
Efficient Bayesian network structure learning via local Markov boundary
search—Supplement

A Complete algorithm description

For completeness and reproducibility, the full TAM algorithm combining Algorithms 1 and 2 is
detailed in Algorithm 3.

Algorithm 3 TAM algorithm for learning DAGs
Input: X = (X1, . . . , Xd), ω, κ
Output: Ĝ.

1. Initialize empty graph Ĝ = ∅ and j = 0.

2. Set layer L̂0 = ∅, let Âj = ∪jt=0L̂t.

3. While V \ Âj 6= ∅:

(a) For k /∈ Âj , apply PPS(X, k, Âj , κ) (See Algorithm 2) to obtain the estimated Markov
boundary m̂jk along with an estimate ĥjk of the corresponding conditional entropy
H(Xk | Âj).

(b) Initialize L̂j+1 = ∅, Ŝj+1 = ∅. Sort ĥjk in ascending order and let τ̂ (0) be the
corresponding permutation of V \Aj .

(c) For ` ∈ 0, 1, 2, . . . until |τ̂ (`)| = 0: [TAM step]
i. L̂j+1 = L̂j+1 ∪ {τ̂ (`)1 }.

ii. For k /∈ Âj ∪ L̂j+1 ∪ Ŝj+1, estimate I(Xk; τ̂
(`)
1 | m̂jk) by some estimator Î(`)jk

iii. Set Ŝj+1 = Ŝj+1 ∪ {k : Î
(`)
jk ≥ ω}.

iv. τ̂ (`+1) = τ̂ (`) \
(
L̂j+1 ∪ Ŝj+1

)
(d) For k ∈ L̂j+1, set paĜ(k) = m̂jk.
(e) Update j = j + 1.

4. Return Ĝ.

B Graphical model background

In this appendix, we recall some basic facts regarding graphical models that are used throughout
the proofs. This section will also help to explain the importance of the positivity assumption on P ,
as well as the concept of faithfulness. For more background on graphical models, see Koller and
Friedman [29], Lauritzen [31].

Uniqueness of Markov boundaries The Markov blanket of a node Xk relative to some subset
S ⊂ V is any subset m ⊂ S such that Xk ⊥⊥ (S \m) |m. A Markov boundary is a minimal Markov
blanket, i.e. a Markov blanket m such that no proper subset of m′ (m satisfies Xk ⊥⊥ (S \m′) |m′.
Neither the Markov blanket nor the Markov boundary are unique in general. A key fact regarding
Markov boundaries is that when P is strictly positive, they are unique. Recall that we denote the
Markov boundary of Xk relative to S by MB(Xk;S).

Lemma B.1. If P (X = x) > 0 for all x ∈ {0, 1}d, then for any S ⊂ V , the Markov boundary
MB(Xk;S) exists and is unique.

For a direct proof, see Proposition 3.1.3 in Drton et al. [13]. This lemma remains true if P is replaced
by a (strictly positive) density function. More generally, Markov boundaries are unique as long as the
intersection property of conditional independence holds in P [11, 35].

14

Minimal I-maps and orderings A minimal I-map of P is any DAG G = (V,E) such that the
following conditions hold:

1. P factorizes over G, i.e. (1) holds, and
2. If any edge is removed from E, then (1) is violated.

In general, minimal I-maps are not unique. Given an ordering ≺ of the variables, a minimal I-map
can be constructed as follows [see e.g., 29, §3.4.1]: For each k, define pa(k) to be MB(Xk;≺k),
where ≺k:= {j : Xj ≺ Xk}. This procedure is well-defined as long as MB(Xk;≺k) is unique,
which is guaranteed by Lemma B.1. An important consequence of this procedure is that once the
layer decomposition of a minimal I-map G is known, the full DAG G can be recovered by performing
local search. To see this, recall that the layers Lj define canonical ancestral sets Aj and replace
MB(Xk;≺k) above with MB(Xk;Aj), where j is the largest index such that Xk /∈ Aj .

Faithfulness and d-separation Throughout the proofs, we make use of the concept of d-separation
defined below. Although faithfulness is never assumed, it is useful to recall its definition for
completeness.

A trail in a directed graph G is any sequence of distinct nodes Xi1 , . . . , Xi` such that there is
an edge between Xim and Xim+1 . The orientation of the edges does not matter. For example,
X ← Y → Z would be a valid trail. A trail of the form Xim−1

→ Xim ← Xim+1
is called a

v-structure. We say a trail t is active given another set C if (a) de(Xim)∩C 6= ∅ for every v-structure
Xim−1

→ Xim ← Xim+1
in t and (b) no other node in t is in C. In other words, t ∩C consists only

of central nodes in some v-structure contained entirely in t.
Definition 1. Let A,B,C be three sets of nodes in G. We say that A and B are d-separated by C if
there is no active trail between any node a ∈ A and b ∈ B given C.

An important consequence of (1) is the following: If G satisfies (1) for some P and A and B are
d-separated by C in G, then A ⊥⊥ B |C in P (29, Theorems 3.1, 3.2, or §3.2.2 in 31).

Thus, if G is a BN of P , then d-separation can be used to read off a subset of the conditional
independence relations in P . Whenever the reverse implication holds—i.e. conditional independence
in P implies d-separation in G, we say that P is faithful to G. This condition does not hold in general,
not even for minimal I-maps.
Remark 2. Faithfulness is a standard assumption in the literature on BNs. Assuming G is faithful
to P ensures that the Markov equivalence class of P is identified, however, this is not the same as
identifying G. More precisely, faithfulness identifies a CPDAG, which is a partially directed graph
that encodes the set of conditional independence relationships shared by every DAG in the Markov
equivalence class. This can be a strong assumption, especially with finite samples [43]. By contrast,
our approach is to circumvent faithfulness and impose assumptions that identify a bona-fide DAG G.
See Appendix C.7 for an explicit example where Condition 1 identifies an unfaithful DAG.

C Extensions and further examples

The results in Sections 3-5 make several assumptions that are not strictly necessary. In this appendix,
we briefly outline how these assumptions can be relaxed. In Appendix C.1 we show how the positivity
assumption can be replaced by a slightly weaker nondegeneracy condition. In Appendix C.2-C.3
we discuss how Condition 1 can be relaxed and how it is compared with existing identifiability
results. Then we discuss examples and extensions of Condition 2 in Appendices C.4-C.5. Finally, in
Appendix C.6 we discuss extensions to more general distributions.

C.1 Positivity and a nondegeneracy condition

Throughout the paper, we have assumed that P is strictly positive. In fact, all of the results will go
through under the following slightly weaker condition:
Condition 3 (Nondegeneracy). I(Xk; pa(k) |A) > 0 for any ancestral set A ⊂ [d] such that
pa(k) \A 6= ∅.

This condition implies that there is still some information between Xk and pa(k), even after learning
everything about A. This is quite reasonable: If pa(k) \A 6= ∅ is nonempty, then there is still at least

15

one parent of Xk unaccounted for after conditioning on A. This “missing parent” accounts for the
“missing mutual information” that makes this quantity positive. Seemingly reasonable, there are some
degenerate cases where Condition 3 may not hold. The following lemma makes the characterization
of nondegeneracy more precise:
Lemma C.1. Suppose that for any two disjoint subsets A,B ⊂ X , P (A |B) /∈ {0, 1}. Then
Condition 3 holds for any minimal I-map of P .

This lemma shows that as long as the dependencies implied by G are non-deterministic, Condition 3
will always be satisfied. In fact, this is guaranteed by the positivity of P , which we have assumed
already:
Corollary C.2. If P is strictly positive, then Condition 3 holds for any minimal I-map of P .

Before proving Lemma C.1, we first show how Corollary C.2 follows as a consequence. Indeed, this
follows immediately from Lemma C.1 and the following lemma:
Lemma C.3. If P (X = x) > 0 for all x ∈ {0, 1}d, then for any two disjoint subsets A,B ⊂ X ,
P (A |B) /∈ {0, 1}.

Proof. For any a, b, Bayes’ rule implies P (A = a |B = b) > 0. Now we show P (A = a |B =
b) 6= 1. Suppose the contrary, then

P (A = a,B = b) = P (B = b) =
∑
a′

P (A = a′, B = b) =⇒
∑
a′ 6=a

P (A = a′, B = b) = 0,

which is contradictory to P (A = a,B = b) > 0 and completes the proof.

Now we prove Lemma C.1.

Proof. (Proof of Lemma C.1) We proceed by contradiction. Suppose I(Xk; pa(k) |A)) = 0, then

Xk ⊥⊥ pa(k) |A

Let pa1(k) = pa(k)∩A, pa2(k) = pa(k)\A, andA′ = A\pa1(k), so that pa(k) = pa1(k)∪pa2(k),
A = pa1(k) ∪A′, and pa2(k) ∩A = ∅, pa2(k) 6= ∅. Therefore,

P (Xk | pa1(k), A′)P (pa1(k),pa2(k) | pa1(k), A′) = P (Xk,pa1(k),pa2(k) | pa1(k), A′).

Since

P (pa2(k) = y2 | pa1(k) = y′1, A
′ = a′) =

∑
y1

P (pa1(k) = y1,pa2(k) = y2 | pa1(k) = y′1, A
′ = a′)

=
∑
y1=y′1

P (pa1(k) = y1,pa2(k) = y2 | pa1(k) = y′1, A
′ = a′)

=P (pa1(k) = y′1,pa2(k) = y2 | pa1(k) = y′1, A
′ = a′).

Thus we can simplify to

P (Xk | pa1(k), A′)P (pa2(k) | pa1(k), A′) = P (Xk,pa2(k) | pa1(k), A′)

which amounts to
Xk ⊥⊥ pa2(k) | (A′,pa1(k)).

Combined with the Markov property Xk ⊥⊥ A′ | (pa1(k),pa2(k)) (i.e. since A′ ⊂ nd(k)), we have

P (Xk,pa2(k), A′ | pa1(k)) = P (Xk,pa2(k) |A′,pa1(k))P (A′ | pa1(k))

= P (Xk |A′,pa1(k))P (pa2(k), A′ | pa1(k))

= P (Xk, A
′ | pa1(k),pa2(k))P (pa2(k) | pa1(k))

= P (Xk | pa2(k),pa1(k))P (pa2(k), A′ | pa1(k)).

By Condition 3, P (pa2(k), A′ | pa1(k)) /∈ {0, 1}, so that

P (Xk |A′,pa1(k)) = P (Xk | pa2(k),pa1(k))

16

holds for different combinations of (A′,pa2(k)). These are two functions of A′ and pa2(k) given
pa1(k), and are equal for all possible combinations of (A′,pa2(k)), i.e. it is independent of what
values they take on. It follows that

P (Xk | pa1(k)) = P (Xk | pa2(k),pa1(k)).

Since G is an I-map, the joint probability factorizes over it

P (X1, · · · , Xd) =

d∏
`=1

P (X` | pa(`))

= P (Xk | pa1(k),pa2(k))
∏
6̀=k

P (X` | pa(`))

= P (Xk | pa1(k))
∏
` 6=k

P (X` | pa(`)).

Therefore we can remove the edges from pa2(k) to Xk, which contradicts the minimality of G. The
proof is complete.

C.2 More general version of Condition 1

According to Lemma G.1, one sufficient condition for (C2) is to have no path-cancellation between
Xi and Xk. This can be further relaxed by following Theorem C.4 and Algorithm 4. For any ancestor
Xi ∈ anj(k), denote the subset anij(k) ⊆ anj(k) \Xi to be the ancestors with smaller conditional
entropies than Xi, namely,

anij(k) := {X` ∈ anj(k) \Xi : H(X` |Aj) ≤ H(Xi |Aj)}

Theorem C.4. For each Xk ∈ V with L(Xk) ≥ 2, and for each j = 0, · · · , L(Xk)− 2, there exists
Xi ∈ anj(k), which we refer as important ancestors imj(k), such that following two conditions
hold:

(U1). H(Xi |Aj) < H(Xk |Aj)

(U2). I(Xk; (anij(k), Xi) |Aj) > 0,

Then G is identifiable from P .
Remark 3. For any node Xk not in current layer Lj+1, (U1) is exactly the same as (C1). (U2)
requires its important ancestor together with other ancestors with smaller entropy in Lj+1 contribute
to positive mutual information with Xk. Note that anij(k) can be empty, in which case (U2) reduces
to (C2). If this is applied to the equal entropy case in Condition (C3), (U2) is relaxed to

I(Xk;Lj+1 |Aj) > 0

which requires the entropy of nodes not in Lj+1 to be conditional dependent with all nodes in Lj+1.

Algorithm 4 differs with Algorithm 1 in only one step. When testing independence in the TAM step,
instead of estimating I(Xk; τ̂

(`)
1 | Âj), we choose to estimate I(Xk; L̂j+1 | Âj) to take advantage of

anij(k) to detect Xk /∈ Lj+1. Since Theorem 3.1 and Algorithm 1 are special cases of Theorem C.4
and Algorithm 4, we only show the proof of the later (more general) theorem and the correctness of
the later algorithm, which are shown in Appendix D.

C.3 Comparison with “equal entropy” condition

The “equal entropy” Condition (C3) has a straightforward relaxation which follows directly along
similar lines as Ghoshal and Honorio [19]. For completeness, we quote this result below; the proof is
identical to this prior work and hence omitted. Denote hk = H(Xk | pa(k)).
Condition 4. There exists a topological ordering τ such that for all j ∈ [d] and ` ∈ τ[j+1:d], the
following holds:

1. If k = τj and ` are not in the same layer, then

hk < h` + I(X`; pa(`) \ τ[1:j−1] |Xτ[1:j−1]
). (6)

17

Algorithm 4 TAM algorithm (general version)
Input: X = (X1, . . . , Xd), ω
Output: L̂ = (L̂1, . . . , L̂r̂).

1. Initialize L̂0 = ∅, let Âj = ∪jt=0L̂t

2. For j ∈ 0, 1, 2, . . .:

(a) For k /∈ Âj , estimate conditional entropy H(Xk | Âj) by some estimator ĥjk.

(b) Initialize L̂j+1 = ∅, Ŝj+1 = ∅. Sort ĥjk in ascending order and let τ̂ (0) be the
corresponding permutation of V \Aj .

(c) For ` ∈ 0, 1, 2, . . . until |τ̂ (`)| = 0: [TAM step]
i. Let L̂j+1 = L̂j+1 ∪ {τ̂ (`)1 }.

ii. For k /∈ Âj ∪ L̂j+1 ∪ Ŝj+1, estimate I(Xk; L̂j+1 | Âj) by some estimator Î(`)jk
iii. Set Ŝj+1 = Ŝj+1 ∪ {k : Î

(`)
jk ≥ ω}.

iv. τ̂ (`+1) = τ̂ (`) \
(
L̂j+1 ∪ Ŝj+1

)
3. Return L̂ = (L̂1, . . . , L̂r̂).

2. If k and ` are in the same layer, then either hk = h` or (6) holds.
Theorem C.5. If Condition 4 holds for some ordering τ , then τ is identifiable from P .

We can interpret Condition 4 in following two ways. As long as the conditional mutual information on
the right side of (6) is positive, then the topological sort can be recovered by minimizing conditional
entropies, much like the equal variance algorithm. On the other hand, compared to Condition (C3)
which requires hk = h`, the conditional mutual information between child and parent nodes on the
RHS is a bound on the difference hk − h`. Thus, Condition 4 can be interpreted as a relaxation
of Condition (C3) in which the “violations” of equality are controlled by this conditional mutual
information.
Lemma C.6. Assuming (C2), Condition 4 implies Condition 1.

Proof. Suppose Xi = Xτs ∈ anj(k) has the closest position to Xk in terms of ordering τ , then
Xτ[1:s−1]

contains all the other ancestors of Xk in Lj+1 except for Xi. Furthermore, Xτ[1:s−1]
also

contains the ancestors of anj(k) such that P (Xk |Aj) = P (Xk | ancestors of anj(k)). Therefore,
we have (C1):

H(Xi |Aj) = H(Xi |Xτ[1:s−1]
)

< H(Xk |Xτ[1:s−1]
)

= H(Xk |Aj , anj(k) \Xi)

≤ H(Xk |Aj)
The first inequality is by (6), the second one uses the increasing property of conditional entropy when
conditioning set is enlarged.

Remark 4. Lemma C.6 implies Lemma 3.2. In fact, since Condition (C3) implies Condition 4, we
have

Condition (C3) =⇒ Condition 4 =⇒ Condition 1.

Finally, we conclude with an example to illustrate the difference between Condition 1 and Condition 4.
Example 1. Suppose the graph is

X2

↗ ↘
X1 X4

↘ ↗
X3

18

where

X1 = Z1, Z1 ∼ Ber(0.2),

X2 = −X1 + Z2 = −Z1 + Z2, Z2 ∼ Ber(0.1),

X3 = X1 + Z3 = Z1 + Z3, Z3 ∼ Ber(0.2).

For X4, we consider two models:

(M1) X4 = X2 +Ber(σ(εX3 + β0))

(M2) X4 = X2 +X3 + Z4 = Z2 + Z3 + Z4, Z4 ∼ Ber(0.1),

where σ(x) = 1/(1 + exp(−x)). It is straightforward to check that each of these models does not
satisfy equalities in Condition (C3), but satisfies either Condition 1 or Condition 4. Let’s first look at
the first three variables:

H(X1) = h(0.2) ≈ 0.500 H(X2) ≈ 0.733 H(X3) ≈ 0.778

H(X2 |X1) = h(0.1) ≈ 0.325 < H(X2) H(X3 |X1) = h(0.2) ≈ 0.500 < H(X3)

So the subgraph on (X1, X2, X3) satisfies both Condition 1 and Conditions 4. Now consider the last
node: For the first model (M1), β0 = σ−1(0.1) = log 0.1

1−0.1 ≈ −0.219. Choose ε small enough so
that σ(εX3 + β0) ≈ 0.1, e.g. if ε = 0.01 then σ(εX3 + β0) ∈ [0.1, 0.102] when X3 ∈ {0, 1, 2}. By
doing so,

P (X4 = −1) = 0.2× 0.9× 0.9 P (X4 = −X1 + 0 |X1) = 0.9× 0.9

P (X4 = 0) = 0.8× 0.9× 0.9 + 0.2× 0.9× 0.1× 2 P (X4 = −X1 + 1 |X1) = 0.9× 0.1× 2

P (X4 = 1) = 0.8× 0.9× 0.1× 2 + 0.2× 0.1× 0.1 P (X4 = −X1 + 2 |X1) = 0.1× 0.1

P (X4 = 2) = 0.8× 0.1× 0.1 H(X4 |X1) ≈ 0.525 < H(X4)

H(X4) ≈ 0.87 H(X4 |X1, X2) ≈ h(0.1) ≈ 0.325

< H(X3 |X1, X2) < H(X4 |X1)

Therefore (M1) satisfies (C1) and (C2) but not Condition 4, since the order between X3 and X4 is
flipped. On the other hand, the second model (M2), where X1 ⊥⊥ X4, I(X1;X4) = 0, thus violates
(C2) and will incorporate X4 into the first layer. But Condition 4 still holds. Note that (M1) is also an
example of path-cancellation, which is discussed in Lemma G.1.

C.4 Examples of PPS condition

In this section, we illustrate some examples of DAGs satisfying Condition 2 for which there may
exist multiple directed paths between two nodes. This shows that the poly-forest assumption in
Theorem 5.2 is sufficient but not necessary for Condition 2 to hold.

Suppose we have a simple graph on 4 nodes: V = (Z,X1, X2, Y). The edges are

Z → X1 → Y

Z → X2 → Y

So there are 2 paths from Z to Y . The basic idea is to let X1, X2 have the same effect on Y , while Z
has opposite effects on X1, X2. Then when Z is changed, the distribution of Y is similar. Assuming
a logistic model for each conditional probability distribution on this graph:

P (Xi = 1 |Z = z) = σ(βiz + αi) i = 1, 2

P (Y = 1 |X1 = x1, X2 = x2) = σ(β0(x1 + x2) + α0)

where σ(x) = 1/(1 + exp(−x)). It suffices to choose parameters so that I(Z;Y) = 0, i.e. P (Y =
1 |Z = 1) = P (Y = 1 |Z = 0). We have

P (Y = 1 |Z = 1) =σ(β1 + α1)σ(β2 + α2)σ(2β0 + α0)

+σ(β1 + α1)σ(−β2 − α2)σ(β0 + α0)

+σ(−β1 − α1)σ(β2 + α2)σ(β0 + α0)

+σ(−β1 − α1)σ(−β2 − α2)σ(α0)

19

Algorithm 5 Backward phase of IAMB algorithm

Input: X = (X1, · · · , Xd), k, Âj , κ
Output: Markov boundary estimate m̂jk

1. Initialize m̂jk = Âj

2. m̂jk = m̂jk \
{
X` ∈ m̂jk : Î(X`;Xk | m̂jk \X`) < κ

}
.

3. Return m̂jk

and

P (Y = 1 |Z = 0) =σ(α1)σ(α2)σ(2β0 + α0)

+σ(α1)σ(−α2)σ(β0 + α0)

+σ(−α1)σ(α2)σ(β0 + α0)

+σ(−α1)σ(−α2)σ(α0),

so to make them equal it suffices to have

β1 + α1 = α2

β2 + α2 = α1

This implies β1 + β2 = 0, the effects from Z are neutralized.

By a similar argument, this example can be generalized to n nodes in the middle layer, i.e. V =
(Z,X1, . . . , Xn, Y) and Z → Xi → Y for each i. In this case, it suffices to have

∑n
i=1 βi = 0. This

can be further generalized to n paths from Z to Y with m1, · · · ,mn nodes on each path,

Z → X11 → X12 → · · · → X1m1 → Y

Z → X21 → X22 → · · · → X2m2 → Y

· · ·
Z → Xn1 → Xn2 → · · · → Xnmn

→ Y

The requirement now is that there exists one node in each path

X1i1 ∈ {X11, X12, · · · , X1n1
}

X2i2 ∈ {X21, X22, · · · , X2n2
}

· · ·
Xnin ∈ {Xn1, Xn2, · · · , Xnmn}

whose coefficients satisfy the equation we derived above.
Remark 5. Although the previous examples assume exact independence between Y and Z (i.e.
I(Y ;Z) = 0), this argument can be generalized as long as I(Y ;Z) < infk I(Y ;Xk).

C.5 Relaxing Condition 2

In the previous section, we constructed examples of DAGs satisfying Condition 2 that were not
poly-forests. This confirms that our results apply more broadly than Theorem 5.2 would suggest.
In this section, we show that this condition can be eliminated altogether by sacrificing the sample
complexity. Here we simply replace the PPS algorithm with direct estimation of H(Xk | Âj). Then
we can apply the backward phase of the IAMB algorithm [42] to infer the parents of each node in
L̂j+1 from Âj in order to learn the whole graph. Algorithm 5 describes the backward phase of IAMB
algorithm tailored for Algorithm 1, which essentially uses Âj as a candidate set and conditional
mutual information (with a parameter κ) as an independence test.

Recall that the forward phase of the IAMB algorithm is the same as the PPS procedure given in
Algorithm 2. When Condition 2 fails, the estimated Markov boundary after the forward phase is
no longer guaranteed to be strictly smaller than the input candidate set without further assumptions.
Therefore, the forward phase does not provide a benefit in terms of the sample complexity. Denote

∆I = min
j

min
k∈Lj+1

min
`∈pa(k)

I(X`;Xk |Aj \X`).

20

Condition 3 implies that ∆I > 0. Then we state the following result when Condition 2 is relaxed,
recall that w = maxj dj is the width of the DAG.
Theorem C.7. Suppose G satisfies the identifiability conditions in Theorem 3.1. Applying Algo-
rithm 1, and estimate the parents of each node with Algorithm 5. If ω ≤ η/2, κ ≤ ∆I/2, and

n &

(
2d
√
wr/d

min(κ,∆/2, ω)
√
ε
∨ d3wr

(min(κ,∆/2, ω))2ε

)
,

then Ĝ = G with probability 1− ε.

The proof is deferred to Appendix H. Theorem C.7 shows for a DAG satisfying the identifiability
conditions in Theorem 3.1 but without assuming Condition 2, the current analysis in Appendix E of
the algorithm has exponential sample complexity in the worst-case. In fact, the sample complexity
for recovering layers and then learning parents from layers using Algorithm 5 are similar. The latter
simply inflates the former with d/r. Again, the exponential dependency comes from estimating the
entropy.

C.6 Extension to general distributions

The proofs of the theorems in this section are analogous to that of Theorem 5.1, and hence omitted.

General discrete distributions The sample complexity result in Theorem 5.1 can be easily ex-
tended to general discrete distributions with finite support size. The proof of Theorem 3.1 applies
without change.
Theorem C.8. SupposeG is an arbitrary DAG with discrete variables, whose support size is bounded
by N , satisfying the identifiability conditions in Theorem 5.1. Algorithm 3 is applied with minimax
entropy estimator and thresholds in Theorem 5.1. If M . log d and sample size satisfies

n &

(
d2r log3 d log2N

(∆∗ω,κ)2ε
∨ d1+logN

∆∗ω,κ logN

√
r

ε log d

)
,

then Ĝ = G with probability 1− ε.

Continuous distributions Theorem 3.1 also applies to continuous variables if we replace Shannon
entropy with differential entropy. Differential entropy does not preserve all the properties of entropy,
e.g. it is not always non-negative and it is not invariant to invertible transformations. Fortunately,
differential entropy preserves the essential properties for Theorem 3.1 to hold. In particular, since
continuous mutual information is still non-negative, the positiveness in Condition 3 is still reasonable
to assume.

For differential entropy estimation in Algorithm 3, we can adopt the minimax estimator from Han
et al. [22], which has the optimal rate over Lipschitz balls. Thus we have sample complexity result in
Theorem C.9, whose proof is similar with Theorem 5.1 in Appendix E, simply replacing the estimator
for entropy with the one for differential entropy and then applying the result in Han et al. [22].
Theorem C.9. Suppose G is an arbitrary DAG with continuous variables, whose densities are over
Lipschitz balls with smoothness parameter 0 < s ≤ 2, satisfying the conditions in Theorem 5.1.
Algorithm 3 is applied with differential entropy estimation, and thresholds in Theorem 5.1. If
M . log d and sample size satisfies

(n log n)
2s

s+log d ∨ n &
d2r log d

(∆∗ω,κ)2ε
,

then Ĝ = G with probability 1− ε.

C.7 Unfaithful example

To provide a comparison with the commonly assumed faithfulness assumption, here we construct a
simple unfaithful example to illustrate how our approach does not rely on this assumption.

21

Consider the three-node DAG Z → Y , Z → X → Y , where Z is a common cause of X and Y , and
the effect Z → Y is cancelled by the path Z → X → Y . Then independence between Z and Y does
not imply the d-separation between them. Now add one more node W with an edge W → X; See
below:

Z → Y

↘ ↗
X

↗
W

This BN is still unfaithful due to the independence between Z and Y , but can easily be made to
satisfy Condition 1. To see this, in the first layer, W is used to mask (X,Y) (note that Z is unable to,
by independence). Then in the second layer, X will mask Y . A concrete example is following:

W ∼ N (0, 12)

Z ∼ N (0, 1)

X = W + 1
2Z +N (0, 12)

Y = X − 1
2Z +N (0, 1)

We have run experiments to show PC/GES will have SHD around 3 (i.e. very bad for this small
model) but the proposed TAM algorithm perfectly recovers the DAG, as expected.

Furthermore, this simple example can be embedded into any DAG satisfying our identifiability
condition by treating some sink node as W . And we may conjecture that, when unfaithfulness
happens in a form of path-cancellation, if we have some other nodes in the “ancestral” layer, it is able
to help identify the DAG as long as the “uncertainty” relation in (C1) is satisfied.

D Proof of Theorem 3.1

Since Theorem 3.1 is a special case of Theorem C.4 (i.e. anij(k) = ∅), it suffices to prove the latter
result.

Proof of Theorem C.4. The proof illustrates the mechanism of Algorithm 4 to identify DAGs satisfy-
ing conditions in Theorem C.4. If we have identified Aj = ∪jt=0Lt, our goal is to distinguish Lj+1

from V \Aj+1. If it is possible, then by induction on j we can complete the proof.

Denote H(Xk |Aj) = hjk for all k ∈ V \ Aj . Sort hjk in ascending order, denote this order by
τ (0), where τ (0) is a permutation of size |V \Aj |. Any node Xk ∈ V \Aj+1 must have at least one
ancestor in Lj+1. Meanwhile, there exists one important ancestor Xi ∈ anj(k) such that hji < hjk

by (U1). This implies τ (0)i < τ
(0)
k and therefore, τ (0)1 must be from Lj+1.

We proceed by considering two operations on the nodes in V \Aj : Testing and Masking. Specifically,
we maintain two sequences of set of nodes L̃(t) and S̃(t), which is indexed by number of testing
operations we have conducted (starts with t = 0 and the same with the superscript of τ (t)). Initialize
L̃(0) = S̃(0) = ∅, and put nodes being tested or masked into L̃(t−1) or S̃(t−1) to get L̃(t) or S̃(t)

respectively.

Then we for each t = 1, 2, · · · , update

L̃(t) = L̃(t−1) ∪ {τ (t−1)1 }

If there are ties, include all the tied nodes into L̃(t) and follow the same argument. For k ∈ τ (t−1)[2:]

compute the mutual information (a.k.a. entropy reduction)

I(Xk; L̃(t) |Aj) = hjk −H(Xk |Aj , L̃(t))

and mask the nodes with positive mutual information, namely update the masked set

S̃(t) = S̃(t−1) ∪ {k : I(Xk; L̃(t) |Aj) > 0}.

22

Then remove the nodes that have been conditioned or masked from τ (t−1) to get

τ (t) = τ (t−1) \ (S̃(t) ∪ L̃(t))

The following crucial properties of an important ancestor Xi with anij(k) of Xk as easy to check:

1. Xi ⊥⊥ (Lj+1 \Xi) |Aj , and thus I(Xi;Lj+1 \Xi |Aj) = 0, so is anij(k);

2. For X` ∈ anij(k), τ (t)` < τ
(t)
i if Xi and X` are in τ (t);

3. (Xi, anij(k)) will not be masked and put into S̃(t) for all t;

4. If Xk ∈ τ (t), then Xi ∈ τ (t) and τ (t)i < τ
(t)
k .

1) is due to (Xi, anij(k)) ⊆ Lj+1 and the definition of layer decomposition. 2) is by the definition

of anij(k), thus τ (0)` < τ
(0)
i . And τ (t) is a subset of τ (0), hence the order is preserved. 3) is by 1)

otherwise the mutual information is positive. For 4), if Xi /∈ τ (t), then Xi has been included into
L̂(t), so is anij(k) by 2). Then Xk should have been masked before t since

I(Xk; L̃(t) |Aj) ≥ I(Xk; (Xi, anij(k)) |Aj) > 0.

τ
(t)
i < τ

(t)
k is due to the same reason as 2).

Then we conclude that τ (t)1 must be from Lj+1 by 4). By continuing this procedure, all the nodes
are eventually tested or masked after say t∗ steps, i.e., V \Aj = L̃(t∗) ∪ S̃(t∗). Since nodes in L̃(t∗)

are composed of τ (t)1 for t = 1, 2, · · · , thus L̃(t∗) ⊆ Lj+1. Then we further claim for any ` ∈ S̃(t∗),
X` /∈ Lj+1. Suppose X` is included at step t, otherwise we will have

0 < I(X`; L̃
(t) |Aj) ≤ I(X`;Lj+1 |Aj) = 0

The last equality is due to the mutual independence of nodes in Lj+1 given Aj . Therefore, the final
L̃(t∗) is exactly Lj+1.

E Proof of Theorem 5.1

We prove the theorem in two steps. After establishing some preliminary bounds, we prove Propo-
sition 4.1, which gives the sample complexity for using PPS to recover Markov boundaries and
estimate the conditional entropy under Condition 2. Then we establish the sample complexity of the
layer-wise learning framework for DAGs satisfying identifiability conditions in Theorem 3.1.

E.1 Preliminary bounds

To derive the sample complexity of Algorithm 3, we borrow the minimax estimator of entropy from
Wu and Yang [47]. Denote this estimator by Ĥ(X).

Lemma E.1. For discrete random variables X1, · · · , Xd with distribution P1, · · · , Pd and support
size K1, · · · ,Kd, let K = maxkKk. If n & K

logK , then

sup
k
P

[∣∣∣H(Xk)− Ĥ(Xk)
∣∣∣ ≥ t] . [(K

n logK

)2

+
log2K

n

]
/t2

Proof. First we pad all the random variables such that they have the same support sizeK by assigning
the extra support with zero probability. Then for all Xk

P

[∣∣∣H(Xk)− Ĥ(Xk)
∣∣∣ ≥ t] ≤ E(H(Xk)− Ĥ(Xk))2

t2

23

Thus, by Proposition 4 in Wu and Yang [47],

sup
k
P

[∣∣∣H(Xk)− Ĥ(Xk)
∣∣∣ ≥ t] ≤ supk E(H(Xk)− Ĥ(Xk))2

t2

.
1

t2

[(
K

n logK

)2

+
log2K

n

]
.

We next establish some preliminary uniform bounds on the estimation error of conditional entropy
and mutual information using Lemma E.1. Suppose we estimate the conditional entropy H(Xk |A)
for any k ∈ V and its some ancestral set A by

Ĥ(Xk |A) = Ĥ(Xk, A)− Ĥ(A). (7)

Then because we are dealing with binary variables, by Lemma E.1

sup
k,A

P

[∣∣∣Ĥ(Xk |A)−H(Xk |A)
∣∣∣ ≥ t]

≤ sup
k,A

1

t2

(
Ĥ(Xk |A)−H(Xk |A)

)2
≤ sup

k,A

1

t2

{
2
(
Ĥ(Xk, A)−H(Xk, A)

)2
+ 2

(
Ĥ(A)−H(A)

)2}
.
δ2|A|+1

t2
(8)

where

δ2p �

[(
2p

np

)2

+
p2

n

]
. (9)

Note that δ2p is an increasing function of p. When A = ∅, and the |A| = 0. Thus δ2|A|+1 reduces to
estimating entropy of a binary random variable, which is of parametric rate 1/n. Similarly, if we try
to estimate the conditional mutual information by using sample version of the identity

I(Xk;X` |A) = I(Xk; (X`, A))− I(Xk;A)

= H(Xk) +H(X`, A)−H(Xk, X`, A)

−H(Xk)−H(A) +H(Xk, A)

= H(X`, A)−H(Xk, X`, A)−H(A) +H(Xk, A)

The estimation error is again dominated by the second term, which has the largest support size:

sup
k,`,A

P

[∣∣∣Î(Xk;X` |A)− I(Xk;X` |A)
∣∣∣ ≥ t] . δ2|A|+2

t2
(10)

The factor of +2 is not important when size |A| is large, thus for simplicity we absorb it into the
constant before them. We will present the estimation error bound for H(X` |A) and I(Xk;X` |A)
by Cδ2|A|/t

2 for some constant C.

E.2 Proof of Proposition 4.1

In this section, we prove the Proposition 4.1. Recall that MAk := |MB(k;A)|.

Proof of Proposition 4.1. For any node k ∈ V and its ancestor set A, and node ` ∈ A, (10) implies

sup
A′⊆A,|A′|≤MAk

P

[∣∣∣Î(Xk;X` |A′)− I(Xk;X` |A′)
∣∣∣ ≥ t] . δ2MAk

t2
.

24

For the first step, with probability 1− |A|δ2MAk
/t2 we have for all X` ∈ A∣∣∣Î(Xk;X`)− I(Xk;X`)

∣∣∣ < t

Thus for all X`′ ∈ A \mAk,

Î(Xk;X`∗)− Î(Xk;X`′) > ∆̃Ak − 2t

where `∗ = arg maxi:Xi∈mAk
I(Xk;Xi). So we only need t < ∆̃Ak/2 to ensure we include a node

in mAk rather than in A \mAk. Following the same argument, when we have found a proper subset
m (mAk, with probability 1−

(
|A| − |m|

)
δ2MAk

/t2 we have for all X` ∈ A \m∣∣∣Î(Xk;X` |m)− I(Xk;X` |m)
∣∣∣ < t.

Thus for all X`′ ∈ A \mAk

Î(Xk;X`∗ |m)− Î(Xk;X`′ |m) > ∆̃Ak − 2t

where `∗ = arg maxi:Xi∈mAk\m I(Xk;Xi |m). So we only need t ≤ ∆̃Ak/2 to ensure we do not
include any nodes from A \mAk. At the same time,

Î(Xk;X`∗ |m) > I(Xk;X`∗ |m)− t ≥ 2ξAk − t
To avoid triggering the threshold, we need

Î(Xk;X`∗ |m) > 2ξAk − t ≥ κ.
So t ≤ κ will do the job. After at most MAk steps, we have recovered mAk, then requiring t ≤ κ
will trigger the stopping criterion. Since for any X`′ ∈ A \mAk,∣∣∣Î(Xk;X`′ |mAk)− I(Xk;X`′ |mAk)

∣∣∣ = Î(Xk;X`′ |mAk) < t ≤ κ.

Thus in conclusion, we can recover mAk for Xk with probability

P (m̂Ak = mAk) ≥
MAk∏
i=0

(
1−

(
|A| − |i|

) δ2MAk

t2

)

≥ 1−
(

(MAk + 1)|A| − MAk(MAk + 1)

2

)
δ2MAk

t2

≥ 1− (MAk + 1)|A|
δ2MAk

t2
.

Furthermore, by combining this with (8), we can estimate the conditional entropy as

P

[∣∣∣Ĥ(Xk |A)−H(Xk |A)
∣∣∣ < t′, m̂Ak = mAk

]
=P (m̂Ak = mAk)P

[∣∣∣Ĥ(Xk |A)−H(Xk |A)
∣∣∣ < t′ | m̂Ak = mAk

]
=P (m̂Ak = mAk)P

[∣∣∣Ĥ(Xk |mAk)−H(Xk |mAk)
∣∣∣ < t′

]
≥
(

1− (MAk + 1)|A|
δ2MAk

t2

)(
1−

δ2MAk

t′2

)
≥
(

1− (MAk + 1)|A|
δ2MAk

t2
−
δ2MAk

t′2

)
Let t′ = t ≤ min(κ, ∆̃Ak/2), then we have

P

[∣∣∣Ĥ(Xk |A)−H(Xk |A)
∣∣∣ < t, m̂Ak = mAk

]
≥ 1− (MAk + 2)|A|

δ2MAk

t2

The argument above holds for all Xk ∈ V and its ancestor set A, which completes the proof.

25

E.3 Proof of Theorem 5.1

Now we are ready to prove the main theorem on the sample complexity of Algorithm 3.

Proof of Theorem 5.1. Define events by E0 = ∅ and

Ej =
{
L̂j = Lj and m̂(j−1)k = m(j−1)k for k ∈ Lj

}
for j = 1, . . . , r. Then

P (Ĝ = G) =

r∏
j=1

P (Ej | Ej−1).

For the first step, with probability 1− dδ20/t2 we have for all k = 1, · · · , d

|H(Xk)− Ĥ(Xk)| < t

which implies for k /∈ L1 and its corresponding Xi

Ĥ(Xk)− Ĥ(Xi) > ∆− 2t

With t ≤ ∆/2, we have Xi comes before Xk in the order τ̂ of estimated marginal entropies.
Conducting the TAM step, for each Xi comes forst in the ordering τ̂ , we estimate the mutual
information I(Xi;Xk) for all remaining nodes Xk in τ̂ . With probability at least 1 − dδ22/t2, we
have for all remaining k

|I(Xi;Xk)− Î(Xi;Xk)| < t

Therefore, {
I(Xi;Xk) < 2t Xi is not the ancestor of Xk

I(Xi;Xk) > η − 2t Xi is the ancestor of Xk

With ω := t ≤ η/2, Xk would be masked. There are at most d1 := |L1| many Xi’s thus there
is at most d1 × d mutual information need to be estimated correctly. So with probability at least
1− d1dδ22/t2, the TAM step succeeds recovering L1. And then

P (E1) ≥ 1− dδ20
∆2/4

− d1dδ
2
2

ω2

Following the same argument, after j loops, given the layers in Aj are correctly identified, we invoke
Proposition 4.1 with A = Aj to have for all k ∈ V \Aj , with probability at least

1−
(r∑
s=j+1

ds

)(
2Mj

j∑
s=1

ds
δ2Mj

t2

)
,

using PPS procedure to estimate the conditional entropeis and Markov boundaries gives

|Ĥ(Xk |Aj)−H(Xk |Aj)| < t and m̂jk = mjk.

which implies for k /∈ Lj+1 and its corresponding Xi,

Ĥ(Xk |Aj)− Ĥ(Xi |Aj) > ∆− 2t

So t ≤ ∆/2 amounts to Xi coming before Xk in the order τ̂ of estimated conditional entropies of
remaining nodes. Note that t also needs to satisfy t ≤ mink(κ, ∆̃jk/2). Conducting TAM step,
estimate the conditional mutual information using the identity

I(Xk;Xi |Aj) = H(Xk |Aj)−H(Xk |Xi, Aj)

= H(Xk |mjk)−H(Xk |Xi,mjk)

Invoking (8), since mjk is already identified, with probability at least 1− dδ2Mj
/t2, we have for all

remaining k

|I(Xi;Xk)− Î(Xi;Xk)| < t

26

Therefore, {
I(Xi;Xk) < 2t Xi is not the ancestor of Xk

I(Xi;Xk) > η − 2t Xi is the ancestor of Xk

With ω := t ≤ η/2, Xk would be masked while other nodes remains unmasked. There are at most
dj+1 := |Lj+1| manny Xi’s thus there is at most dj+1× d conditional mutual information need to be
estimated correctly. So with probability at least 1− dj+1dδ

2
Mj
/t2, the TAM step succeeds recovering

Lj+1. Combine the PPS step and TAM step together,

P (Ej+1 | Ej) ≥ 1−
dj+1dδ

2
Mj

ω2
−

2Mjd
2δ2Mj(

mink(∆/2, κ, ∆̃jk/2)

)2

In conclusion, we have

P (Ĝ = G) =

r−1∏
j=0

P (Ej+1 | Ej)

≥

(
1− dδ20

∆2/4
− d1dδ

2
2

ω2

)
r−1∏
j=1

1−
dj+1dδ

2
Mj

ω2
−

2Mjd
2δ2Mj(

mink(∆/2, κ, ∆̃jk/2)

)2



≥ 1−

(
1− dδ20

∆2/4
− d1dδ

2
2

ω2

)
−
r−1∑
j=1

dj+1dδ
2
Mj

ω2
−

2Mjd
2δ2Mj(

mink(∆/2, κ, ∆̃jk/2)

)2


≥ 1− 4Mrd2(

minjk(∆/2, ω, κ, ∆̃jk/2)

)2 δ
2
M

where ω ≤ η/2 and κ ≤ minjk ξjk. Since M . log d, δ2M (cf. (9)) is dominated by its second term.
Requiring P (Ĝ = G) > 1− ε, we have the final result

n &
d2r log3 d(

minjk(∆/2, ω, κ, ∆̃jk/2)

)2

ε

.

This completes the proof.

E.4 Tuning parameters

In practice, the quantities η, ξjk needed in Theorem 5.1 may not be known. Theorem E.2 below
remedies this by prescribing data-dependent choices for ω and κ:
Theorem E.2. Suppose the conditions in Theorem 5.1 are satisfied with the stronger sample size
requirement

n &
d3 log3 d

ε2 ∧ (∆∗η/2,ξjk)4
,

where ∆∗η/2,ξjk is defined in Theorem 5.1 with η/2 and ξjk plugged in. By choosing

ω = κ � (d3 log d)1/4
[(d

n log d

)2
+

log d√
n

]1/4
in Algorithm 3, we have Ĝ = G with probability 1− ε.

27

Proof. In the proof of Proposition 4.1, for Xk ∈ Lj+1, we need t to be small enough when doing
estimation such that

0 ≤ ∆̃jk − 2t and t ≤ κ ≤ 2ξjk − t.

Similarly, in the proof of Theorem 5.1 we need

ω = t ≤ η/2.

Though the t’s here are different, we can take the minimum of them, then it suffices to take

ω = κ = t = (d3M)1/4δ
1/2
M

and require

(d3M)1/4δ
1/2
M ≤ min

jk
(∆/2, η/2, ξjk, ∆̃jk/2).

Then we have

P (Ĝ = G) ≥ 1− 4d2rMδ2M(
minjk(∆/2, ω, κ, ∆̃jk/2)

)2

≥ 1− 4d3Mδ2M(
minjk(∆/2, ω, κ, ∆̃jk/2)

)2

≥ 1− 4d
√
dMδM .

Plugging in the exact form of δM with M . log d, the final sample complexity is as desired.

F Proof of Theorem 5.2

First, we need a lemma similar to Lemma C.1:

Lemma F.1. I(Xk;mjk |A) > 0 for any subset A ⊂ Aj such that mjk \A 6= ∅.

The proof follows the one for Lemma C.1 in Appendix C.1. To see this, we can simply replace pa(k)
in the arguments with mjk, and replace the minimality of G with minimality of mjk. We will also
need the following lemma:

Lemma F.2. For any Xc ∈ mjk, there is at least one directed path from Xc to Xk.

Proof. If there is no path between Xc and Xk, Xc ⊥⊥ Xk, Xc cannot be in mjk. If Xc and Xk are
only connected by undirected paths, Xc would not be in ancestors or descendants of Xk. If some
paths are through some descendants (children) of Xk, the descendants would serve as colliders to
block the paths, so the effective paths must be through the ancestors of Xk.

For any undirected path connects them through some ancestor, say Xa, if the edge from Xc is not
pointing to Xa, Xa would serve as a common cause. If it is pointing to Xa, we move Xa one node
toward Xc, until there is a common cause, otherwise Xc is connected to Xk with a directed path.
When we find the common cause, if Xa is an ancestor of Xc, then it is in Aj and block the path if
conditioned on. If Xa is not an ancestor of Xc, then there must be a change of edge direction, so
there exits a collider on the path between Xa and Xc. If the collider is not in Aj , it will block the
path; if it is in Aj , Xa will also be in Aj , so the path is blocked when Aj is conditioned on. As a
result of all the cases above,

P (Xk |Aj) = P (Xk |Aj \Xc)

so Xc cannot be in mjk.

Finally we prove the theorem:

28

Proof of Theorem 5.2. Condition 2 is constructive for PPS procedure. Hence we prove it by showing
that nodes not belong to the desired Markov boundary will not be chosen when conducting PPS on
poly-forest. Suppose we have identified j-th layer, for any Xk ∈ V \Aj , we try to find mjk. For any
node X` ∈ Aj \mjk we should not consider, if X` is disconnected to Xk, which means there is no
path connecting them together, then Xk ⊥⊥ X` |m, I(Xk;X` |m) = 0 for any m (mjk, we do not
need to worry about it.

If X` is connected to Xk through a child of Xk, then this must be an undirected path. Since if this
is a directed path, it will be from Xk to X`, which is contradicted to X` ∈ Aj . Moreover for this
undirected path, since the edge is from Xk to its child at first, there will be a change of direction,
which serves as a collider blocking this and the only path connecting Xk and X`, thereafter Xk and
X` are d-separated by any subset m (mjk and Xk ⊥⊥ X` |m, I(Xk;X` |m) = 0, we do not need
to worry about it.

If X` is connected to Xk through one parent Xt or X` is the parent, we can divide it into two
situations, whether there is Xc ∈ mjk on the path or not. If there is one Xc on the path, since Xc has
exactly one directed path leading to Xk, this will be part of the path connecting X` and Xk. For two
edges of Xc on this path, Xc has an edge out on the path toward Xk. For the other edge, no matter
the direction is, either in or out, Xc will block the path if conditioned on and d-separates Xk and X`.
Then we have for any m (mjk

Xk ⊥⊥ X` |Xc,m

Using this property and decomposition

I(Xk;Xc, X` |m) = I(Xk;Xc |X`,m) + I(Xk;X` |m)

= I(Xk;X` |Xc,m) + I(Xk;Xc |m) = I(Xk;Xc |m)

So
I(Xk;Xc |m) = I(Xk;Xc |X`,m) + I(Xk;X` |m) > I(Xk;X` |m)

For the last inequality, we trigger Lemma F.1. So we will not select X` at any step of PPS procedure.

If there is no Xc on the path, then for any Xc ∈ mjk, since Xc is connected to Xk through a directed
path, and X` is connected to Xk through one parent Xt or X` is the parent, then Xc and X` is
connected by and only by the combination of two paths Xc → · · · → Xk and X` − · · · −Xt → Xk.
If these two paths converge at Xk, Xk will serve as a collider to block this path. If they converge
at some node before Xk, denoted as Xu, which is not in mjk. Xu cannot be X` otherwise it will
d-separate Xk and Xc such that Xc /∈ mjk. Since the path Xc → · · · → Xk is directed, the edge on
this path from Xc is pointing to Xu. If the edge from X` is also pointing to Xu, Xu will serve as a
collider to block this path between X` and Xc. So Xc and X` are d-separated by empty set in these
two cases, furthermore mjk ⊥⊥ X`. Since X` ⊥⊥ Xk |mjk. Therefore we have

P (X`, Xk,mjk) = P (X`, Xk |mjk)P (mjk)

= P (X` |mjk)P (Xk |mjk)P (mjk)

= P (X`)P (Xk,mjk)

Hence X` ⊥⊥ (Xk,mjk) and for any m (mjk

0 = I(X`; (Xk,mjk))

= I(X`;Xk |m) + I(X`;m) + I(X`;mjk \m |Xk,m)

By non-negativity of conditional mutual information, we have I(X`;Xk |m) = 0. So we don not
need to worry about it either.

If the edge from X` is not pointing to Xu but on the opposite, X` and Xc may not be independent.
However, for any other node Xc′ ∈ mjk \Xc, if X` is connected with Xc′ through Xk, Xk serves as
a collider to block the path. If X` is connected with Xc′ through Xc, conditioning on Xc will block
the path. Therefore, Xc d-separates X` and Xc′ so X` ⊥⊥ (mjk \Xc) |Xc. As a result,

P (X`,mjk \Xc |Xc) =P (X` |Xc)P (mjk \Xc |Xc)

P (X` |Xc) =P (X` |mjk)

Thus

P (X`, Xk,mjk) =P (X` |mjk)P (Xk |mjk)P (mjk)

=P (X` |Xc)P (Xk,mjk)

29

Meanwhile,
P (X`, Xk,mjk) = P (X` |Xk,mjk)P (Xk,mjk)

Hence

P (X` |Xk,mjk) = P (X` |Xc) X` ⊥⊥ (Xk,mjk \Xc) |Xc I(X`; (Xk,mjk \Xc) |Xc) = 0

By the same decomposition of mutual information, we can have for any subset m,
I(X`;Xk |Xc,m) = 0, thereafter we will not select X` at any step of PPS procedure.

G Condition (C2) and poly-forests

Condition (C2) is a nondegeneracy condition on the distribution P that may be violated, for example,
when there is path cancellation. In this appendix, we show that a sufficient (but not necessary)
condition for Condition (C2) is that there exists at most one directed path between any two nodes in
the graph, in other words, when path cancellation is impossible.
Lemma G.1. If G is a poly-forest, then Condition (C2) holds.

Proof. Let’s drop the subscript and use the notation X,Z for Xi, Xk. For poly-forest, there exists
and only exists one direct path from ancestor X to descendant Z. With loss of generality, let Aj = ∅,
since the Markov property of the subgraph G[V \Aj] does not change. If X ∈ pa(Z), by minimality,
all edges are effective, thus I(X;Z) > 0.

If the directed path is formed by three nodes X → Y → Z. Suppose the contrary, X ⊥⊥ Z, we have
following:

P (X)P (Z) = P (X,Z)

=
∑

y∈{0,1}

P (X,Y = y, Z)

= P (X)
∑

y∈{0,1}

P (Z |Y = y)P (Y = y |X)

The first equality is by independence, the third one is by Markov property. Then by positivety of the
probability, we have∑

y∈{0,1}

P (Z |Y = y)P (Y = y |X) = P (Z)

=
∑

y∈{0,1}

P (Z |Y = y)P (Y = y)

After rearrangement, ∑
y∈{0,1}

P (Z |Y = y)

[
P (Y = y |X)− P (Y = y)

]
= 0

Since X 6⊥⊥ Y , thus P (Y = y |X) 6= P (Y = y), therefore,

P (Z |Y = 1)

P (Z |Y = 0)
= −P (Y = 0 |X)− P (Y = 0)

P (Y = 1 |X)− P (Y = 1)
= −1− P (Y = 1 |X)− 1 + P (Y = 1)

P (Y = 1 |X)− P (Y = 1)
= 1

Thus P (Z |Y = 1) = P (Z |Y = 0) contradicts that Y 6⊥⊥ Z.

More generally, let the directed path be formed by X → Y1 → · · · → Yp → Z. Suppose X ⊥⊥ Z,
we have:

P (X)P (Z) = P (X,Z)

=
∑

y1∈{0,1}

· · ·
∑

yd∈{0,1}

P (X,Y1 = y1, · · · , Yd = yd, Z)

= P (X)
∑

yd∈{0,1}

∑
y1∈{0,1}

P (Z |Yd = yd)P (Yd = yd |Y1 = y1)P (Y1 = y1 |X)

30

After rearrangement,

P (Z |Yd = 1)

P (Z |Yd = 0)
= −

∑
y1∈{0,1}[P (Y1 = y1 |X)− P (Y1 = y1)]P (Yd = 1 |Y1 = y1)∑
y1∈{0,1}[P (Y1 = y1 |X)− P (Y1 = y1)]P (Yd = 0 |Y1 = y1)

Look at the numerator∑
y1∈{0,1}

[
P (Y1 = y1 |X)− P (Y1 = y1)

]
P (Yd = 1 |Y1 = y1)

=
∑

y1∈{0,1}

[
P (Y1 = y1 |X)− P (Y1 = y1)

][
1− P (Yd = 0 |Y1 = y1)

]

=−
∑

y1∈{0,1}

[
P (Y1 = y1 |X)− P (Y1 = y1)

]
P (Yd = 0 |Y1 = y1)

+
∑

y1∈{0,1}

P (Y1 = y1 |X)−
∑

y1∈{0,1}

P (Y1 = y1)

=−
∑

y1∈{0,1}

[
P (Y1 = y1 |X)− P (Y1 = y1)

]
P (Yd = 0 |Y1 = y1)

is the negative of denominator, thus P (Z |Yd = 1) = P (Z |Yd = 0) contradicts that Z 6⊥⊥ Yd, which
completes the proof.

H Proof of Theorem C.7

First we bound the sample complexity of the backward phase of IAMB, as shown in Algorithm 5.

Lemma H.1. Let m̂jk be the output of Algorithm 5 with κ ≤ ∆I/2 and the plug-in mutual informa-
tion estimator (10). Then

P (m̂jk = mjk = pa(k)) ≥ 1−
|Aj |δ2|Aj |

κ2

where δ2Aj
follows the definition in (9) with |S| replaced by |Aj |.

Proof. Following the same argument in (10), we have

sup
`∈Aj

P

(∣∣∣Î(Xk;X` |Aj \X`)− I(Xk;X` |Aj \X`)
∣∣∣ ≥ t) ≤ δ2|Aj |

t2

Note that for nodes X` not in mjk,

I(Xk;X` |Aj \X`) = I(Xk;X` |mjk) = 0

Therefore with probability at least 1− |Aj |δ2|Aj |/t
2, we have for all ` ∈ Aj

|Î(Xk;X` |Aj \X`)− I(Xk;X` |Aj \X`)| < t

Therefore, for ` ∈ mjk and `′ ∈ Aj \mjk,

Î(Xk;X` |Aj \X`) > ∆I − t Î(Xk;X`′ |Aj \X`′) < t

Let t = κ ≤ ∆I/2, we can remove all ` ∈ Aj \mjk rather than any one in mjk, then the desired
Markov boundary is recovered.

We are now ready to prove Theorem C.7.

31

Proof of Theorem C.7. Then we use Lemma H.1 and take intersection over all nodes

P
(
m̂jk = pa(k) ∀k ∈ [d]

)
≥ 1− d

κ2
max
j
|Aj |δ2|Aj | ≥ 1− d2

κ2
δ2d

where

δ2d �
(2d

nd

)2
+
d2

n
The last inequality is due to |Aj | ≤ |Ar−1| ≤ d. Furthermore, use the estimator (7) for conditional
entropy directly on Aj instead of mjk,

sup
k∈V \Aj

P

(∣∣∣Ĥ(Xk |Aj)−H(Xk |Aj)
∣∣∣ ≥ t) ≤ δ2|Aj |

t2
.

Following the proof of main theorem in Appendix E, we can show that without PPS procedure, we
can recover layers with

P (L̂ = L) ≥ 1− 4dwr

(∆/2 ∧ ω)2
max
j
δ2|Aj | ≥ 1− 4dwr

(∆/2 ∧ ω)2
δ2d.

Thus we have recovery for the whole graph with

P
(
Ĝ = G

)
= P

(
L̂ = L

)
P
(
M̂B = pa(k) ∀k ∈ [d] | L̂ = L

)
≥ 1−

(
d2

κ2
+

4dwr

(∆/2 ∧ ω)2

)
δ2d & 1− dwr

(min(κ,∆/2, ω))2
δ2d

Plug in the upper bound of δ2d, require for P (Ĝ = G) > 1−ε, we have desired sample complexity.

I Experiment details

We describe the details of experiments conducted in this appendix.

I.1 Experiment settings

For graph types, we generate

• Poly-Tree (Tree). Uniformly random tree by generating a Prüfer sequence with random
direction assigned for each edge.

• Erdős Rényi (ER). Graphs whose edges are selected from all possible
(
d
2

)
edges indepen-

dently with specified expected number of edges.
• Scale-free networks (SF). Graphs simulated according to the Barabasi-Albert model.

For models, we consider the dependency between parents and children. We control the constant
conditional entropy H(Xk | pa(k)) for all k = 1, 2, . . . , d to satisfy the Condition (C3), which
implies (C1). We generate data from following models

• mod model (MOD): Xk = (Sk mod 2)Zk × (1 − (Sk mod 2))1−Zk where Sk =∑
`∈pa(k)X` with Zk ∼ Ber(p)

• additive model (ADD): Xk =
∑
`∈pa(k)X` + Zk with Zk ∼ Ber(p)

Total number of replications is N = 30. For each of them, we generated random datasets with sample
size n ∈ {1000, 2000, 3000, 4000} for graphs with d ∈ {10, 20, 30, 40, 50} nodes and p = 0.2.

I.2 Implementation and baselines

We implement our algorithm with entropy estimator proposed in Wu and Yang [47], which is
available at https://github.com/Albuso0/entropy. We treat joint entropy as a multivariate
discrete variable to estimate. We fix κ = 0.005 and ω = 0.001, in particular, we do no hyperparameter
tuning.

We further compare following DAG learning algorithms as baselines:

32

https://github.com/Albuso0/entropy

• PC algorithm is standard structure learning approach and The implementation is available at
https://github.com/bd2kccd/py-causal. The independence test is chosen as discrete
BIC test dis-bic-test. Remaining parameters are set as default or recommended in
tutorial.

• Greedy equivalence search (GES) is standard baseline for DAG learning. The implemen-
tation is available at https://github.com/bd2kccd/py-causal. The score is chosen
as discrete BIC score dis-bic-score. Remaining parameters are set as default or recom-
mended in tutorial.

The experiments were conducted on an internal cluster using an Intel E5-2680v4 2.4GHz CPU with
64 GB memory.

33

https://github.com/bd2kccd/py-causal
https://github.com/bd2kccd/py-causal

	Complete algorithm description
	Graphical model background
	Extensions and further examples
	Positivity and a nondegeneracy condition
	More general version of Condition 1
	Comparison with ``equal entropy'' condition
	Examples of PPS condition
	Relaxing Condition 2
	Extension to general distributions
	Unfaithful example

	Proof of Theorem 3.1
	Proof of Theorem 5.1
	Preliminary bounds
	Proof of Proposition 4.1
	Proof of Theorem 5.1
	Tuning parameters

	Proof of Theorem 5.2
	Condition (C2) and poly-forests
	Proof of Theorem C.7
	Experiment details
	Experiment settings
	Implementation and baselines

