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Abstract

Autoformalization is the process of automatically translating from natural language1

mathematics to formal specifications and proofs. A successful autoformalization2

system could advance the fields of formal verification, program synthesis, and3

artificial intelligence. While the long-term goal of autoformalization seemed4

elusive for a long time, we show large language models provide new prospects5

towards this goal. We make the surprising observation that LLMs can correctly6

translate a significant portion (25.3%) of mathematical competition problems7

perfectly to formal specifications in Isabelle/HOL. We demonstrate the usefulness8

of this process by improving a previously introduced neural theorem prover via9

training on these autoformalized theorems. Our methodology results in a new10

state-of-the-art result on the MiniF2F theorem proving benchmark, improving the11

proof rate from 29.6% to 35.2%.12

1 Introduction13

Autoformalization refers to the task of automatically translating from natural language mathematics14

to a formal language [45, 41]. The implication of a successful autoformalization tool is huge in15

both practical and philosophical terms. It would reduce the currently excessive cost of formalization16

efforts [26], and in the long-term it could connect the various research fields that automate aspects of17

mathematical reasoning, such as automated theorem proving and computer algebra, to the vast body18

of mathematical knowledge exclusively written up in natural language. Moreover, autoformalization19

would be a true testament to machine understanding, grasping both the fuzziness of natural language20

and the preciseness of formal language.21

Recent advances in large language models [7, 9] showed promising capabilities of understanding22

formal languages [8, 31]. However, the existing successes are limited to formal languages where23

there exists a large body of corpus on the web (e.g., Python language). Formal mathematics data is24

very scarce. For example, one of the largest formal mathematics libraries, the Archive of Formal25

Proofs, is only 180MB in size, that is less than 0.18% of the training data for the large language26

model Codex [8]. Moreover, unlike in the case of commonly used programming languages, where27

natural language docstrings are broadly available, there is almost zero aligned data between natural28

language and formal mathematics. Therefore, it is unclear the recent successes can directly contribute29

to the development of autoformalization.30

In this work, we explore the prospects of autoformalization with large language models. To our31

surprise, we find that large language models already have a decent capability of formalizing natural32

language mathematics in an interactive theorem prover. See Figure 1 for a perfect autoformalization33

example. The model not only translates into syntactically correct Isabelle code, but also grasps34

the non-trivial reasoning in natural language. We randomly pick 150 formalizations and manually35

evaluate their correctness. Among them, LLMs are capable of producing 38 perfect formalizations!36

As an application, we further demonstrate that autoformalization can provide useful training data37

for neural theorem provers. We use autoformalized statements as targets for proof search with a38
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Case Study 1 Question:
"Prove that there is no function f from the set of non-negative integers into itself
such that f(f(n)) = n+ 1987 for every n."

Codex Output:
theorem

fixes f :: "nat \<Rightarrow> nat"
assumes "\<forall> n. f (f n) = n + 1987"
shows False

Figure 1: Case study 1: An example of a perfect translation from natural language to Isabelle code.

neural theorem prover for Isabelle/HOL. After fine-tuning our neural theorem prover on the proofs39

it found, its success rate on the MiniF2F benchmark [51] increases significantly, achieving a new40

state-of-the-art result of 35.2% theorems proven.41

2 Related Work42

Early applications of machine learning in theorem proving include the works by Schulz [39] and Urban43

[42], and later, directly guiding interactive proof assistants using machine learning techniques [14].44

The revolution of deep learning then kicked off a new wave of interest in the topic starting with45

DeepMath [1, 32].46

Several approaches have been suggested to address data scarcity: Imitation-free reinforcement47

learning was used to avoid the need for training on human proofs [30, 5, 14, 48]. Also, hindsight48

experience replay [2] was used to generate additional training data [4]. Hahn et al. [18], Schmitt et al.49

[38], Kreber & Hahn [28] and Wu et al. [49] have shown that training on synthetic formulas can be50

successful for temporal logics and inequalities. Rabe et al. [36] masked out different subexpressions51

from formal mathematical statements and generated 100 training examples for each source statement.52

Skip-tree data can also be used to improve the performance of neural theorem provers [21].53

Wang et al. [45] explored the use of supervised and unsupervised translation techniques for autofor-54

malization. Supervised translation yielded interesting results, but relied on synthetic (natural-looking)55

data that was generated by the Mizar theorem prover, while we rely on models trained via self-56

supervised language modeling, not trained for this particular purpose.57

3 Background58

Formal Mathematics A few important and complex results of mathematics and computer science59

have been formalized manually using interactive theorem provers, such as the four color theorem [15],60

the Kepler conjecture [19], the odd-order theorem [16] and the verification of a microkernel [26].61

This gives us almost complete certainty about the correctness of proofs, which can be of great value to62

resolve doubt about the correctness of complicated mathematical proofs or proving certain properties63

of software used in safety-critical applications, such as aircraft components [27].64

These projects relied on interactive theorem provers, such as Isabelle [47], Coq [11], HOL Light [22],65

and Lean [12], which are essentially programming languages that enable users to enter their statements66

and proofs in a formal language, and which can then be checked automatically for correctness.67

Interactive theorem provers offer a limited amount of automation, but projects that formalize complex68

problems typically span many years of tedious work by specialists. Only in narrow domains like chip69

design and the verification of drivers in operating systems has the automation of logic made sufficient70

progress to find commercial applications.71

Progress in autoformalization and the automation of proofs might eventually make mathematics a72

universally available tool and enable a paradigm shift in science and the development of (safety-73

critical) software. Our interest in formalizing mathematics, however, has an additional aspect. We74

believe that autoformalization will serve a dual purpose and will not only accelerate the development75
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of tools for mathematical reasoning, but also provide a means to ground machine learning systems,76

enabling a positive feedback loop between machine learning and formal systems (cf. [41]).77

Large Language Models Our work relies heavily on large language models (LLMs), in particular78

on PaLM [9] and Codex [8]. The training goal of these models is to predict the next word given some79

prefix. This allows us to train these models on arbitrary text, which is available in vast quantities.80

After training the models on hundreds of billions of words (cf. [24]), they are often able to generate81

high-quality text. We can also give these models an arbitrary prefix (the prompt) that they are82

then supposed to continue, which gives us some control over what they generate. This has been83

demonstrated with news articles, conversations, summaries, jokes, and poems. LLMs have also been84

evaluated on natural language word problems on datasets such as GSM8K [10] and MATH [23], and85

have been shown to make progress on these benchmarks with increasing scale [9].86

In-context Learning Large language models have shown a remarkable ability to learn patterns87

and tasks within the current input (context) that they are given [7]: this is called in-context learning88

or few-shot learning. For example, if we prompt a language model with a few pairs of English and89

matching French sentences, and end with a new English sentence, then the language model is very90

likely to pick up on the translation task and attempt a translation of the last English sentence. This91

observation has been used, for example, to achieve strong translation performance without access to92

large corpora of matching sentence pairs [20].93

This allows us to specify the task of autoformalization simply by giving a couple of example formal-94

izations. In Section 4 we will detail how exactly we use in-context learning for autoformalization.95

4 Autoformalization for Mathematical Competition Problems96

Inspired by the success of LLMs for synthesizing computer code by co-training on both natural97

language and code on web-scale data, we explore the capabilities of LLMs to turn natural language98

mathematics into formalized theorems for the interactive theorem prover Isabelle. This can be seen99

as a machine translation task (cf. [46]) in which the input language is English and output language is100

formal code used by the interactive proof assistant Isabelle [47].101

We first study autoformalization in a constrained setting – formalizing mathematical competition102

problem statements. This setting has the advantage that most of the required background theory and103

definition has been formalized in the current libraries of Isabelle, so that formalizations are often104

possible without introducing additional definitions.105

We start assessing LLMs’ abilities to do autoformalization with a case study. We manually pick two106

interesting natural language mathematical statements, and prompt PaLM models of various scales [9]107

as well as Codex [8] to translate them into a formal statement in Isabelle. Next, we study a dataset in108

which we have human ground truth formalizations. The dataset is a subset of the miniF2F [23] dataset109

consisting of 140 algebra problems and 120 number theory problems. Using human formalizations as110

the reference, we compute the BLEU scores of the formalizations produced by several LLMs. Lastly,111

we perform human evaluations on failure cases in autoformalization on 150 problems.112

Note that many mathematical competition statements are often of the form in which one asks to
find the answer to a certain problem, instead of proving a given proposition. However, formal
mathematical statements are in the form of propositions, instead of questions. To transform a question
into a proposition, we append the final answer after the question:

$Problem_Statement The final answer is $Answer.

The format of the prompt we use to do autoformalization is:113

Natural language version: $Natural_Language_Statement.
Translate the natural language version to an Isabelle version:

4.1 Mathematical Competition Datasets114

MATH [23] contains in total 12,500 (7,500 training and 5,000 test) middle school and high115

school mathematical competition problems. Problems are taken from past mathematical com-116

petitions, including AMC 10, AMC 12, AIME, and more, and many can be found at http:117
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//aops.com/community/c3158_usa_contests. The dataset contains seven categories: alge-118

bra, pre-algebra, intermediate algebra, number_theory, precalculus, probability,119

geometry. Problem statements are written in LaTeX.120

MiniF2F [51] is a recently introduced benchmark containing 488 mathematical competition state-121

ments manually formalized by humans in three different formal languages. Its goal is to compare122

and benchmark methods across different theorem provers for machine learning research. Some of123

these problems come from the valid and test set of MATH algebra and number_theory, and others124

come from previous International Mathematical Olympiad competitions or AoPS1. Note that the125

Isabelle formalizations of the miniF2F benchmark were committed to the repository during March,126

2022. According to the public information of the training data, we think it is highly unlikely these127

formalizations were included in the pre-training corpus.128

4.2 Case Studies129

Experimental setup For all our experiments, we use the standard greedy decoding (i.e., temperature130

0, p = 1) to obtain the autoformalizations. We randomly select two mathematical statements for131

constructing the prompt, which we provide in Appendix A.1. That is, no prompt engineering / tuning132

is performed when constructing the prompt. The natural language problem statements used in the133

case studies are taken from the miniF2F dataset. In the case studies below, we highlight the output of134

language models in red to distinguish it from the prompt.135

Case Study 1 (Figure 1) We study the example shown in Figure 1, in which we ask LLMs to136

autoformalize an International Mathematical Olympiad problem2 in natural language. Surprisingly,137

Codex is able to autoformalize the natural language statement as an Isabelle theorem perfectly, with138

output given. This is surprising for the following reasons.139

First of all, the amount of Isabelle code is very scarce on the internet. The entire AFP library, the140

largest formal library that contains most of Isabelle proofs, is only 180MB in size. Even assuming141

that all of this data was included in the training of Codex, this makes at most 0.18% of the pretraining142

data on which Codex was trained. The fact that the model can write syntactically correct Isabelle143

code at all is already fascinating.144

Second, there is almost zero aligned data from natural language to Isabelle on the web. While some145

Isabelle files have comments, they typically only give a very high level description of what the theory146

being formalized is about. So either LLMs are able to transfer knowledge quite successfully between147

natural language and formal mathematics, or the task was learned mostly via few-shot learning.148

Last but not least, the model is capable of understanding and formalizing nontrivial reasoning. First,149

the model is able to formalize the non-existence statement via proof-by-contradiction. To formalize150

“there is no function f ...”, it assumes there is such a function, and aims to prove “False”. Second,151

the model understands what it means by the phrase “to itself”, and correctly infers the domain of152

function: f :: "nat \<Rightarrow> nat".153

On the other hand, PaLM made some syntactic mistakes while getting most of the structure of the154

proof correctly, with outputs shown in Appendix B.1.155

Case Study 2 (Figure 2) In the next example, we ask LLMs to autoformalize a grade school156

mathematical word problem. Remarkably, PaLM and Codex are both capable of formalizing the157

statement perfectly. This is surprising because formalizations of grade school math problems in158

interactive theorem provers are rare (if they exist at all), as this type of mathematics is not of interest159

to formal mathematicians. Even more, none of the examples in the prompt (see Appendix A.1) that160

we provide are of this type. It is hence remarkable that the model is capable of extrapolating to this161

type of statement, showing a great promise of using LLMs for autoformalization.162

To study this problem in more depth, we probe PaLM models of various sizes (8B, 64B, 540B) with163

outputs shown in Appendix B.2, and notice that scale is crucial for the LLMs ability to formalize. We164

observe that the 8B and 64B models are incapable of formalizing this problem, but the largest 540B165

model is able to produce a correct formalization.166

1https://artofproblemsolving.com/
2A problem from IMO 1987.

4

http://aops.com/community/c3158_usa_contests
http://aops.com/community/c3158_usa_contests
https://artofproblemsolving.com/


Case Study 2 Question:
Natural Language version: "When all
the girls at Madeline’s school line up
in rows of eight, there are seven left
over. If instead they line up in rows
of four, how many are left over? The
final answer is 3." Translate the natural
language version to an Isabelle version:

PaLM output:
theorem

fixes n::nat
assumes "n mod 8 = 7"
shows "n mod 4 = 3"

Case Study 3 Question:
Natural language version: "Let f be a linear
function for which f(6)− f(2) = 12. What is
f(12) − f(2)? The final answer is 30." Trans-
late the natural language version to an Isabelle
version:

Codex output:
theorem

fixes f :: "real \<Rightarrow> real"
assumes "linear f"

"f 6 - f 2 = 12"
shows "f 12 - f 2 = 30"

Figure 2: Autoformalizations from natural language to Isabelle code. Left: Case study 2 – perfect
formalization by PaLM. Right: Case study 3 – incorrect formalization by Codex.

Case Study 3 (Figure 2) In our third case study, Codex gives an incorrect formalization in Isabelle.167

The mathematical statement involves a concept of “linear function”, which the model fails to formalize168

correctly. Codex assumes this is already a known concept in Isabelle, and made up a name: linear f.169

Can the model learn to formalize such problems if the prompt contains an example that explains the170

concept of a line? We explore this and give an affirmative answer to the question (see Appendix B.3).171

Once seeing a tangentially related problem that explains the concept of a “line”, Codex is able to172

perfectly formalize a “linear function”. This shows the importance of the few shot examples we173

include, and also how good a few-shot learners these models are!174

Has the model memorized these formalizations? Whilst we do not have access to the training175

set of Codex, we attempted to find any occurrences of the formalizations produced in the case studies176

on the internet. We Googled them in different variants and inspected the first page of the search177

results. We tried variants with and without an “Isabelle” prefix, with and without quotation marks178

and other special characters, and also individual parts of it, such as “Isabelle "n mod 8 = 7"”,179

but we did not find any occurrences of related statements. We also tested that we are indeed able180

to find occurrences of Isabelle formalizations on the web with this methodology, using pieces of181

formalizations picked from several websites, including the Archive of Formal Proofs. Hence, we are182

confident that the model has not memorized the formalizations it generated.183

4.3 BLEU for Model Comparisons184

The miniF2F benchmark contains 140 algebra problems and 120 number theory problems from185

the MATH dataset. For these problems, we have human ground truth formalizations in Isabelle,186

which gives us an evaluation set with pairs of natural language statements (from MATH) and their187

formalizations. We use this dataset to quantitatively compare different LLMs.188

Given the observation about few shot learning in Case study 3, we decided to add more relevant189

examples to each subject to improve the quality of autoformalization. For each subject (i.e., algebra190

and number_theory), we randomly sample 10 problems to construct the few shot prompt. The rest191

of the problems are used for evaluation (i.e., 130 for algebra and 110 for number_theory. We192

provide the prompt used in the Appendix A.2 and A.3.193

We use PaLM models of varying sizes and Codex to perform the autoformalization, and compute the194

BLEU scores of the formalizations, shown in Table 1. Confirming our observation in Case study 2,195

we see a clear trend that scaling improves translation, as the BLEU scores consistently improve when196

we scale PaLM models from 8B to 540B, for both subjects. In addition, we see that the Codex model197

is better at autoformalization measured by BLEU, possibly due to the fact that Codex was trained on198

more formal data than PaLM.199
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Table 1: BLEU scores between the autoformalized statements and human formalized ground truth.

Models \ Subject algebra number_theory

PaLM 8B 31.49 22.10
PaLM 64B 43.13 31.43
PaLM 540B 50.30 36.16
Codex 57.13 43.33

Table 2: Failure case study of 150 problems formalized by Codex.

Failure cases \ Subjects algebra number_theory inter_alg

Perfect translation 13 17 8
Incomplete/ill-formed/unclear prompt 9 3 14
Fail to align definitions or concepts 10 18 18
Inconsistent/missing assumption 8 9 9
Syntactical/type error 7 2 11
Missing definition in Isabelle 0 12 3
Wrong application of functions 6 13 16
Other 6 2 1

4.4 Human Evaluation of Failure cases200

To better understand LLMs’ ability to do autoformalization, we manually inspect Codex’s autofor-201

malizations of 150 random problems from the MATH dataset [23]. 50 of the problem statements202

are sampled from the algebra training set, 50 from number_theory and 50 from intermedi-203

ate_algebra. For algebra and number_theory, we use their corresponding prompt as in the last204

section, shown in Appendix A.2 and A.3. For intermediate_algebra, we use the prompt we used205

for algebra (Appendix A.2). We classify the failure modes of these translations, shown in Table 2.206

We see that out of 150 problems, Codex is capable of translating 38 problems perfectly – a success207

rate of 25.3%. The majority of the failures are due to the misalignment of informal and formal208

definitions. For example, when seeing the phrase “the greatest possible value”, the LLMs often fail209

to align it with the function Greatest/Max in Isabelle. Another example is the failure to align the210

factorial of n (i.e., !n) to fact n in Isabelle. Other common failure modes include the misapplication211

of functions (e.g., applying a prefix function in an infix way).212

5 Autoformalization for Neural Theorem Proving213

To demonstrate the usefulness of the formalized statements, we explore if one can improve neural214

theorem provers by training the neural models on proofs of automatically translated theorems. In this215

section, we combine autoformalization with expert iteration algorithms [3], and achieve a new state216

of the art in miniF2F benchmark.217

5.1 Expert Iteration with Autoformalization218

The basic idea of expert iteration [3] is to iteratively generate a better dataset using the model, and219

use the data to improve the model quality. This allows the model to generate an even better quality of220

the dataset and hence a better model, forming a self-improvement cycle.221

In neural theorem proving, one way to get better quality data is to use feedback from the proof222

checker to run many proof searches (or generate multiple proofs) and check the proof attempts for223

correctness. Newly found correct proofs can then be used as the new training data to improve the224

neural prover [6, 34, 35]. The main critical ingredient that is needed is a set of problem statements on225

which the model can perform proof search to obtain new training data. However, unlike in Polu et al.226

[35], where one asks humans to manually formalize a set of problems to get formal statements, here227

we use LLMs to autoformalize the theorems in order to kick off the self-improvement cycle.228
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Table 3: Proof success rates on miniF2F.

Model valid test

PACT [21] 23.9% 24.6%
FMSCL [35] 33.6% 29.6%
Base model (M0) 28.3% 29.9%
After 1 expert iteration (M1) 36.1% 34.0%
After 2 expert iterations (M2) 37.3% 35.2%

More formally, denote a base neural theorem prover as M0. Let the set of autoformalized problems229

be A. For each iteration i = 1 . . . N , we carry out the following procedure: use the language model230

Mi−1 with best-first search to prove as many theorems as possible in A, collect the set of successful231

proofs Si, concatenate successful problems from all iterations with the formal mathematics problems232

to create the setAi = (
⋃
j≤i Si)∪B, and fine-tuneM0 on it for exactly one epoch to get a new model233

Mi. When we take the union of successful proofs from all past iterations, we perform deduplication234

by problem statements, similar to Polu et al. [35].235

5.2 Neural Theorem Provers236

To demonstrate the effectiveness of the approach, we start with a recently introduced neural theorem237

prover for Isabelle, LISA [25]. The LISA agent is fine-tuned on the PISA dataset [25] (extraction238

and interaction code under a BSD license), which consists of 2.49 million proof steps from the239

Isabelle/HOL library (under a BSD-style license) and the Archive of Formal Proofs (under various240

licenses as described here). The model is trained with the objective to predict the next token in a241

proof step, given the proof state and the last proof step. We invoke Sledgehammer with a 30 second242

timeout when the model generates a step containing any of the keywords metis, meson, and smt.243

We use Wang [44]’s implementation (under an Apache license 2.0) of a GPT-2 [37] style decoder-only244

transformer [43] model with 700M non-embedding parameters. The model has 24 layers, 24 attention245

heads, a hidden dimension of 1536, and a vocabulary size of 50400. We pre-train the model on the246

GitHub + arXiv subsets of The Pile [13] for 200,000 steps, with a context length of 2048 tokens. In247

pre-training we use a warmup strategy [17], raising the learning rate linearly from 0 to 2× 10−4 in248

3,000 steps. We then use a cosine learning rate scheduler [33] for the rest of the pre-training, with249

a final learning rate of 1.2 × 10−5. We use a global batch size of 32 sequences, or 65,536 tokens.250

For fine-tuning we use the same learning rate schedule, with 10,000 warmup steps, 90,000 annealing251

steps, maximum learning rate 3× 10−4 and final learning rate 3× 10−5. The global batch size is252

144 sequences, or 294,912 tokens. The model’s evaluation loss reaches a minimum after 13,000 steps253

and we use that checkpoint.254

Machine specification For pre-training, fine-tuning, and evaluation, we use a TPUv3 with 8 cores255

from Google Cloud Platform. The Isabelle process has access to up to 32 CPU cores. We estimate256

that running all the experiments in this paper requires a total of 780 TPU hours.257

5.3 Result258

We use Codex with greedy decoding to formalize 3908 mathematical problems in algebra, inter-259

mediate algebra, and number theory from the training set of MATH [23], with the same few260

shot prompts used in Section 4.4. Out of them, 3363 of the autoformalized theorems are syntactically261

correct. We then perform expert iteration on this dataset.262

We start with a neural theorem prover (M0) as described in Section 5.2. In our first iteration, M0263

proves 782 theorems, with a success rate of 23.3% (out of 3363). This gives us a new set of verified264

proofs to further train the neural theorem prover. We proceed to fine-tune our neural theorem prover265

in the fashion described in Section 5.1 to get a new prover (M1). This process is repeated in the266

second iteration, giving us 1011 successful proofs from the autoformalized theorems (30.1%). We267

fine-tuned M0 again, but on the deduplicated concatenation of problems from PISA and successful268

proofs found for the autoformalized theorems.269

After each stage of fine-tuning, we evaluate the neural theorem prover on miniF2F [51]. The results270

are shown in Table 3. The base model (M0) has a success rate of 28.3% and 29.9% on the validation271
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Question: An arbitrary product of compact spaces is compact.

Codex Output:
theorem

fixes X :: "’a set set"
assumes "\<forall>x \<in>X. compact x"
shows "compact (\<Prod> x \<in> X. x)"

Figure 3: A formalization for an advanced mathematical statement by Codex.

and test fractions of miniF2F respectively. It can be observed that the first expert iteration increases272

the success rate of the neural prover by 7.8% and 4.1% to 36.1% and 34.0% on the valid and test273

sets. The second iteration further improves them both by 1.2%, to 37.3% and 35.2%. By doing two274

expert iterations on the autoformalized theorems, the neural prover achieves a success rate that is275

5.6% higher than the previous state-of-the-art.276

6 An Outlook on Autoformalizing Advanced Mathematics277

So far, we focused on mathematical competition problems, in which we achieve significant results278

using autoformalization. Not only can LLMs autoformalize non-trivial theorems, the autoformalized279

theorems can also improve neural prover performance. In this section, we take a peek into more280

advanced mathematics. We hope to identify some of the limitations of our methods when it comes to281

autoformalizing mathematics in the wild.282

6.1 Autoformalization: from Natural Language to Isabelle283

Autoformalization is extremely challenging in the sense that the model needs to (1) bridge the logical284

gaps left in pen-and-paper proofs, (2) assume the implicit contexts and assumptions, and (3) align285

informal definitions/concepts to formal ones. This task is further complicated considering the context286

can change from time to time and the same mathematical object can be formalized in subtly different287

ways. In this paper, we only deal with autoformalization of theorem statements, where the model288

is mainly challenged by definition alignments. Compared to competition problems in Section 4.4,289

advanced mathematical statements assume more context information that additionally obscures the290

alignment.291

Figure 3 shows a typical case where the model fails to align the informal definition to the formal292

one. Based on the notation used, the model does not correctly distinguish between products of293

numbers, products of sets, and products of topological spaces. In Isabelle, the correct conclusion294

for the statement should be compact_space (product_topology X I), where I is an index set that295

ought to have been introduced in the fixes and assumes sections.296

6.2 Informalization: from Isabelle to Natural Language297

So far, we explored one direction of translation: from natural language statement to formal statement298

in Isabelle. The other direction, informalization, is also of great importance for two reasons: (1)299

the informal texts are much easier for humans to comprehend and communicate, and (2) we can300

align translated informal statements with formal ones to create data, and use the back-translation301

techniques [40] to potentially boost the translator’s performance further. In this section, we explore302

Codex’s capability of translating formal Isabelle statement to natural language.303

A corpus of 38 formal-language theorems, lemmas, and definitions is selected by an Isabelle expert.304

These statements are automatically translated to informal mathematics using Codex; to see the305

prompt we used and the results for all 38 examples, see Appendix A.4 and D.2. We present two306

examples of informalization in Figure 4. Of the 38 examples, 36 were translated to a reasonably307

coherent statement, and 29 of these statements (76%) were more-or-less correct, giving a vastly better308

success rate than the 25% success rate of formalization (Section 4.4). Our main conclusion is that309
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lemma seteqI:
" [[

∧
x. x∈A =⇒ x∈B;∧

x. x∈B =⇒ x∈A ]]
=⇒ A = B"

Translate the Isabelle ver-
sion to a natural language
version:

Codex Output:
"If A and B are sets such
that A ⊆ B and B ⊆ A,
then A = B."

lemma topologyI:
" [[

∧
x y. [[ is_open T x; is_open T y ]] =⇒

is_open T (x ∩ y);∧
M. ∀ m ∈ M. is_open T m =⇒

is_open T (
⋃

M)
]] =⇒ topology T"

Translate the Isabelle version to a natural language
version:

Codex Output:
"If T is a set and T is closed under finite intersections
and arbitrary unions, then T is a topology."

Figure 4: Two perfect translations from Isabelle code to natural language by Codex.

for advanced mathematics, the model is better at informalization than formalization, showing the310

prospect of backtranslation style algorithms.311

Note that the standard is more relaxed here since we assume a human reader will supply the obvious312

context and correct mistakes when the intended meaning is obvious (intended by the hypothetical313

human writer of these sentences). To illustrate, an example of a minor “acceptable” error: assuming314

that “w, z are in the same connected component of the plane” when, in context, it is clear that315

w, z should be assumed to be in the same connected component of the complement of a previously316

specified curve. (The assumption as originally stated is trivial.) For an example of a major error:317

almost-perfect translation of the Central Limit Theorem that omits the assumption of identical318

distributions.319

7 Discussion320

Promise of Autoformalization with LLMs We have seen that automated formalization of in-321

formally given natural language statements is generally possible, even with language models not322

trained for this particular task. Also, automatically formalized statements are useful for training and323

improving the reasoning capabilities of automated neural provers. Our hope is that improved versions324

of this methodology will be capable of enabling a positive feedback loop involving formalization and325

formal reasoning that has the potential of reaching human level capabilities in both respects, as was326

suggested by [41].327

Limitations and future directions We use a static model for the formalization process. For large-328

scale autoformalization, we will need to formalize larger theories, preferably without fine tuning the329

model, as training it could be cumbersome and resource consuming. However, in order to utilize330

the newly added notions, the model would need to keep whole large theories in the current context331

window, which exceeds those of the current LLMs. This limits our approach to the generation of332

fairly small pieces of formal mathematics and the automatic formalization of entire theories including333

their definitions will require new research ideas. One path towards this goal might be the use of334

continuous training or expert iteration, cycle-consistency-based training [29, 45], or novel uses of335

in-context learning. To generate larger theories we will also need neural networks that can recall336

longer sequences (current LLMs are typically limited to a few thousand words). Retrieval-augmented337

language models, such as the memorizing transformer [50] offer one path to overcome this limitation.338

Societal Impact While the potential of creating negative societal impact through formalizations is339

small, the use of LLMs always comes with risks. For example, for deploying an autoformalization340

tool using LLMs we would need to consider the inclusivity of variable and lemma names, and of the341

attribution of scientific ideas.342
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• Did you include the license to the code and datasets? [Yes] See Section ??.566

• Did you include the license to the code and datasets? [No] The code and the data are567

proprietary.568

• Did you include the license to the code and datasets? [N/A]569

Please do not modify the questions and only use the provided macros for your answers. Note that the570

Checklist section does not count towards the page limit. In your paper, please delete this instructions571

block and only keep the Checklist section heading above along with the questions/answers below.572

1. For all authors...573

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s574

contributions and scope? [Yes]575

(b) Did you describe the limitations of your work? [Yes] See discussion section.576

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See577

discussion section.578

(d) Have you read the ethics review guidelines and ensured that your paper conforms to579

them? [Yes]580

2. If you are including theoretical results...581

(a) Did you state the full set of assumptions of all theoretical results? [N/A]582

(b) Did you include complete proofs of all theoretical results? [N/A]583

3. If you ran experiments...584

(a) Did you include the code, data, and instructions needed to reproduce the main experi-585

mental results (either in the supplemental material or as a URL)? [Yes]586

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they587

were chosen)? [Yes]588

(c) Did you report error bars (e.g., with respect to the random seed after running experi-589

ments multiple times)? [No] It is expensive to run multiple times, and we believe the590

results are significant.591

(d) Did you include the total amount of compute and the type of resources used (e.g., type592

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.2.593

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...594

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the creators595

of the assets when we first mentioned them.596

(b) Did you mention the license of the assets? [Yes] We included the links to the licenses597

of the assets when we first mentioned them in Section 5.598

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]599

We include the code we used to train the models in the supplemental material. The data600

we used are all under open-source licenses.601

(d) Did you discuss whether and how consent was obtained from people whose data602

you’re using/curating? [Yes] The assets we used mostly have open-sourced licenses as603

mentioned previously.604

(e) Did you discuss whether the data you are using/curating contains personally identifiable605

information or offensive content? [No] The data we used are mathematical proofs so606

we think it is apparent that they do not contain personally identifiable information or607

any offensive content.608

5. If you used crowdsourcing or conducted research with human subjects...609
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(a) Did you include the full text of instructions given to participants and screenshots, if610

applicable? [N/A]611

(b) Did you describe any potential participant risks, with links to Institutional Review612

Board (IRB) approvals, if applicable? [N/A]613

(c) Did you include the estimated hourly wage paid to participants and the total amount614

spent on participant compensation? [N/A]615
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