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A MORE ON FRANK-WOLFE-TYPE ALGORITHMS

A.1 STANDARD FRANK-WOLFE ALGORITHM

Algorithm 2 Frank-Wolfe algorithm (Frank et al., 1956)
Input: obj. f : Y 7! R, oracle O(·), init. w0 2 Y

1: for t=1, 2, 3 . . . , T do

2: vt  Oracle(rf(wt�1)) = arg minv2Y vTrf(wt�1)
3: wt  (1� ⌘twt�1) + ⌘tvt , for ⌘ := 2

t+2
4: end for

5: return wT

For a convex function f : X 7! R the Frank-Wolfe algorithm (FW) solves the constrained opti-
mization problem over a compact and convex set X . The standard FW is known to has sublinear
convergence rate, and various methods are proposed to improve the convergence rate. For example,
when the underlying feasible set is a polytope, and the objective function is strongly convex, multi-
ple variants, such as away-step FW (Wolfe, 1970; Jaggi, 2013), pairwise FW (Mitchell et al., 1974),
and Wolfe’s method (Wolfe, 1976) are shown to enjoy linear convergence rate.

A.2 WOLFE’S METHOD FOR MINIMUM NORM POINT

Algorithm 3 Wolfe’s Method for Minimum Norm Point
Initialize x 2 P , active set S = [x] and weight � = [1].
Output: x 2 P that has the minimum Euclidean norm.

1: while true do // Major cycle
2: s Oracle(x) // Potential improving point
3: if ||x||2  xTs + ✏ then break
4: S  S [ {s}
5: while true do // Minor cycle
6: y,↵ AffineMinimizer(S) // y = arg mins2aff(S) ||s||2
7: if ↵s > 0 for all s then break // y 2 conv(S)
8: // If y /2 conv(S), then update y to the intersection of conv(S) and segment joining x and

y. Then remove points in S unnecessary for describing y.
9: ✓  mini:↵i0

�i
�i�↵i

// Recall � satisfies x =
P

s2S �ss
10: y  ✓y + (1� ✓)x,�i = ✓↵i + (1� ✓)�i

11: S  {si|si 2 S and �i > 0}
12: end while

13: Update x = y and � = ↵.
14: end while

15: return x

Wolfe’s method is an iterative algorithm for finding the point with minimum Euclidean norm in a
polytope, which is defined as the convex hull of a set of finitely many points.

The Wolfe’s method consists of a finite number of major cycles, each of which consists of a finite
number of minor cycles. At the start of each major cycle, let H(x) := {yTx = xx} be the
hyperplane defined by x. If H(x) separates the polytope from the origin, then the major cycle is
terminated. Otherwise, we invoke an oracle to find any point that on the near side of the hyperplane.
The point is then added into the active set S , and minor cycle starts.

In a minor cycle, let y be the point of smallest norm in of the affine hull aff(S). If y is in the
relative interior of the convex hull conv(S), the x is updated to y and the minor cycle is terminated.
Otherwise, y is updated to the nearest point to y on the line segment conv(S) \ [x,y]. Thus y is
updated to a boundary point of conv(S), and any point that is not on the face of conv(S) in which
y lies are deleted. The minor cycles executed repeatedly until the S becomes a corral, that is, a set
whose affine minimizer lies inside its convex hull. Since a set of one point is always a corral, the
minor cycles is terminated after a finite number of runs.
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B PROOF OF THEOREM 4.1

Theorem 4.1 (Approximation Error Strictly Decreases). For any non-terminal step t, we have
err(µt+1) < err(µt). That is, the measurement vector of µt found by Algorithm 1 gets strictly
closer to the convex set ⌦ after major cycle step.

Proof. If the current step is a major cycle with no minor cycle, then xt+1 is the affine minimizer of
aff(S [ {st}) with respect to !t. Then the affine minimizer property implies (st � xt+1)(xt+1 �
!t) = 0. Since iteration does not terminate at step t, we have (xt � !t)T (xt � st) > 0, and
therefore xt+1 not equal to xt. Then xt+1 is the unique affine minimizer implies f⌦(xt+1) =
min!2⌦ ||xt+1 � !||2  ||xt+1 � !t||2 < ||xt � !t||2 = f⌦(xt).

Otherwise the current step contains one or more minor cycles. In this case, we show that the first
minor cycle strictly reduces the approximation error, and the (possibly) following minor cycles
cannot increase it. For the first minor cycle, the affine minimizer y0 of aff(S [ {st}) with respect
to !t is outside conv(S [ {st}). Let z = ✓y0 + (1 � ✓)xt be the intersection of conv(S [ {st})
and segment joining x and y. Let V0 := St and Vi denotes the active set after the i-th minor cycle.
Then since y1 is the affine minimizer of V1 with respect to !t, we have
||z � !t|| = ||✓y0 + (1� ✓)xt � !t||  ✓||y0 � !t|| + (1� ✓)||xt � !t|| < ||xt � !t||, (14)

where the second step uses the triangle inequality and the last step follows since the segment xty0

intersects the interior of conv(S[{st}), and the distance to !t strictly decreases along this segment.
Therefore the point z found by first minor cycle satisfies

f⌦(z) = min
!2⌦

||z � !||2  ||z � !t||2 < ||xt � !t|| = f⌦(xt). (15)

Hence h(y1) < h(xt), and the first minor cycle strictly decreases the approximation error. By a
similar argument, in subsequent minor cycles the approximation error cannot be increased. However,
after the first minor cycle, the iterating point may already at the intersection point and the strict
inequality in last step of Eq. 14 need to be replaced by non-strict inequality.

Therefore any major cycle either finds an improving point and continue, or enter minor cycles where
the first minor cycle finds an improving point, and the subsequent minor cycles does not increase
the distance. Adding both side of f⌦(xt+1) < f⌦(xt) by f⌦(x⇤) and we have the approximation
error h(xt+1) < h(xt) strictly decreases.

C PROOF OF THEOREM 4.2

We first prove the Theorem 4.2, using Lemma 4.3 and Lemma 4.4. Then present the proof of the
lemmas.
Theorem 4.2 (Convergence in Approximation Error). For t � 1, the mixed policy µt found by
Algorithm 1 satisfies

err(µt)  16Q2/(t + 2). (16)
where Q := maxµ2�(U) ||c(µ)|| is the maximum norm of a measurement vector.

Proof. Since Lemma 4.4 shows that drop steps are no more than half of total major cycle steps, and
Theorem 4.1 guarantees these drop steps reducing the approximation error, we can safely skip these
step, and re-index the step numbers to include non-drop steps only using k.

For these non-drop steps, we claim that err(µk)  8Q2/(k + 1). Using Lemma 4.3, we prove the
convergence rate using induction. We first bound the error of any err(µk). For any k � 1

err(µk) = dist(c(µk),⌦)� dist(c(µ⇤),⌦) (17)

= 1/2||c(µk)� Proj⌦(c(µk))||2 � 1/2||c(µ⇤)� Proj⌦(c(µ⇤))||2 (18)

 1/2(||c(µk)||2 + ||Proj⌦(c(µk))||2 � ||c(µ⇤)||2 � ||Proj⌦(c(µ⇤))||2) (19)

 ||c(µk)||2 � ||c(µ⇤)||2 (20)

 ||c(µk)||2 (21)

 Q2, (22)
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where Eq. 18 uses the definition of our squared Euclidean distance function. Eq. 19 follows from
triangle inequality, and Eq. 20 is by the contractive property of the Euclidean distance.

When k = 1, the Eq. 22 established the based case. Now for k � 1, assume that err(µk) 
8Q2/(k + 1) for k � 1, then Lemma 4.3 gives err(µk+1)  err(µk) � err

2(µk)/8Q2. Since
the quadratic function of the right hand side is monotonically increasing on (�1, 4Q2], using the
inductive hypothesis

err(µk+1)  err(µk)� err
2(µk)/8Q2  8Q2/(k + 1)� 8Q2/(k + 1)2  Q2/(k + 2) (23)

Then since for t steps of major cycle steps, the number of non-drop steps k > t/2, we conclude that
err(µt)  16Q2/(t + 2).

Then we prove the lemmas.
Lemma 4.3. For a non-drop step, we have err(µt)� err(µt+1) � err

2(µt)/8Q2.

Proof. The non-drop step contains either no minor cycle or one minor cycle. We first consider the
no minor cycle case.

If a major cycle contains no minor cycle, then xt+1 is the affine minimizer of the S [ {st}.

err(µt)� err(µt+1) = dist(xt,⌦)� dist(xt+1,⌦) (24)

= 1/2(||xt � !t||2 �min
!2⌦

||xt+1 � !||2) (25)

� 1/2(||xt � !t||2 � ||xt+1 � !t||2) (26)

= 1/2(||xt � !t||2 + ||xt+1 � !t||2 � 2||xt+1 � !t||2) (27)

= 1/2(||xt � !t||2 + ||xt+1 � !t||2 � 2(xt � !t)T (xt+1 � !t)) (28)

= 1/2(||xt � xt+1||2), (29)

where the equation (28) follows from the affine minimizer property Eq. (9). For ||xt�xt+1|| in the
last equation, and 8q 2 aff(S [ {st}), we have

||xt � xt+1|| � ||xt � xt+1|| ||x
t|| + ||q||
2Q

( Definition of Q) (30)

� ||xt � xt+1|| ||x
t � q||
2Q

( Triangle inequality) (31)

� 1

2Q
(xt � xt+1)(xt � q) ( Cauchy-Schwarz inequality) (32)

=
1

2Q
(xt � !t)(xt � q) ( Affine minimizer property). (33)

Then it suffices to show that (xt � !t)(xt � q) � err(µt).

Since ⌦ is a convex set, the squared Euclidean distance function dist(x,⌦) is convex for x, which
implies

dist(xt,⌦) + (q � xt)rdist(xt,⌦)  dist(q,⌦). (34)

Putting inrdist(xt,⌦) = (xt� Proj⌦(xt)) = (xt�!t), we get (xt�!t)(xt�q) � err(µt),
which together with Eq. 29 and Eq. 33 concludes that for non-drop step with no minor cycles, we
have err(µt)� err(µt+1) � err

2(µt)/8Q2.

For non-drop step with one minor cycle, we use the Theorem 6 of (Chakrabarty et al., 2014). By a
linear translation of adding all points with �!t, it gives

||xt � !t||2 � ||xt+1 � !t||2 � ((xt � !t)(xt � q))2/8Q2. (35)
Then applying the same argument as Eq. 34, and we finished our proof.
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Lemma 4.4. After t major cycle steps of Algorithm 1, the number of drop steps is less than t/2.

Proof. Recall that at the termination of a minor cycle, the size of the active set |Sc| 2 [1,m]. Since
in each major cycle steps, the size of active set St increases by one, and each drop step reduces the
size of St by at least one, the number of drop steps is always less than half of total number of the
major cycle steps.

D PROOF OF THEOREM 4.5

Theorem 4.5 (Memory Complexity Bound). For an constrained RL problem with m-dimensional
measurement vector, in the worst case, a mixed policy needs to randomize among m + 1 individual
policies to ensure convergence of RL oracles that search for deterministic policies.

Proof. We give a constructive proof. Consider a m-dimensional vector-valued MDP with a sin-
gle state, m + 1 actions, and c(ai) := ei is the unit vector of i-th dimension for i 2 [1,m], and
c(am+1) := 0, and the episode terminates after 1 steps. The constrained RL problem is to find a
policy whose measurement vector lies in the convex set of a single point {1/2m}. By linear pro-
gramming, it is clear that the only feasible mixed deterministic policy is to select am+1 with 1/2
probability, and the rest m actions with 1/2m probability; i.e. the unique feasible policy to this
problem has an active set containing m + 1 deterministic policies. Therefore any method random-
ize among less than m + 1 individual policies does not ensure convergence when used with RL
algorithms searching for deterministic policies.

14


	Introduction
	Related Work
	Preliminaries
	Approach, Algorithm and Analysis
	Reduce C2RL to a Distance Minimization Problem
	Frank-Wolfe-type Algorithms over Polytope
	Our Main Algorithm
	Convergence and Sparsity

	Experiments
	Conclusion
	More on Frank-Wolfe-type Algorithms
	Standard Frank-Wolfe Algorithm
	Wolfe's Method for Minimum Norm Point

	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.5

