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ABSTRACT

Scientific knowledge is predominantly stored in books and scientific journals,
often in the form of PDFs. However, the PDF format leads to a loss of semantic
information, particularly for mathematical expressions. We propose Nougat (Neural
Optical Understanding for Academic Documents), a Visual Transformer model that
performs an Optical Character Recognition (OCR) task for processing scientific
documents into a markup language, and demonstrate the effectiveness of our
model on a new dataset of scientific documents. The proposed approach offers a
promising solution to enhance the accessibility of scientific knowledge in the digital
age, by bridging the gap between human-readable documents and machine-readable
text. We release the models and code to accelerate future work on scientific text
recognition.

1 INTRODUCTION

The majority of scientific knowledge is stored in books or published in scientific journals, most
commonly in the Portable Document Format (PDF). Next to HTML, PDFs are the second most
prominent data format on the internet, making up 2.4% of common crawl (Sebastian Spiegler, 2013).
However, the information stored in these files is very difficult to extract into any other formats. This
is especially true for highly specialized documents, such as scientific research papers, where the
semantic information of mathematical expressions is lost.
Existing Optical Character Recognition (OCR) engines, such as Tesseract OCR (Smith, 2007), excel
at detecting and classifying individual characters and words in an image, but fail to understand the
relationship between them due to their line-by-line approach. This means that they treat superscripts
and subscripts in the same way as the surrounding text, which is a significant drawback for mathemat-
ical expressions. In mathematical notations like fractions, exponents, and matrices, relative positions
of characters are crucial.
Converting academic research papers into machine-readable text also enables accessibility and search-
ability of science as a whole. The information of millions of academic papers can not be fully
accessed because they are locked behind an unreadable format. Existing corpora, such as the S2ORC
dataset (Lo et al., 2020), capture the text of 12M1 papers using GROBID (Lopez, 2023), but are
missing meaningful representations of the mathematical equations.

To this end, we introduce Nougat, a transformer based model that can convert images of document
pages to formatted markup text.
The primary contributions in this paper are

• Release of a pre-trained model capable of converting a PDF to a lightweight markup
language. We release the code and the model on GitHub2

• We introduce a pipeline to create dataset for pairing PDFs to source code
• Our method is only dependent on the image of a page, allowing access to scanned papers

and books
∗Correspondence to: lblecher@meta.com
1The paper reports 8.1M papers but the authors recently updated the numbers on the GitHub page https:

//github.com/allenai/s2orc
2https://github.com/facebookresearch/nougat

1

mailto:lblecher@meta.com
https://github.com/allenai/s2orc
https://github.com/allenai/s2orc
https://github.com/facebookresearch/nougat


Published as a conference paper at ICLR 2024

2 RELATED WORK

Optical Character Recognition (OCR) is an extensively researched field in computer vision for a
variety applications, such as document digitalization (Moysset et al., 2017; Smith, 2007), handwriting
recognition and scene text recognition (Bautista & Atienza, 2022; Li et al., 2022; Diaz et al., 2021).
More concretely, recognizing mathematical expressions is a heavily researched subtopic. Grammar
based methods (MacLean & Labahn, 2013; Awal et al., 2014; Álvaro et al., 2014) for handwritten
mathematical expressions were improved upon by different encoder-decoder models. The fully
convolutional model (Yan et al., 2020) was succeeded by various RNN decoder models (Deng
et al., 2016; Le & Nakagawa, 2017; Singh, 2018; Zhang et al., 2018; Wang & Liu, 2019), both for
handwritten and printed formulas. Recently, the decoder (Zhao et al., 2021; Mahdavi et al., 2019)
as well as the encoder (Blecher, 2023) were replaced with the Transformer (Vaswani et al., 2017)
architecture.

Visual Document Understanding (VDU) is another related topic of deep learning research and focuses
on extracting relevant information of a variety of document types. Previous works depend on pre-
trained models that learn to extract information by jointly modeling text and layout information using
the Transformer architecture. The LayoutLM model family (Xu et al., 2020; 2022; Huang et al., 2022)
uses masked layout prediction task to capture the spatial relationships between different document
elements.

Open source solutions with a related goal as ours include GROBID (Lopez, 2023), which parses
digital-born scientific documents to XML with a focus on the bibliographic data and pdf2htmlEX
(Lu Wang & Wanmin Liu, 2013), that converts digital-born PDFs to HTML while preserving the
layout and appearance of the document. However, both solutions can not recover the semantic
information of mathematical expressions.

Previous VDU methods either rely on OCR text from a third party tool (Xu et al., 2020; 2022;
Appalaraju et al., 2021) or focus on document types such as receipts, invoices or form-like documents
(Majumder et al., 2020). Recent studies (Kim et al., 2022; Davis et al., 2022) show that an external
OCR engine is not necessarily needed to achieve competitive results in VDU.

3 MODEL

The architecture is a encoder-decoder transformer (Vaswani et al., 2017) architecture, that allows for
an end-to-end training procedure. We build on the Donut (Kim et al., 2022) architecture. The model
does not require any OCR related inputs or modules. The text is recognized implicitly by the network.
See Fig. 1 for an overview of the approach.

Encoder The visual encoder receives a document image x ∈ R3×H0×W0 , crops the margins
and resizes the image to fit in a fixed rectangle of size (H, W ). If the image is smaller than the
rectangle, additional padding is added to ensure each image has the same dimensionality. We use
a Swin Transformer (Liu et al., 2021), a hierarchical vision transformer (Dosovitskiy et al., 2021)
that splits the image into non-overlapping windows of fixed size and applies a series of self-attention
layers to aggregate information across these windows. The model output a sequence of the embedded
patches z ∈ Rd×N where d is the latent dimension and N is the number of patches.

Decoder The encoded image z is decoded into a sequence of tokens using a transformer decoder
architecture with cross-attention. The tokens are generated in an auto-regressive manner, using
self-attention and cross-attention to attend to different parts of the input sequence and encoder output
respectively. Finally, the output is projected to the size of the vocabulary v, yielding the logits ℓ ∈ Rv .
Following Kim et al. (2022), we use the implementation of the mBART (Lewis et al., 2019) decoder.
We use the same tokenizer as Taylor et al. (2022) because their model is also specialized in the
scientific text domain.

3.1 SETUP

We render the document images at a resolution of 96 DPI. Due to the restrictive possible input
dimensions of the Swin Transformer we choose the input size (H, W ) = (896, 672). The aspect
ratio is in between the US letter and Din A4 format 22

17 <
4
3 <

√
2. The document images are resized
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Example
This is an abstract. Lorem
ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua.

Figure 1: Our simple end-to-end architecture following Donut (Kim et al., 2022). The Swin Trans-
former encoder takes a document image and converts it into latent embeddings, which are subsequently
converted to a sequence of tokens in a auto-regressive manner

and then padded to achieve the desired input size. This input size allows us to use the Swin base
model architecture (Liu et al., 2021). We initialize the model with the pre-trained weights.
The Transformer decoder has a maximal sequence length of S = 4096. This relatively large sizing is
due to the fact that the text of academic research papers can be dense and the syntax for tables in
particular is token intensive. The BART decoder is a decoder-only transformer with 10 layers. The
entire architecture has a total of 350M parameters.
We also test experiment with a smaller model (250M parameters) with a slightly smaller sequence
length of S = 3584 and only 4 decoder layers, where we start from the pre-trained base model.
During inference the text is generated using greedy decoding.
Training We use an AdamW optimizer (Loshchilov & Hutter, 2019) to train for 3 epochs with an
effective batch size of 192. Due to training instabilities, we choose a learning rate of lrinit = 5 · 10−5

which is reduced by a factor of 0.9996 every 15 updates until it reaches lrend = 7.5 · 10−6.

3.2 DATA AUGMENTATION

In image recognition tasks, it is often beneficial to use data augmentation to improve generalization.
Since we are only using digital-born academic research papers, we need to employ a number
of transformations to simulate the imperfections and variability of scanned documents. These
transformations include erosion, dilation, gaussian noise, gaussian blur, bitmap conversion, image
compression, grid distortion and elastic transform (Simard et al., 2003). Each has a fixed probability
of being applied to a given image. The transformations are implemented in the Albumentations
(Buslaev et al., 2020) library. For an overview of the effect of each transformation, see Fig. A.1.
During training time, we also add perturbations to the ground truth text by randomly replacing tokens.
We found this to reduce the collapse into a repeating loop significantly. For more details, see Section
5.4.

4 DATASETS

To the best of our knowledge there is no paired dataset of PDF pages and corresponding source code
out there, so we created our own from the open access articles on arXiv.3 For layout diversity we also
include a subset of the PubMed Central 4 (PMC) open access non-commercial dataset. During the
pretraining, a portion of the Industry Documents Library 5 (IDL) is included. See Table A.1 for the
dataset composition.

arXiv We collected the source code and compiled PDFs from 1,748,201 articles released on arXiv.
To ensure consistent formatting, we first process the source files using LaTeXML6 and convert them
into HTML5 files. This step was important as it standardized and removed ambiguity from the LaTeX
source code, especially in mathematical expressions. The conversion process included replacing
user-defined macros, standardizing whitespace, adding optional brackets, normalizing tables, and
replacing references and citations with their correct numbers.

3https://arxiv.org/
4https://www.ncbi.nlm.nih.gov/pmc/
5https://www.industrydocuments.ucsf.edu/
6http://dlmf.nist.gov/LaTeXML/
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a) tex

\section{Title} 

We study the
formula 
\begin{equation} 
E=mc^{2} 
\label{einstein} 
\end{equation} 
as in \cite{ein}

d) pdfc) markdown

# 1 Title 

We study the
formula 

\[E=mc^{2}\] (1) 

as in [1]

b) html

<h2><span>1
</span>Title</h2> 
<p> We study the
formula </p> 
<math><mrow>
<mi>E</mi><mo>=
<mo>...</math> 
<p> as in </p> 
<cite>[1]</cite>

Figure 2: Data processing. The source file is converted into HTML which is then converted to
Markdown. a) The LaTeX source provided by the authors. b) The HTML file computed form the
LaTeX source using LaTeXML. c) The Markdown file parsed from the HTML file. d) The PDF file
provided by the authors

We then parse the HTML files and convert them into a lightweight markup language that supports
various elements such as headings, bold and italic text, algorithms, LaTeX inline and display math
and LaTeX tables. This way, we ensure that the source code is properly formatted and ready for
further processing.
The process is visualized in Fig. 2.

PMC We also processed articles from PMC, where XML files with semantic information are
available in addition to the PDF file. We parse these files into the same markup language format
as the arXiv articles. We chose to use far fewer articles from PMC because the XML files are not
always as rich in semantic information. Often times equations and tables are stored as images and
these cases are not trivial to detect, which leads to our decision to limit the use of PMC articles to the
pre-training phase.

The XML files are parsed into the same markup language as described above.

IDL The IDL is a collection of documents produced by industries that have an impact on public
health and is maintained by the University of California, San Francisco Library. Biten et al. (2022)
provide high quality OCR text for PDFs from the IDL dataset. This does not include text formatting
and is only used for pre-training to teach the model basic OCR of scanned documents.

4.1 SPLITTING THE PAGES

We split the markdown files according to the page breaks in the PDF file and rasterize each page as
an image to create the final paired dataset. During the compilation, the LaTeX compiler determines
the page breaks of the PDF file automatically. Since we are not recompiling the LaTeX sources for
each paper, we must heuristically split the source file into parts, which correspond to different pages.
To achieve that we are using the embedded text on the PDF page and match it to source text.
However, figures and tables in the PDF may not correspond to their position in the source code. To
address this issue, we remove these elements in a pre-processing step using pdffigures2 (Clark
& Divvala, 2016). The recognized captions are are then compared to the captions in the XML file
and matched based on their Levenshtein distance (Levenshtein, 1965). Once the source document has
been split into individual pages, the removed figures and tables are reinserted at the end of each page.
For a better matching we also replaced unicode characters in the PDF text with corresponding LaTeX
commands using the pylatexenc-library7.

Bag of Words matching First we extract the text lines from the PDF using MuPDF8 and preprocess
them to remove page numbers and potential headers/footers. We then use a Bag of Words model
(Harris, 1954) with TF-IDF vectorizer and a linear Support Vector Machine classifier. The model is
fitted to the PDF lines with the page number as label. Next we split the LaTeX source into paragraphs
and predict the page number for each of them.

7https://github.com/phfaist/pylatexenc
8https://mupdf.com/

4

https://github.com/phfaist/pylatexenc
https://mupdf.com/


Published as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40

Paragraph index

0

2

4

6

8

P
ag

e
in

d
ex

Staircase fit

Predictions

Figure 3: Example for splitting the paragraphs in the source code into different pages. The points in
blue denote the page index predicted by the SVM.

Ideally, the predictions will form a stair case function but in practice the signal will be noisy. To find
the best boundary points we employ a similar logic as decision trees and minimize a measure based
on the Gini impurity

G[a,b](i) = (b− a) ·
(
1− p2[a,b](i)− p2[a,b](i+ 1)

)
, (1)

where p[a,b](i) is the probability of choosing an element with the predicted page number i in the
interval of paragraph indices [a, b] that describes which paragraphs (elements) were considered for
the split.
The best splitting position t in the interval [a, b] is then

t̂i = arg min
t

(
G[a,t](i) +G[t,b](i)

)
. (2)

The search process starts with all paragraphs and for each subsequent page break, the lower bound of
the search interval is set to the previous split position. See Fig. 3 for a visualization of an example
page.

Fuzzy matching After this first coarse document splitting we try to find the exact position within
the paragraph. This is done by comparing the source text within the neighborhood of the predicted
splitting position to the last sentences of the previous page of the embedded PDF text, and the first
sentences of the next page using the fuzzysearch library9. If the two dividing points are at the
same location in the source text, the page break is considered “accurate” and receives a score of 1.
On the other hand, if the splitting positions differ, the one with the smallest normalized Levenshtein
distance is selected and given a score of 1 minus the distance. To be included in the dataset, a PDF
page must have an average score of at least 0.9 for both page breaks. This results in an acceptance
rate of about 47% of all pages.

4.2 GROUND TRUTH ARTIFACTS

Because the dataset was pre-processed by LaTeXML, the markup version of the source code can
contain artifacts and commands from unsupported packages. The HTML file may contain subsection
titles with numbering even though they are not numbered in the PDF. There may also be instances
where figures or tables are missing from the ground truth due to processing errors.

In addition, the splitting algorithm of the source code will in some cases include text from the
previous page or cut off words from the end. This is especially true for “invisible” characters used for
formatting, like italic, bold text or section header.

For PMC papers the inline math is written as Unicode or italic text, while display math equations or
tables are often included in image format and will therefore be ignored.

Each of these issues reduces the overall data quality. However, the large number of training samples
compensates for these small errors.

9https://github.com/taleinat/fuzzysearch
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5 RESULTS & EVALUATION

In particular, consider pruning the training dataset by keeping only the examples with the smallest
margin |zµ| = |Jprobe · xµ| along a probe student Jprobe. The pruned dataset will follow some dis-
tribution p(z) along the direction of Jprobe, and remain isotropic in the nullspace of Jprobe. In what
follows we will derive a general theory for an arbitrary data distribution p(z), and specialize to the
case of small-margin pruning only at the very end (in which case p(z) will take the form of a truncated
Gaussian). We will also make no assumptions on the form of the probe student Jprobe or the learning
rule used to train it; only that Jprobe has developed some overlap with the teacher, quantified by the

angle θ = cos−1
(

Jretle·T
∥Jretle∥2∥T∥2

)
(Fig. 2A).

After the dataset has been pruned, we consider training a new student J from scratch on the pruned
dataset. A typical training algorithm (used in support vector machines and the solution to which SGD
converges on separable data) is to find the solution J which classifies the training data with the maximal
margin κ = minµ J · (yµxµ). Our goal is to compute the generalization error εg of this student, which
is simply governed by the overlap between the student and the teacher, εg = cos−1(R)/π, where
R = J ·T/∥J∥2∥T∥2.

Main result and overview

Our main result is a set of self-consistent equations which can be solved to obtain the generalization
error ε(α, p, θ) for any α and any data distribution p(z) along a probe student at any angle θ relative
to the teacher. These equations take the form,

R− ρ cos θ

sin2 θ
=

α

πΛ

〈∫ κ

−∞
dt exp

(
−∆(t, z)

2Λ2

)
(κ− t)

〉

z

(1)

1− ρ2 +R2 − 2ρR cos θ

sin2 θ
= 2α

〈∫ κ

−∞
dt

e−
(t−ρµ)2

2

√
2π

√
1− ρ2

H

(
Γ(t, z)√
1− ρ2Λ

)
(κ− t)2

〉

z

(2)

ρ−R cos θ

sin2 θ
= 2α

〈∫ κ

−∞
dt

e
− (t−ρµ)2

2(1−ρµ)2

√
2π

√
1− ρ2

H

(
Γ(t, z)√
1− ρ2Λ

)(
z − ρt

1− ρ2

)
(κ− t)

+
1

2πΛ
exp

(
−∆(t, z)

2Λ2

)(
ρR− cos θ

1− ρ2

)
(κ− t)

〉

z

(3)

Where,

Λ =

√
sin2 θ −R2 − ρ2 + 2ρR cos θ, (4)

Γ(t, z) = z(ρR− cos θ)− t(R− ρ cos θ), (5)

∆(t, z) = z2
(
ρ2 + cos2 θ − 2ρR cos θ

)
+ 2tz(R cos θ − ρ) + t2 sin2 θ. (6)

Where ⟨·⟩z represents an average over the pruned data distribution p(z) along the probe student.
For any α, p(z), θ, these equations can be solved for the order parameters R, ρ, κ, from which the
generalization error can be easily read off as εg = cos−1(R)/π. This calculation results in the solid
theory curves in Figs 1,2,3, which show an excellent match to numerical simulations. In the following
section we will walk through the derivation of these equations using replica theory. In Section A.6
we will derive an expression for the information gained per training example, and show that with
Pareto optimal data pruning this information gain can be made to converge to a finite rate, resulting
in at least exponential decay in test error. In Section A.7, we will show that super-exponential scaling
eventually breaks down when the probe student does not match the teacher perfectly, resulting in
power law scaling at at a minimum pruning fraction fmin(θ).

Replica calculation of the generalization error

To obtain Eqs. 1,2,3, we follow the approach of Elizabeth Gardner and compute the volume Ω(xµ,T, κ)
of solutions J which perfectly classify the training data up to a margin κ (known as the Gardner volume)
[29, 25]. As κ grows, the volume of solutions shrinks until it reaches a unique solution at a critical κ,
the max-margin solution. The Gardner volume Ω takes the form,

Figure 4: Example of a page with many mathematical equations taken from (Sorscher et al., 2022).
Left: Image of a page in the document, Right: Model output converted to LaTeX and rendered to
back into a PDF. Examples of scanned documents can be found in the appendix B.

In this section we discuss the results and performance of the model. For an example see Fig. 4 or go
to Sec. B. The model focuses only on the important content relevant features of the page. The box
around the equations is skipped.

5.1 METRICS

We report the following metrics on our test set.

Character Error Rate The character error rate (CER), or normalized Levenshtein distance (Lev-
enshtein, 1965), measures the number of character manipulations (insertions, deletions, substitutions)
it takes to get from one string to another.

BLEU The BLEU (Papineni et al., 2002) metric was originally introduced for measuring the
quality of text that has been machine-translated from one language to another. The metric computes a
score based on the number of matching n-grams between the candidate and reference sentence.

METEOR Another machine-translating metric with a focus on recall instead of precision,
introduced in (Banerjee & Lavie, 2005).

F-measure We also compute the F1-score and report the precision and recall.

5.2 TEXT MODALITIES

In a scientific research article, there are three distinct types of text: 1) plain text, which comprises the
majority of the document, 2) mathematical expressions, and 3) tables. It is important to separately
examine each of these components during the evaluation process. This is necessary because in LaTeX,
there are multiple ways to express the same mathematical expression. While some variability has been
eliminated during the LaTeXML pre-processing step, there still is a significant amount of ambiguity
present, like ordering of subscript and superscript, equivalent commands with different notation
(stackrel, atop, substack or frac, over), situationally interchangeable commands (bm,
mathbf, boldsymbol, bf or \left(, \big(, etc.), whitespace commands, additional layers of
brackets, and more. As a consequence, there can be a discrepancy between prediction and ground
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Method Modality CER BLEU METEOR Prec. Rec. F1

PDF All 25.5 65.8 82.1 77.1 81.4 79.2

GROBID All 31.2 55.6 71.9 74.0 72.1 73.0
Tables 62.6 25.1 64.5 61.4 80.7 69.7

+ LaTeX OCR (Blecher) Plain text 36.3 57.4 69.2 82.1 70.5 75.9
Math 72.7 0.3 5.0 11.0 8.6 9.7

Nougat small All 7.3 88.9 92.8 93.6 92.2 92.9

(250M∗) Tables 22.0 68.5 78.6 75.0 79.8 77.3
Plain text 5.8 91.0 94.3 96.1 95.3 95.7
Math 11.7 56.0 74.7 77.1 76.8 76.9

Nougat base All 7.1 89.1 93.0 93.5 92.8 93.1

(350M∗) Tables 21.1 69.7 79.1 75.4 80.7 78.0
Plain text 5.8 91.2 94.6 96.2 95.3 95.7
Math 12.8 56.9 75.4 76.5 76.6 76.5

Table 1: Results on arXiv test set. PDF is the text embedded in the PDF file. The modality “All” refers
to the output text without any splitting. All metrics are reported in percent. ∗Number of parameters.

truth, even if the rendered formulas appear identical.
In addition, it is not always possible to determine, where an inline math environment ends and text be-
gins, when writing numbers and punctuation (Example: $\mathrm{H}_{0}$1, vs. H$_{0}1,$
→ H01, vs. H01,). This ambiguity reduces both math and plain text scores.
The expected score for mathematical expressions is lower than for plain text.

5.3 COMPARISON

We present our results in Table 1. As expected, the mathematical expressions have the worst agreement
with the ground truth. For the plain text, most discrepancies come from formatting ambiguities and
missing text due to inline math, as described above. The output format of GROBID is an XML
file, which we convert into a compatible markup language, similar to the PMC or arXiv files. To
some extent, GROBID provides support for formulas in its output, but it identifies and stores them
as the Unicode representations embedded in the PDF. We replace each Unicode symbol with its
corresponding LaTeX command to increase the similarity. Additionally, GROBID mislabels small
inline expressions as text. For identified formulas, GROBID stores the bounding box coordinates. We
modify the program by sending the snippet to the external formula recognition software LaTeX-OCR
(Blecher, 2023). This way we can also get a signal for math modality. The reported results in
this section are quite poor, primarily due to the amount of missed formulas by GROBID and the
equation prediction accuracy is affected by the quality of the bounding boxes. The performance of
the embedded PDF text alone is better than GROBID, which is due to formatting differences for the
title page or reference section.
Both Nougat small and base are able to outperform the other approach and achieve high scores in all
metrics. We note that the performance of the smaller model is on par with the larger base model.

5.4 REPETITIONS DURING INFERENCE

We notice that the model degenerates into repeating the same sentence continuously, a state from
which it cannot autonomously recover. In its simplest form, the last sentence or paragraph is repeated
ad infinitum. We observed this behavior in 1.5% of pages in the test set, but the frequency increases
for out-of-domain documents. Our evaluation extends to a diverse selection of academic documents,
encompassing a range of sources such as scanned books. See Appendix B for examples.

Getting stuck in a repetitive loop is a known problem with Transformer-based models, when sampled
with greedy decoding (Holtzman et al., 2020). We conducted experiments with nucleus sampling,

7
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but encountered a susceptibility to repetitive outputs. Consequently, we opted against utilizing this
technique due to the introduced randomness failing to effectively mitigate the issue of unwanted
sentence repetitions.
It can also happen that the model alternates between two sentences but sometimes changes some
words, so a strict repetition detection will not suffice. Even harder to detect are predictions where the
model counts its own repetitions, which sometimes happens in the references section.
In general we notice this kind behavior after a mistake by the model. The model is not able to recover
from the collapse.

Anti-repetition augmentation Because of that we introduce a random perturbation during training.
This helps the model to learn how to handle a wrongly predicted token. For each training example,
there is a fixed probability that a random token will be replaced by any other randomly chosen token.
This process continues until the newly sampled number is greater than a specified threshold (in this
case, 10%). We did not observe a decrease in performance with this approach, but we did notice a
significant reduction in repetitions. Particularly for out-of-domain documents, where we saw a 32%
decline in failed page conversions.

Repetition detection Since we are generating a maximum of 4096 tokens, the model will stop at
some point. However, it is very inefficient and resource-intensive to wait for an ”end of sentence”
token that will not be generated. To detect repetition during inference, we examine the largest logit
value ℓi = max ℓi for the ith token. We observed that logits after a collapse can be separated using
the following heuristic consisting of two steps. First, calculate the variance of the logits for a sliding
window of size B = 15

VarWinB [ℓ](x) =
1

B

x+B∑

i=x


ℓi −

1

B

x+B∑

j=x

ℓj




2

. (3)

Here, ℓ is the signal of logits, and x is the index. Using this new signal, compute variances again, but
this time from point x to the end of the sequence:

VarEndB [ℓ](x) =
1

S − x

S∑

i=x


VarWinB [ℓ](i)−

1

S − x

S∑

j=x

VarWinB [ℓ](i)




2

. (4)

If this signal drops below a certain threshold (we choose 6.75) and stays below for the remainder of
the sequence, we classify the sequence as having repetitions.

During inference time, it is not possible to compute the entire sequence if our goal is to stop generation
earlier. Here, we work with a subset of the last 200 tokens and half the threshold. After the generation
is finished, the procedure as described above is repeated for the full sequence.

5.5 LIMITATIONS & FUTURE WORK

Utility The utility of the model is limited by a number of factors. First, the problem with repetitions
outlined in section 5.4. The model is trained on research papers, which means it works particularly
well on documents with a similar structure. However, it can still accurately convert other types of
documents.
Nearly every dataset sample is in English. Initial tests on a small sample suggest that the model’s
performance with other Latin-based languages is satisfactory, although any special characters from
these languages will be replaced with the closest equivalent from the Latin alphabet. Non-Latin script
languages result in instant repetitions.
Generation Speed On a machine with a NVIDIA A10G graphics card with 24GB VRAM we
can process 6 pages in parallel. The generation speed depends heavily on the amount of text on any
given page. With an average number of tokens of ≈ 1400 we get an mean generation time of 19.5s
per batch for the base model without any inference optimization. Compared to classical approaches
(GROBID 10.6 PDF/s (Lopez, 2023)) this is very slow, but it is not limited to digital-born PDFs and
can correctly parse mathematical expressions.
Future work The model is trained on one page at a time without knowledge about other pages in
the document. This results in inconsistencies across the document. Most notably in the bibliography
where the model was trained on different styles or section titles where sometimes numbers are skipped
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Figure 5: Examples for repetition detection on logits. The vertical index denotes the sequence index,
where repetitions start. Top: Sample generation with repetition, Bottom: Sample generation without
repetition. Left: Highest logit score for each token in the sequence ℓ(x), Center: Sliding window
variance of the logits VarWinB [ℓ](x), Right: Variance of the window variance (3) from the position
to the end VarEndB [ℓ](x) with threshold as horizontal dashed line.

or hallucinated. Though handling each page separately significantly improves parallelization and
scalability, it may diminish the quality of the merged document text.
The primary challenge to solve is the tendency for the model to collapse into a repeating loop, which
is left for future work.

6 CONCLUSION

In this work, we present Nougat, an end-to-end trainable encoder-decoder transformer based model for
converting document pages to markup. We apply recent advances in visual document understanding to
a novel OCR task. Distinct from related approaches, our method does not rely on OCR or embedded
text representations, instead relying solely on the rasterized document page. Moreover, we have
illustrated an automatic and unsupervised dataset generation process that we used to successfully
train the model for scientific document to markup conversion. Overall, our approach has shown great
potential for not only extracting text from digital-born PDFs but also for converting scanned papers
and textbooks. We hope this work can be a starting point for future research in related domains.
All the code for model evaluation, training and dataset generation can be accessed at https:
//github.com/facebookresearch/nougat.
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A DATASET

Original Bitmap Erosion

Dilation Affine Shift Scale Rotate

Grid Distortion Elastic Transform Random Brightness Contrast

Image Compression Gauss Noise Gaussian Blur

Figure A.1: List of the different image augmentation methods used during training on an example
snippet form a sample document.

Name Number of Pages

arXiv 7,511,745
PMC 536,319
IDL 446,777

Total 8,494,841

Table A.1: Dataset composition

The most important data source is arXiv, making up > 88.4% of the corpus. On arXiv most research
documents are paired with the LaTeX source code provided by the authors. The LaTeX source offers
more information and is left unprocessed, unlike the XML format from PMC where equations and
tables are frequently substituted with images. This allows us to select exactly which information we
need to build the dataset.

B EXAMPLES

In this section we converted some pages from old text books using the Nougat base model. The text
books from the Internet Archive10 and Project Gutenberg11 and are in public domain.
The performance for these scanned pages is noticeable worse than for digital-born documents. How-
ever, the model does generate sensible text for each page with few errors. For example see the first
row of Fig. B.1. Here the model mistakes the almost illegible exponent n for ∗. In the second row of
the same figure the model falls into a repetitive loop after predicting another comma instead of a dot.
Similar problems can be seen in Fig. B.2.
In Fig. B.3 we present pages, scanned with a mobile device, from a printed master thesis and the
Nougat output. The model is robust to the artifacts that arise when hand-scanning a document.
Explore the examples in this section on the project page: https://facebookresearch.
github.io/nougat/.

10https://archive.org/
11https://www.gutenberg.org/
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and the rule is proved that

du∗

dx
= nu∗−1 du

dx
,

where n is a positive fraction whose numerator and denominator are integers. This rule has
already been used in the solution of numerous exercises.

34 The Derivative of a Constant

Let y = c, where c is a constant. Corresponding to any Dx, Dy = 0, and consequently

∆y

∆x
= 0,

and

lim
∆x→0

∆y

∆x
= 0,

or

dy

dx
= 0.

The derivative of a constant is zero.
Interpret this result geometrically.

35 The Derivative of the Sum of Two Functions

Let

y = u+ v,

where u and v are functions of x. Let Du, Du, and Dy be the increments of u, v, and y,
respectively, corresponding to the increment Dx.

y +∆y = u+∆u+ v +∆v

∆y = ∆u+∆v

∆y

∆x
=

∆u

∆x
+

∆v

∆x

dy

dx
=
du

dx
+
dv

dx
,

or

d(u+ v)

dx
=
du

dx
+
dv

dx
.

The derivative of the sum of two functions is equal to the sum of their derivatives.

the center, the axis of z horizontal and the axis of y positive downward. The element of pressure
is

2kyxdy

and the total pressure is

P = 2k

∫ 6

0

yxdy .

z is expressed in terms of y by means of the equation of the ellipse,

x2

64
+
y2

36
= 1.

Then

P = 2k 3

∫ 6

0

y
√
36− y2dy .

Exercises

1. Find the pressure on the vertical parabolic gate, Fig. 51: (a) if the edge AB lies in the surface
of the water; (b) if the edge AB lies 5 feet below the surface.

2. Find the pressure on a vertical semicircular gate whose diameter, 10 feet long, lies in the
surface of the water.

73. Arithmetic Mean. The arithmetic mean, A, of a series of n numbers, a1, a2, a3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure B.1: Example of an old calculus text book (March & Wolff, 1917).
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Here ν1 = k1[H2], ν2 = k2[O2], ν3 = k3[H2], ν4 = k4[O2][M ], and ν5 =
k5[CO]. Thus the exponential growth constant λ depends on the gas composi-
tion and the rate constants of reactions I to V. This paper reports measurements
on mixtures chosen to permit determinations of the rates of reactions I, II, III,
and V. Mixtures were selected by analyzing equation (1).

EXPERIMENTAL ASPECTS

Growth constants were obtained by measuring the blue carbon monoxide flame
band emission behind incident shocks. The intensity of this radiation is propor-
tional to the product of carbon monoxide and oxygen atom concentrations (ref.
3), and since very little carbon monoxide is consumed, the light monitors the
increase of oxygen atom concentration with time.

Gas mixtures contained varying amounts of hydrogen, carbon monoxide,
oxygen and in some mixtures carbon dioxide, diluted five to tenfold with argon.
Hydrogen, oxygen, and argon were high purity tank gases and were used without
further purification. Carbon monoxide was condensed at liquid nitrogen tem-
perature; about one-quarter of the condensate was pumped off and discarded.
Dry ice served as a convenient source of carbon dioxide. It was purified by
sub-liming three-quarters of a sample into a liquid nitrogen cooled trap. The
first quarter of this trapped fraction was discarded and the middle half used for
mixture preparation.

Recently we showed that boundary layer effects must be considered in ana-
lyzing data obtained behind incident shocks; the growing boundary layer causes
increases in temperature, density, and residence time with increasing distance
behind the shock. Conditions behind the shocks, in the region of the experi-
mental measurements, were obtained from a computer program which integrated
the equations of chemical change for a shocked gas accounting for the effects of
boundary layer buildup. In general, the extent of chemical reaction was small,
and changes in gas properties were brought about largely by the gas dynamics
associated with boundary layer growth.

Exponential growth constants were obtained from plots of the logarithm of
observed light intensity against gas time; the relation between gas and labora-
tory times was obtained from the computer calculations.

SELECTION OF GAS MIXTURES

Let us turn now to the rationale used to select gas mixtures by analysis of

equation (1). To begin with, under our experimental conditions ν4 is gener-
ally small in comparison with the other ν′′s and can be neglected for purposes
of a qualitative discussion. Secondly, λ turns out to be a small positive root - of
the order of the smaller ν values and small compared with the larger ν values.
Thus, we neglect λ3 in comparison with the other terms and rewrite equation
(1):

[(ν1 + ν5) + ν2 + ν3]λ
2 + ν3(ν1 + ν5)λ ∼= 2ν2ν3(ν1 + ν5)

If the amount of hydrogen in a mixture is large in comparison to oxygen, ν1
and ν3 are large and the term involving λ2 may be neglected; in this event,

λ ∼= 2ν2

On the other hand, if only a trace of hydrogen is present, ν3 is small, the
term involving λ may be neglected, and

λ2 ≃ 2ν2ν3(ν1 + ν5)

ν2 + (ν1 + ν5)

If we choose a mixture with a large amount of carbon monoxide, ν5 is large
and

λ ∼
√
2ν2ν3

Whereas if there is a large amount of oxygen, ν2 is large and

λ ∼
√
2ν3(ν1 + ν5)

−
√
2ν3ν1

[H2] > [CO]

−
√
2ν3ν5

[CO] > [H2]

This, then, outlines a strategy for obtaining rates of reactions I, II, III, and
V. First, a mixture rich in hydrogen is used to determine k2. Next, with k2
known, a mixture with a trace of hydrogen and rich in carbon monoxide is used
to deter-mine k3. Finally, with k3 known, mixtures with excess oxygen and
varying pro

Figure B.2: A selection of pages from a NASA conference from 1970 (Gordon et al., 1970).

16



Published as a conference paper at ICLR 2024

2.1. Molecules in Cavities

The molecular Hamiltonian describes the vibrational modes as harmonic oscillators which are
coupled to each other by a third order anharmonic coupling term. This term is obtained by
using a Taylor expansion of the the harmonic potential and therefore includes a mediator for the
IVR pathways in the model. So the molecular Hamiltonian for two separate modes (q,Q) in the
molecular part is described by:

Ĥmol = h̄ωq(b̂
†b̂) + h̄ωQ(ĉ

†ĉ) +
3∑

r,s

ηqQr,s

(
b̂† + b̂

)r (
ĉ† + ĉ

)s
. (2.3)

Here ωq describes the fundamental frequency of the molecular mode q which is coupled to the

cavity and the respective degrees of freedom are expressed with the ladder operators, b̂† and b̂.
In the second part, a lower energy vibrational mode Q is described with its respective frequency
ωQ and the corresponding ladder operators (ĉ†, ĉ). The last term describes the general form of
the third order couplings, where ηr,s describes the anharmonic coupling constants and will be

referred to by Ŵ .[4] To obtain the corresponding eigenvector for the upper and lower polariton,
the Hamiltonian matrix is diagonalized. By doing this one arrives at the following expression for
the polaritons:[22, 25]

|ψ(UP,LP ); 0⟩ =
|1c, 0, 0⟩ ± |0c, 1, 0⟩√

2
. (2.4)

Here the uncoupled states are described by the kets where the first term describes the excitation
in the cavity state, the second term describes the excitation in the high frequency mode and the
last term is the excitation in the Q mode.

2.1.2. Anharmonic Coupling Terms

Under specific symmetry considerations not all intramolecular coupling orders (r, s) are relevant.
In this specific case only orders with r+ s ≤ 3 are considered. Since all considered coordinates are
intramolecular normal modes the bilinear coupling (1, 1) is in this case equal to zero. Generally, all
terms of the potential energy have to transform according to the totally symmetric representation
of the molecules point group.[26] Thus according to the following equation:

(
Γ(q)

)r

×
(
Γ(Q)

)s

⊂ ΓA. (2.5)

Since the models discussed in this work modeled after the octahedral W(CO)6 molecule and
thus exhibit non-Abelian point group symmetry, the various possible couplings have

time-independent basis-set functions.

Ψ (q1, ..., qf , t) =

N1∑

j1=1

...

Nf∑

jf=1

Cj1...jf (t)

f∏

κ=1

χκ
jk
(qκ) (2.6)

Hereby, f represents the degrees of freedom (DOF), Cj1...jf (t) denotes the time-dependent
expansion coefficients and Nκ describes the number of basis functions used for representing the
κth DOF. The orthonormal time-independent primitive basis functions are represented by χκ

jk
(qκ)

and only the time-dependent expansion coefficients are optimized variationally [31, 32].
The problem with the standard method is the exponential scaling as the number of coefficients

increase with Nf . Therefore, the standard method is only suited for problems with less than 6
DOFs.

In the multiconfiguration time-dependent Hartree method (MCTDH method) the scaling is
softened by introducing a smaller but now time-dependent basis, the so-called single particle func-
tions (SPFs)

∣∣φκ
jk
(qκ, t)

〉
=

Nκ∑

iκ=1

c
(κ)
iκjκ

(t)
∣∣∣χ(κ)

iκ
(qκ)

〉
. (2.7)

The SPFs are represented as a linear combination of the time-independent primitive basis
functions. The ansatz for MCTDH method can now be written as the following:

Ψ (q1, ..., qf , t) =

n1∑

j1=1

...

nf∑

jf=1

Aj1...jf (t)

f∏

κ=1

φκ
jk
(qκ, t) (2.8)

=
∑

j

AJΦJ . (2.9)

Where ΦJ describes the f -dimensional product of the SPFs, the Hartree product. The complex
expansion coefficients AJ and the basis functions φκ

jk
(qκ, t) are both time-dependent and optimized

variationally [31, 32].
Due to the fact that a two layer scheme was used here (the time-dependent SPFs and the

primitive basis), the exponential scaling of the DOFs, as nk, is smaller compared to the one layer
method like the standard method.

By now applying the Dirac-Frenckle variational principle to the ansatz (eq. (2.9)), we obtain
the respective Equations of Motion and therefore a set of coupled differential

Figure B.3: Scan of a modern thesis with a mobile device camera, with permission from the author.
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model won the VQA Challenge in 2017 and achieves 66.25% accuracy on VQA v2.0 test-dev.

Pythia[41]3 extends the BUTD model by incorporating co-attention [27] between question and image regions. Pythia uses features extracted from Detectron [8]
pretrained on Visual Genome. An ensemble of Pythia models won the 2018 VQA Challenge using extra training data from Visual Genome [21] and using Resnet[11]
features. In this study, we use Pythia models which do not use Resnet features.

Footnote 3: https://github.com/facebookresearch/pythia

**Bilinear Attention Networks (BAN) [19]**4 combines the idea of bilinear models and co-attention [27] between image regions and words in questions in a
residual setting. Similar to [3], it uses Faster-RCNN [33] pretrained on Visual Genome [21] to extract image features. In all our experiments, for a fair comparison,
we use BAN models which do not use additional training data from Visual Genome. BAN achieves the current state-of-the-art single-model accuracy of 69.64 % on
VQA v2.0 test-dev without using additional training data from Visual Genome.

Footnote 4: https://github.com/jnhwkim/ban-vqa

Implementation Details For all models trained with our cycle-consistent framework, we use the values , ,  and . When
reporting results on the validation split and VQA-Rephrasings we train on the training split and when reporting results on the test split we train on both training and
validation splits of VQA v2.0. Note that we never explicitly train on the collected VQA-Rephrasings dataset and use it purely for evaluation purposes. We use
publicly available implementations of each backbone VQA model.

We measure the robustness of each of these models on our proposed VQA-Rephrasings dataset using the consensus score (Eq. 2). Table 1 shows the consensus
scores at different values of  for several VQA models. We see that all models suffer significantly when measured for consistency across rephrasings. For e.g., the
performance of Pythia (winner of 2018 VQA challenge) is reduced to a consensus score of 39.49% at . Similar trends are observed for MUTAN, BAN and
BUTD. The drop increases with increasing , the number of rephrasings used to measure consistency. Models like BUTD, BAN and Pythia which use word-level
encodings of the question suffer significant drops. It is interesting to note that even MUTAN which uses skip-thought based sentence encoding [20] suffers a drop
when checked for consistency across rephrasings. We observe that BAN + CC model trained with our proposed cycle-consistent training framework outperforms its
counterpart BAN and all other models at all values of .

Fig 4 qualitatively compares the textual and visual attention (over image regions) over 4 rephrasings of a question. The top row shows attention and predictions
from a Pythia model, while the bottom row shows attention and predictions from the same Pythia model, but trained using our framework. Our model attends at
relevant image regions

Model
CS(k) VQA Accuracy

k=1 k=2 k=3 k=4 ORI REP

MUTAN [5] 56.68 43.63 38.94 32.76 59.08 46.87

BUTD [3] 60.55 46.96 40.54 34.47 61.51 51.22
BUTD + CC 61.66 50.79 44.68 42.55 62.44 52.58

Pythia [41] 63.43 52.03 45.94 39.49 64.08 54.20
Pythia + CC 64.36 55.45 50.92 44.30 64.52 55.65

BAN [19] 64.88 53.08 47.45 39.87 64.97 55.87

BAN + CC 65.77 56.94 51.76 48.18 65.87 56.59

Table 1: Consensus performance on VQA-Rephrasings dataset. CS(k) as defined in Eq. 2 is consensus score which is non-zero only if at least  rephrasings are
answered correctly, zero otherwise; averaged across all group of questions. ORI represent a split of questions from VQA-Rephrasings which are original questions
from VQA v2.0 and their corresponding rephrasings are represented by the split REP. Models trained with our cycle-consistent (CC) framework consistently
outperform their baseline counterparts at all values of .

Model val test-dev

MUTAN [5] 61.04 63.20

BUTD [3] 65.05 66.25

+ Q-consistency 65.38 66.83
+ A-consistency 60.84 62.18

+ Gating 65.53 67.55

Pythia [41] 65.78 68.43

+ Q-consistency 65.39 68.58

+ A-consistency 62.08 63.77
+ Gating 66.03 68.88

BAN [19] 66.04 69.64

+ Q-consistency 66.27 69.69
+ A-consistency 64.96 66.31

+ Gating 66.77 69.87

Table 2: VQA Performance and ablation studies on VQA v2.0 validation and test-dev splits. Each row in blocks represents a component of our cycle-consistent
framework added to the previous row. First row in each block represents the baseline VQA model . Q-consistency implies addition of a VQG module  to
generate rephrasings  from the image  and the predicted answer  with an associated VQG loss . A-consistency implies passing all the generated
questions  to the VQA model  and an associated loss . Gating implies the use of gating mechanism to filter undesirable generated questions in 
and passing the remaining to VQA model . Models trained with our cycle-consistent (last row in each block) framework consistently outperform baselines.
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duced by beam search tend to be short and generic. Completely random sampling can introduce very unlikely words, which
can damage generation as the model has not seen such mistakes at training time. The restriction of sampling from the 10 most
likely candidates reduces the risk of these low-probability samples.

For each model, we tune a temperature parameter for the softmax at generation time. To ease human evaluation, we generate
stories of 150 words and do not generate unknown word tokens.

For prompt generation, we use a self-attentive GCNN language model trained with the same prompt-side vocabulary as the
sequence-to-sequence story generation models. The language model to generate prompts has a validation perplexity of 63.06.
Prompt generation is conducted using the top-k random sampling from the 10 most likely candidates, and the prompt is
completed when the language model generates the end of prompt token.

We propose a number of evaluation metrics to quantify the performance of our models. Many commonly used metrics, such
as BLEU for ma

Model Human

Preference

Language model 32.68%

Hierarchical Model 67.32%

Table 4: Effect of Hierarchical Generation. Human judges prefer stories that were generated hierarchically by first creating a
premise and creating a full story based on it with a seq2seq model.

Figure 5: Human accuracy at pairing stories with the prompts used to generate them. People find that our fusion model
significantly improves the link between the prompt and generated stories.

Model # Parameters (mil) Valid Perplexity Test Perplexity

GCNN LM 123.4 54.50 54.79
GCNN + self-attention LM 126.4 51.84 51.18

LSTM seq2seq 110.3 46.83 46.79

Conv seq2seq 113.0 45.27 45.54
Conv seq2seq + self-attention 134.7 37.37 37.94

Ensemble: Conv seq2seq + self-attention 270.3 36.63 36.93
Fusion: Conv seq2seq + self-attention 255.4 36.08 36.56

Table 3: Perplexity on WritingPrompts. We dramatically improve over standard seq2seq models.

Figure 6: Accuracy of prompt ranking. The fusion model most accurately pairs prompt and stories.

Figure 7: Accuracy on the prompt/story pairing task vs. number of generated stories. Our generative fusion model can
produce many stories without degraded performance, while the KNN can only produce a limited number relevant stories.

Evaluation

Figure B.4: Pages with tables. Upper: Fan et al. (2018) page 6, Lower: Shah et al. (2019) page 6
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