8}.

• For HyperND, the classifier hidden dimension is chosen in {64, 128, 256}.

• For PhenomNN, the number of basic blocks is chosen in {2, 4, 8}. We select four different
settings:

1. λ0 = 0.1, λ1 = 0.1 and prop step= 8,
2. λ0 = 0, λ1 = 50 and prop step= 16,
3. λ0 = 1, λ1 = 1 and prop step= 16,
4. λ0 = 0, λ1 = 20 and prop step= 16.
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• For DHM, the number of basic blocks is chosen in {1, 2, 3, 4} and the classifier hidden
dimension is chosen in {64, 128, 256, 512}.

• For DLGNet, the number of convolutional layers is chosen in {1, 2, 3}, the number of filters
in {64, 128, 256, 512}, and the classifier hidden dimension in {64, 128, 256}. We tested
DLGNet both with the input feature matrix X ∈ Cn×c where ℜ(X) = ℑ(X) ̸= 0 and with
ℑ(X) = 0.

How to Transfer The Features. As mention in Section 4, a key aspect of our approach involves
transferring features from the nodes of the hypergraph to their corresponding hyperedges, i.e., the
nodes of the directed line graph. To clarify this mechanism, we provide a simple example. Consider
a directed hypergraph H⃗ = (V,E), where the vertex set is V = {u, v, c} and the hyperedge set
consists of E = {e1}. In H⃗ , we have H(e1) = {u, v} and T (e1) = {c}. Each vertex is assigned
a feature vector x′

u, x
′
v, x

′
c = 1 and the hyperedge has a unit weight, i.e. we1 = 1. Recalling that

X = B∗X ′, the feature vector x1 of the hyperedge e1 is then calculated as:

x1 = B⃗∗
1u · xu + B⃗∗

1v · xv + B⃗∗
1c · xc = 2 + i.

In the case where H⃗ = H , i.e., when the hypergraph is undirected, we have B⃗∗ = B⊤. The feature
vector x1 of the hyperedge e1 is then calculated as:

x1 = B1u · xu +B1v · xv +B1c · xc = 3.

As illustrated by this example , in the specific case of a directed line graph, the feature vector can
feature both real and imaginary components, depending on the topology of the hypergraph encoded
by B⃗.

F CONFUSION MATRIX

We report the confusion matrices of Dataset-1 in Figure 5 and Dataset-2 in Figure 6. We can
extract some insights from these two matrices, in particular:

• Dataset-1. DLGNet achieves a maximum performance of 88% in classifying the Class
5 (Protections). However, its performance drops for Class 4 and Class 9 (Heterocycle
formations and Functional group interconversions), where it correctly predicts only 44%
and 41%, respectively.

• Dataset-2. DLGNet accurately classifies the sub-classes relative to the C–C bond
formations (Reizman Suzuki Cross-Coupling and Imidazole-aryl coupling), as well as the
Amide bond formations. On the other hand, the remaining three N-arylation sub-classes are
poorly discriminated. This behavior can likely be attributed to the fact that the former are
derived from different collections of Pd-catalyzed cross-coupling reactions, each exhibiting
distinct features in terms of participant molecules (e.g. imidazole compounds). In contrast,
all of the elements in the N-arylation classes share the same reaction mechanism (Buchwald-
Hartwig amination); this poses a greater challenge, which results in decreased accuracy
when predicting the correct class.

G FROM A DIRECTED HYPERGRAPH TO THE DIRECTED LINE GRAPH
LAPLACIAN

To illustrate the construction of the directed line graph and the associated Directed Line Graph
Laplacian, consider a directed hypergraph H⃗ = (V,E) where the vertex set is V = {a, b, c, d, e} and
the hyperedge set is E = {e1, e2, e3}. The incidence relationships are defined as follows:

• H(e1) = {b, c}, T (e1) = {a},

• H(e2) = {a, b}, T (e2) = {d},

• H(e3) = {e}, T (e3) = {d}.
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Figure 5: Dataset-1 confusion matrix.

Figure 6: Dataset-2 confusion matrix.

Each hyperedge is assigned a unit weight (i.e., W = I). The cardinalities (densities) of the hyperedges
are δe1 = 3, δe2 = 2, and δe3 = 2.
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Figure 7: An example illustrating the transformation of a hypergraph (left) into its corresponding
directed line graph (right).

We construct DLG(H⃗) using the following matrices: the incidence matrix B⃗, its conjugate transpose
B⃗∗, the vertex degree matrix Dv , and the hyperedge degree matrix De. The incidence matrix B⃗ and
its conjugate transpose are:

B⃗ =




−i 1 0
1 1 0
1 0 0
0 −i −i
0 0 1


 B⃗∗ =

"
i 1 1 0 0
1 1 0 i 0
0 0 0 i 1

#
.

The vertex degree matrix Dv and the hyperedge degree matrix De are given by:

Dv =




2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


 De =

"
3 0 0
0 3 0
0 0 2

#
.

Using these matrices, the adjacency matrix A of the directed line graph DLG(H⃗) is:

A = B⃗∗B⃗ −De =

"
0 1 + i 0

1− i 0 1
0 1 0

#
. (14)

By Definition 1, the directed line graph DLG(H⃗) has three vertices, corresponding to the hyperedges
e1, e2, and e3 of the original hypergraph H⃗ . An edge exists between two vertices in DLG(H⃗) if
and only if their corresponding hyperedges in H⃗ are incident. In the specific example (illustrated in
Figure 7), DLG(H⃗) contains two edges, whose direction and weight are determined by the adjacency
matrix A (in equation 14. Without loss of generality, we consider the upper triangular part of A to
assign weights to the edges and define the directions: In the example considered, one edge will be
directed and have a weight equal to 1 + i (i.e. e1

1+i→ e2), the other edge will be undirected and have
a weight equal to 1 (e2

1 e3).

Using the equation 9. we can calculate the proposed Directed Line Graph Laplacian L⃗N as follows:

L⃗N = I − Q⃗N := D⃗
− 1

2
e B⃗∗D⃗−1

v B⃗D⃗
− 1

2
e =

"
0.333 −0.167− 167i 0

−0.167 + 0.167i 0.5 −0.204
0 −0.204 0.25

#
.
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By inspecting L⃗N, one can observe that it encodes the elements of the hypergraph H⃗ in the following
way:

1. The real components of off-diagonal entries in L⃗N encode the fact that, in the underlying
hypergraph H⃗ , the vertex belongs to the head set or tail set simultaneously in two different
hyperedges. For example, L⃗N(2, 3) = −0.204 indicates that H(e2) ∩ H(e3) ̸= ∅ or
T (e2) ∩ T (e3) ̸= ∅. In this specific case, T (e2) ∩ T (e3) = {d}. Similarly, ℜ(L⃗N(1, 2)) =
−0.167 arises from the fact that e1 and e2 share the vertex b in their head sets.

2. The imaginary component captures the hyperedge directionality based on the underlying
hypergraph H⃗ , where a node belongs to the head set of one hyperedge and the tail set
of another. For example, ℑ(L⃗N (1, 2)) = −ℑ(L⃗N (2, 1)) = −0.167, indicating that a ∈
T (e1) ∩H(e2).

3. The absence of any relationships between hyperedges e1 and e3 is encoded by 0 in DGL(H⃗).
Specifically, L⃗N (1, 3) = L⃗N (3, 1) = 0.

4. The self-loop information (a measure of how strongly the feature of a vertex depends on its
current value within the convolution operator) is encoded by the diagonal of L⃗N .

H OUR INCIDENT MATRIX B⃗

Utilizing our incidence matrix B⃗, where B⃗ve = −i if v ∈ T (e), with complex numbers allows us to
encode directionality and construct a Laplacian, the Directed Line Graph Laplacian, that is Hermitian
and meets the necessary properties for applying a spectral-based approach.

If, instead, we had chosen to use Bve = −1 if v ∈ T (e), we would have lost the directionality of the
hypergraph. To illustrate, consider (for simplicity—this can be observed also for more hypergraphs)
a graph with nodes 1, 2 and edges e1 = (2, 1) and e2 = (3, 2).

We have B⃗ =

 −i 0
1 −i
0 1

!
and B =

 −1 0
1 −1
0 1

!
.

The Laplacian matrix we use in DLGNet is L⃗ =

�
2 −i
i 2

�
. The Laplacian matrix using the B the

reviewer suggests reads L =

�
2 −1
1 2

�
.

Let us recall that the nodes of both matrices correspond to the edges of the graph. Therefore, L⃗12

indicates the presence of the directed line graph edge (e1, e2), which captures the topology of the
original graph where edge e2 is seen before edge e1 in a path from node 3 to node 1.

Differently, since L12 = L21, in L such a directional information is completely lost.

Regarding the solution proposed in (Ma et al., 2024), this approach defines two separate incidence

matrices: one for tail elements BT =

 
1 0
0 1
0 0

!
and one for head elements and BH =

 
0 0
1 0
0 1

!
.

The Laplacian matrix using BT and BH reads L =

�
0 0
1 0

�
.

This matrix L is not symmetric, which does not fit the framework in which we operate in our paper,
in which we are designing a spectral-based convolutional operator. This type of GNN does not permit
the use of a non-symmetric matrix, as it requires an eigenvalue decomposition of the Laplacian matrix
with real eigenvalues. Thanks to the adoption of a complex-valued B⃗, our proposed Laplacian matrix
is Hermitian and, therefore, admits the required eigenvalue decomposition.
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