
A Limitations

Our results and analysis on the graph tokenizer and graph decoder are confined to the task of MGM
pretraining. Different tokenizers and decoders might offer advantages for other generative modeling
methods, such as autoregressive modeling [32].

SGTs [39, 40] are limited in expressive power for graph structures compared to standard GNNs,
like GINs [37]. Theoretically, the separation of expressiveness power between SGTs and standard
GNNs grows exponentially in the GNN’s depth [40]. However, SGTs exhibit comparable, if not
better, performances to pretrained GNN-based tokenizers, as demonstrated in Table 3b. We attribute
this intriguing observation to two key factors. Firstly, SGTs (i.e., simple GNNs) are still powerful
and can “distinguish almost all non-isomorphic graphs” [40]. They have shown decent results in
practice [39, 60]. Secondly, we conjecture that a better pretraining method for GNN-based tokenizers
could exist, but current pretraining techniques do not fully harness the potential of GNNs in their
roles as effective tokenizers. Indeed, the significant difference in performance between GraphCL and
VQ-VAE (Table 3b) emphasizes the impact of pretraining methods on the tokenizer’s performance.
We leave the investigation of how to effectively pretrain GNN-based tokenizers as future works.

B Related Works

We have included the literature review of MGM in the main body of the paper. Here we elaborate on
the literature review in the following areas.

Molecule SSL with motifs. Motifs are statistically significant subgraph patterns [32, 61], and have
been applied in existing molecule SSL methods. Autoregressive pretraining methods [32, 1, 61]
generate motifs instead of nodes at each generation step, in order to improve the validity of the
generated molecules. Motifs are also used in contrastive learning [17, 62, 18]. Sun et al. [17]
substitute motifs within a molecule with their chemically similar counterparts to create high-quality
augmentations. [62, 18] construct molecules’ views at the motif-level to supplement the original views
at the atom-level. In predictive pretraining, Rong et al. [2] pretrain a graph encoder to predict the FGs
inside the molecule. These previous works have developed extensive molecule fragmentation methods
for motif discovery. However, these fragmentation methods have been overlooked as tokenizers in
MGM pretraining. Our work addresses this gap by summarizing the common fragmentation rules
and examining the performances of the selected fragmentation methods in MGM pretraining.

Data tokenization. Tokenization is a data pre-processing technique that divides the original data into
smaller elements and converts them to tokens. It is widely used in NLP to split sentences into word-
level units [13, 63, 64]. Due to the surging interests in Transformers [65], tokenization is also applied
on images [15, 16] and audios [66, 67]. Tokenization fragments these data into sequences of patches
to fit the shapes of transformer’s input and output. A tokenizer can be designed by heuristics [68],
incorporating domain knowledge [69], and pretraining on the target dataset [70, 19, 42]. In this work,
we study graph tokenizers, which are less explored in previous works.

Relations to contrastive learning. When using a GNN-based tokenizer, MGM involves minimizing
the distances between the outputs from two network branches (i.e., the tokenizer branch and the
autoencoder branch). At first glance, this design might seem similar to the contrastive learning
methods of BYOL [71], SimSiam [72], and BGRL [47], which also minimize the output differences
between two network branches. However, a closer inspection reveals several critical distinctions
between MGM and these methods. Firstly, MGM feeds uncorrupted data to the tokenizer branch
and feeds corrupted data to the autoencoder branch, encouraging the autoencoder to reconstruct the
missing information. In contrast, BYOL, SimSiam, and BGRL use corrupted data in both of their
branches, constituting different training objectives. Secondly, while BYOL, SimSiam, and BGRL
employ nearly identical architectures for their two branches, MGM can adopt distinctly different
architectures for its autoencoder and tokenizer. In our best-performing experiment, the autoencoder
has more than ten layers of GNNs and Transformers, while the tokenizer is a shallow single-layer
network (Table 3). Finally, MGM employs remask decoding to constrain the encoder’s ability on
reconstruction, which is not used in contrastive learning methods [71, 72, 47].

Subgraph-enhanced Graph Neural Network. Subgraph-enchanced GNN [73, 74, 75] refers to an
emerging class of GNNs that fragments a graph into subgraphs before encoding, in order to improve
the GNNs’ expressivenss [76, 77, 78]. The common graph fragmentation method is node-wise, such
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that each fragmented subgraph is associated with a unique node in the original graph. For example,
ESAN [73] obtains subgraphs by sampling ego-networks or deleting one node from the original
graph. Given the subgraphs, subgraph-enchanced GNNs generate node embeddings in every subgraph
by applying a series of equivariant message-passing layers [73, 74]. Finally, these embeddings are
pooled to output the graph embedding. Our work is related to subgraph-enhanced GNNs that we also
study graph fragmentation. The major distinction is that we focus on using the tokens derived from
these fragmented graphs as the reconstruction targets in MGM for molecules.

C Pseudo Code

We present the pseudocode of SimSGT. This code uses a single-layer SGT of GIN as an example.

Algorithm 1 Pytorch style pseudocode of SimSGT

## phi: graph encoder
## rho: graph decoder

def SGT(g, embed):
## SGT: a single -layer GIN tokenizer
x, edge_index = g

# message passing
x = propagate(embed(x), edge_index) + (1+eps) * embed(x)

# batch normalization layer
x = batchnorm(x)
return x

for g in loader:
# random masking
g_hat , m_pos = random_masking(g) # m_pos: mask positions

# tokenization. embed is a linear layer
y = SGT(g, phi.embed). detach () # detach: stop -gradient

# autoencoder forward
y_hat = rho(remask(phi(g_hat), m_pos ))

# minimize loss
loss = distance_loss(y_hat[m_pos], y[m_pos ])
loss.backward ()

D Experimental Setup

Computational resource. We perform experiments on an NVIDIA DGX A100 server. Each
individual experiment can be run on a single GPU without exceeding 30 GBs of GPU memory.

D.1 Compared Methods

Motif-based tokenizers. We now elaborate on the details of the two compared motif-based tokeniz-
ers:

• MGSSL [1] employs the BRICS [35] method for molecule fragmentation (Section 2.2). To obtain
more fine-grained fragments, MGSSL employs two additional rules to break the BRICS’s output
fragments: 1) separate the single atoms attached to cycles; 2) if a connected subgraph comprising
three or more atoms is not part of a cycle, break it down as a new fragment.

• RelMole [18] combines the fragmentation functions of Cycles and FGs for molecule fragmentation
(Section 2.2). Further, it extracts the carbon-carbon single bonds that are not covered in the previous
step as new fragments.

We use the motif vocabulary provided by their paper for molecule fragmentation. Given a molecule,
we convert its fragmented motifs into one-hot encodings, which serve as the reconstruction targets.

Pretrained GNN-based tokenizers. We use the atomic numbers as the node features and exclude
edge features in pretrained GNN-based tokenizers. We show in Appendix E that incorporating edge
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Table 9: Experimental settings for pretraining on 2 million molecules from ZINC15 and fine-tuning
on eight datasets in MoleculeNet: BBBP, Tox21, ToxCast, Sider, ClinTox, MUV, HIV, and Bace.

(a) Node and edge features.

Type Range

Node features atomic numbers 1⇠118
chirality tag {unspecified, tetrahedral cw, tetrahedral ccw, other}

Edge features bond type {single, double, triple, aromatic}
bond direction {-, endupright, enddownright}

(b) Hyperparameters.

Encoder pretrain fine-tuning

lr batch size epochs lr batch size epochs

GINE 1e-3 1024 100 {1e-3, 1e-4} 32 100
GTS 1e-4 2048 100 {1e-4, 1e-5} 32 100

features in GNN tokenizers can decrease performance. Due to the removal of edge features, the
tokenizer uses the architecture of GIN [37] instead of GINE [12]. We have reported performances of
GNN-based tokenizers that are pretrained by GraphCL [4], GraphMAE [9], and VQ-VAE [10, 42].
The implementation of VQ-VAE follows [10] and groups the latent codes by atomic numbers. We
strictly follow the procedure in the mentioned papers to pretrain GNNs, which are later used as
tokenizers.

Simple GNN-based tokenizers (SGTs). An SGT uses the node feature of atomic number. It uses
the graph encoder’s linear embedding function of atomic numbers. We present the graph operators
for our tested SGTs below:

GIN: !(A) = A + (1 + ✏)I, (17)

GCN: !(A) = D̃
�1/2

ÃD̃
�1/2, (18)

GraphSAGE: !(A) = D̃
�1

Ã, (19)

where Ã = A + I and D̃ is the degree matrix of Ã; ✏ is set to 0.5 empirically.

Baselines. We now describe the details of our reported baseline methods:

• Infomax [44] learns node representations by maximizing the mutual information between the local
summaries of node patches and the patches’ graph-level global summaries.

• ContextPred [12] uses the embeddings of subgraphs to predict their context graph structures.
• InfoGraph [79] conducts graph representation learning by maximizing the mutual information

between graph-level representations and local substructures of various scales.
• GraphCL [4] performs graph-level contrastive learning with combinations of four graph augmen-

tations, namely node dropping, edge perturbation, subgraph cropping, and feature masking.
• JOAO [45] proposes a framework to automatically search proper data augmentations for GCL.
• AD-GCL [46] applies adversarial learning for adaptive graph augmentation to remove the redundant

information in graph samples.
• GraphLOG [48] leverages clustering to construct hierarchical prototypes of graph samples. They

further contrast each local instance with its corresponding higher prototype for contrastive learning.
• RGCL [49] trains a rationale generator to identify the causal subgraph in graph augmentation.

Each graph’s causal subgraph and its complement are leveraged in contrastive learning.
• BGRL [47] trains an online encoder by learning to predict the output of a target encoder. The target

encoder shares the same architecture as the online encoder and is updated through exponentially
moving average. The inputs of the online encoder and the target encoder are two different graph
augmentations.
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Table 10: Experimental setting for pretraining on the 50 thousand molecules from the GEOM dataset
and fine-tuning on the four molecular property prediction (regression) datasets and DTA datasets.

(a) Node and edge features.

Type Range

Node features atomic numbers 1⇠ 118
chirality tag {unspecified, tetrahedralcw, tetrahedralccw, other}
node degree 0⇠10

formal_charge -5⇠5
number of H 0⇠8

number of radical e 0⇠4
hybridization {sp, sp2, sp3, sp3d, sp3d2}
is aromatic {false, true}
is in ring {false, true}

Edge features bond type {single, double, triple, aromatic}
bond stereo {stereonone, stereoz, stereoe, stereocis, stereotrans, stereoany}

is conjugated {false, true}

(b) Hyperparameters and their search spaces. We use the performance on the validation set for hyperparameter
tuning. Bold indicates the final value used in experiments.

Encoder pretrain fine-tune (regression) fine-tune (DTA)

lr batch size epochs lr batch size epochs lr batch size epochs

GINE 1e-3 1024 100 1e-3 {32, 128, 256} 100 {1e-4, 2e-4} 128 500
GTS 1e-4 1024 300 {1e-4, 2e-4, 3e-4} 32 100 {1e-4, 2e-4} 128 500

• GraphMAE [9] shows that a linear classifier is insufficient for decoding node types. It applies a
GNN for decoding and proposes remask to decouple the functions of the encoder and decoder in
the autoencoder.

• GraphMVP [52] uses a contrastive loss and a generative loss to connect the 2-dimensional view
and 3-dimensional view of the same molecule, in order to inject the 3-dimensional knowledge into
the 2-dimensional graph encoder.

• S2GAE [50] randomly masks a portion of edges of graphs and pretrain the graph encoder to predict
the missing edges.

• GraphMAE2 [51] applies multi-view random re-mask decoding as a regularization for MGM
pretraining.

• Mole-BERT [10] combines a contrastive learning objective and a masked atom modeling objective
for MRL. Specifically, they observe that mask atom prediction is an overly easy pretraining task.
Therefore, they employ a GNN tokenizer pretrained by VQ-VAE [42] to generate more complex
reconstruction targets for masked atom modeling.

D.2 Experimenets in Section 4 and Table 5

Here we elaborate the experimental setting for pretraining on 2 million molecules from ZINC15 [43]
and fine-tuning on the eight classification datasets in MoleculeNet [28]: BBBP, Tox21, ToxCast,
Sider, ClinTox, MUV, HIV, and Bace. This setting covers the experiments in Section 4 and Table 5.

Molecule representations. For SimSGT and other compared methods, we follow previous works [12,
4] and use a minimal set of molecule features as the graph representations (Table 9a). These features
unambiguously describe the two-dimensional structure of molecules.

Hyper-parameters. Table 9b summarizes the hyper-parameters. We use different hyper-parameters
given different graph encoders. The architectures of the two graph encoders are borrowed from
previous works: GINE [12] and GTS [27]. We use large batch sizes of 1024 and 2048 to speed
up pretraining. We do not use dropout during pretraining. During fine-tuning, we 50% dropout in
GINE layers and 30% dropout in transformer layers. The learning rate for the MUV dataset is 10
times smaller than other datasets. Following [4, 48], we report the last epoch’s test performance. We
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Table 11: Hyperparameters for fine-tuning on the QM datasets.
QM Dataset batch size lr

QM7 32 4e-4
QM8 256 1e-3
QM9 256 1e-3

report the mean performances and the standard deviations across 10 random seeds. Baselines are
reproduced using the same setting.

Linear probing experiments. Here we elaborate on the settings of our linear probing experiments
(Figure 5b and Figure 7). Specifically, we randomly split the 2 million molecules from ZINC15 into
train set (90%) and test set (10%). We train the MGM models on the train set and save the encoder’s
checkpoint every epoch. The linear classifiers are trained for 1000 epochs on the encoder’s frozen
hidden representations. We train linear classifiers using 25600 molecule samples from the training
set and evaluate them on the whole test set.

• Probing masked atom types (Figure 5b). We let linear classifiers predict the masked atom types
using the masked atoms’ hidden representations. During linear probing, we disable remask-v2 to
obtain the masked atoms’ hidden representations. Molecules are randomly masked by 0.35 during
probing. We use accuracy (%) as the evaluation metric.

• Probing FGs (Figure 7). Following [2], we extract 85 types of FGs for each molecule using
RDkit [30]. FGs are represented by 85-dimensional binary vectors, whose each dimension indicates
the presence of a certain FG. Afterward, we train multi-label linear classifiers on the frozen
encoder’s mean pooling outputs for FG prediction. Molecules are not masked during probing. We
use ROC-AUC (%) as the evaluation metric.

D.3 Experiments in Table 6

We present the experimental setting for pretraining on the 50 thousand molecules from GEOM [54]
and fine-tuning on the four molecule property prediction (regression) datasets and two DTA datasets.
Our experimental setting follows that in [52]. This setting covers the experiments in Table 6.

Molecule representations. In the graph autoencoder, we use 9-dimensional node features and
3-dimensional edge features of molecules provided by the OGB [80] package, following Graph-
MVP [52]. The features are summarized in Table 10a. Note that, our tokenizer uses only the atomic
numbers as node features and does not use edge features.

Hyper-parameters. The hyperparameters are summarized in Table 10b. We tune the hyperparam-
eters in the fine-tuning stage using the validation performance. Following [52], we report the test
performance at the epoch selected by the validation performance. We do not use dropout during
pretraining. During fine-tuning, we 50% dropout in GINE layers and 30% dropout in transformer
layers.

For a fair comparison, we reproduce Mole-BERT [10]’s performance by pretraining on the 50
thousand molecule samples from the GEOM dataset [54]. The original Mole-BERT is trained on a
larger dataset of 2 million molecules from ZINC15 [43].

D.4 Experiments in Table 7

The hyperparameters for fine-tuning on the QM datasets are reported in Table 11.

E More Experimental Results

In this section, we provide more experimental results. If not especially noted, these experiments
employ an autoencoder of GTS encoder and GTS-Small decoder with remask-v2, and a tokenizer of
a single-layer SGT of GIN. Other settings follow that in Appendix D.2.

Influence of edge features for pretrained GNN-based tokenizer. We ablate the impact of the “bond
type” and “bond direction” edge features in pretrained GNN-based tokenizers. We use GINE and
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Table 12: Average transfer learning ROC-AUC (%) scores on the eight classification datasets in
MoleculeNet. Including edge features in tokenizers decreases the performance.

Tokenizer GNN’s depth
Tokenizer Edge feature 1 2 3 4 5

Pretrain, GraphCL 7 75.1 74.5 74.2 74.0 74.6
3 74.2 74.7 73.7 73.8 73.2

Pretrain, GraphMAE 7 75.1 74.9 74.9 75.4 75.2
3 74.6 74.6 74.3 74.6 75.0
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(b) Histograms for the values of the tokenizer’s output.

Figure 8: SimSGT pretraining on the 2 millions molecules from ZINC15.

GIN for the tokenizer with and without edge features. Table 12 shows that including edge features
in GNN-based tokenizers negatively influences the transfer learning performance. Therefore, we
exclude edge features from pretrained GNN-based tokenizers in our experiments.

Influence of Batch Normalization layers in SGTs. The Batch Normalization [41] (BN) layers in
SGTs are crucial to avoid loss vanishment. Figure 8a presents a comparison between SGT “with vs
without BN”. Without the BN layer, the MSE loss drops to lower than 0.01 within a few steps of
pretraining. Such small loss values lead to significant model underfitting.

As shown by Figure 8b, the token values of SGT without BN follow a sharp distribution: the values
are primarily distributed around zero, and their standard deviation (std) is smaller than 0.35. This
minor std issue might be caused by the smoothing effect of GNNs [81]. An expressive neural network
(i.e., a graph autoencoder) can quickly fit this sharp target distribution and minimize the loss to a
negligible value, causing the problem of loss vanishment. However, if a BN layer is used, it forces
each dimension of the tokenizer output to have an std of 1.00, so as to “spread out” the distribution of
the SGT tokens. These new SGT tokens of a larger std are harder to fit. They keep the MSE loss at a
reasonable range of 0.10 ⇠ 0.15 (Figure 8a).

Mask ratio. We apply random node masking throughout the experiments [12]. Figure 9 presents
SimSGT’s sensitivity with respect to the mask ratios. SimSGT is not sensitive to mask ratios such
that a wide range of ratios (0.25 ⇠ 0.45) can generate competitive performances. The ratio of 0.35
achieves the best performance. This ratio is much lower than that for images, where a ratio of 0.75
can generate promising performances [15].

Balancing the distribution of reconstruction targets. As shown in Figure 11, the popularly used
ZINC15 dataset includes 12 types of atoms, and 95% of the atoms are distributed on the top three
atom types. This skewed distribution renders the node-level token reconstruction an easy pretraining
task [10]. Figure 10 shows that the accuracy of predicting node-level tokens converges quickly. Such
an easy pretraining task can lead to suboptimal performance as suggested by existing SSL literature
[82, 83]. In Figure 11, we show that the induced subgraphs of a single-layer SGT (i.e., one-hop
rooted subtrees) follow a more balanced distribution than the distribution of nodes. SGT tokens also
have a larger vocabulary size: ZINC15 includes 555 types of one-hop rooted subtrees. Consequently,
the accuracy of predicting tokens of a single-layer SGT takes more epochs to converge (Figure 10).

Pooling Method for Subgraph Representations. In previous experiments, we use mean pooling to
obtain the subgraph representations for motif-based tokenizers, following the method of obtaining
graph representations in [4, 12]. Here we add results for MGSSL tokenizer using sum and max
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Figure 9: Average ROC-AUC (%) scores
with respect to different node masking
ratios. The performances are evaluated
on the eight classification datasets in
MoleculeNet.

Figure 10: Token prediction accuracies.
SGT token prediction is conducted by
calculating the Euclidean distance be-
tween the autoencoder’s output and the
vocabulary of all SGT tokens.
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Figure 11: Distributions of graph fragments in MGM. Statistics come from molecules in ZINC15 [43].
For the subgraph types, a colon ‘:’ separates the center node and the neighbor nodes. For example,
C:CN denotes a subgraph with a center of a Carbon and neighbors of a Carbon and a Nitrogen.

pooling in Table 13. The results show that mean pooling yields the highest performance, affirming
the soundness of our previous experiments.

Full results of Section 4. We provide the full results of experiments in Section 4. Table 14 contains
the full results of Table 3a and Table 4. Table 15 contains the full results of Table 3b and Figure 6.
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[44] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

[45] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In ICML, Proceedings of Machine Learning Research, pages 12121–12132, 2021.

[46] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In NeurIPS, pages 15920–15933, 2021.

20



[47] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
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