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Figure 1. D3GA enables motion transfer showing good generalizability while preserving each avatar’s high-quality details.

1. Appendix

This supplemental document presents additional results of
our method in the context of garment decomposition and
the effect of LNeo on geometry, qualitative evaluation of
garment loss LGarment. Moreover, we show the effect of
the corrective field Ψ applied to the input tetrahedrons pre-
sented in Figure 6. Finally, we present more information
about the deformation gradient, color network ablation in
the context of shadows and additional comparison to some
NeRF-based models like NPC by Su et al. [10].

Compositionality: One of the important features of our ar-
chitecture is its composition properties. We can arbitrar-
ily decompose a given avatar to give segments of interest.
Each of the given segments can undergo different special-
ized conditioning, for instance, expression codes or key-
points for face or motion vectors for face. Figure 8 shows
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decomposed garments for five different avatars. Each gar-
ment part is independent and can be controlled separately.
Regularization Effects: We introduced LNeo to avoid ge-
ometry artifacts that could potentially misplace the Gaus-
sians. It prevents tetrahedra from losing too much volume,
flipping, or diverging in size from the canonical shape. Op-
timization of layered garments will naturally struggle for
regions that are either permanently or temporarily covered,
resulting in geometric artifacts, which can be alleviated by
LNeo regularization (See Supp. mat for more details).

In Figure 3, we show additional ablation of the regular-
ization effect of cage usage. As can be seen, the avatar opti-
mized using only LBS can exhibit artifacts due to incorrect
3D Gaussian orientation during the test time. Using tetra-
hedral cages and MLP-based correctives can improve their
orientation significantly removing the artifacts.
Failure Cases: Human body avatar methods that rely solely
on sparse signals, such as joint angle vectors, often strug-
gle to accurately model more complex garment deforma-
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Figure 2. Our color network replaces the Spherical Harmonics
used in the 3DGS with a more compact view-dependent neural
network. Here we present the effect of view and pose conditioning
on the shadows modeling.

w/o correctives Ours
Figure 3. Effect of corrective networks. Here we disabled correc-
tive networks and only deformed body triangular mesh with LBS.

tions that are independent of the body. Figure 4 illustrates
the most common failure in modeling long garments. All
MLP-based solutions use a coarse SMPL mesh to model
the avatar. To achieve high-quality results, Animatable
GL (AG) [5] requires a specialized template of the gar-
ment tracked per frame. In contrast, MLP-based solutions
achieve more stable, albeit incorrect, results using only the
SMPL mesh as guiding geometry.
Neo-Hookean Term: Figure 5 shows the regularization ef-
fect of the Neo-Hookean term [6] to prevent tetrahedrons
from sheering or losing volume, especially in places where
supervision is not available, e.g., under the garment.

In table 1 we additionally measured the relation between
the number of Gaussians, quality, and speed. As can be
seen, the best compromise is for 100k and 200k primitives
as the tradeoff between speed and quality.

2. Cage Deformation Gradient
From Sumner et al. [11]: Our goal is to encode shape de-
formation through a differential specification, enabling us

Experiment PSNR ↑ LPIPS ↓ SSIM ↑ FPS ↑ ∆FPS

25k Gaussians 29.938 0.058 0.960 28 107%
100k Gaussians 29.825 0.056 0.960 26 100%
200k Gaussians 29.864 0.056 0.960 23 88%
300k Gaussians 29.864 0.056 0.960 20 77%

Table 1. Average frame rate per second at 1024 × 667 resolution
w.r.t to the amount of Gaussian measured on a Nvidia V100 GPU.
100k Gaussians provide the best rendering-time-to-quality ratio.

to create and use an algorithm that transfers differential
changes. Continuum mechanics, which addresses the be-
havior of materials under external forces [3], offers estab-
lished methods for representing large deformations of solids
under load. The deformation gradient, a key concept in this
field, provides the exact representation we require.

p̃ = U(p) =

U1(p1, p2, p3)
U2(p1, p2, p3)
U3(p1, p2, p3)

 (1)

The deformation of an infinitesimal vector dp within the
solid is determined by the deformation gradient ∂U

∂p . Since
U maps from R3 to R3 and varies with position, its gradient
is a second-order tensor field:
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However, in a more general case, we need to use an ap-
proximation of the Jacobian U via discretization by triangu-
lation or tetrahedralization for a given shape. In our method,
when using cages, we have four vertices {i1, i2, i3, i4} of a
cage for which the deformation gradient can be defined as:

Jj(vi2 − vi1) = ṽi2 − ṽi1

Jj(vi3 − vi1) = ṽi3 − ṽi1

Jj(vi4 − vi1) = ṽi4 − ṽi1

(3)

which in the matrix form equals:

JjVj = Ṽj

Jj = VjṼ
−1
j

(4)

where Vj and Vj the 3× 3 matrices and Jj if the deforma-
tion gradient applied to the kernels of each Gaussian prim-
itive j which encapsulates change between canonical and
deformed tetrahedrons.

3. Broader Impact
Our project focuses on reconstructing a high-fidelity human
body avatar from multiview videos, with the capability to
extrapolate to poses not originally captured. While our tech-
nology is primarily intended for constructive purposes, such



Ground Truth Ours 3DGS-Avatar [7] Gaussian Avatar [1] AG (w/o T) [5] AG (w/ T) [5]

Figure 4. For pose-conditioned methods, common failure cases occur with subjects wearing long garments. Methods that do not use a
specialized garment template (T), to which primitives are attached, often fail in these scenarios. Although Animitable Gaussians (AG)
[5] achieves the best results when using such a template (/w T), it fails completely without one (w/o T). On the other hand, MLP-based
methods are more stable, even when using only the SMPL average body mesh as the underlying template geometry.

w/ LNeo w/o LNeo

Figure 5. The effect of the tetrahedra regularization LNeo is
mostly visible in the regions which lack supervision or undergo
sliding, which covers them for most of the time.

as enhancing telepresence or mixed reality applications, we
recognize the potential risks of its misuse. Hence, we advo-
cate for advancements in digital media forensics [8, 9] to aid
in detecting synthetic media. It is important to highlight that
all individuals in our dataset have provided written consent
for the use and release of their data.

As mentioned by Isik et al. [2] NeRF struggles with cap-
turing long dynamic sequences due to its limited capacity.
Evaluation of NPC [10] on ActorsHQ sequence shows sig-
nificant artifacts depicted in Figure 9. Moreover, previous
generation methods like TAVA [4] or ARAH [12] are pro-
hibitively slow, especially for high-resolution images like in
our case as they were designed to operate on the image with
256× 256 size.
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