
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX A: CHOICE OF NONLINEARITY

If we consider a network with a rectified-linear instead of a tanh nonlinearity, the restrictions on
the network’s representational capacity in the absence of inputs are even more severe (Fig. SI-1). In
this case, the basis functions are all scaled and axis-flipped relu functions that intersect the x axis at
x = 0. Thus they can only represent piecewise linear functions composed of two pieces with a knot
at zero. Adding inputs (or per-neuron biases) allows the network to have universal approximation
capabilities.

-2 0 2
z

0

(m
i z

)

basis functions (no input)

-2 0 2
z

-5

0

5

dz
/d

t

target ODE
fit in basis

-2 0 2
z

0

11

(m
i z

 +
 b

i)

basis functions (w/ input)

-2 0 2
z

-5

0

5

dz
/d

t

A

B

C

D

Figure SI-1: Representational capacity of a 1D low-rank RNN with rectified-linear (relu) nonlinearity.
(A) Set of basis functions obtained by taking random coeffients mi ⇠ N (0, 1) but without input
(vt = 0). (B) Attempting to fit an example ODE using this basis recovers only a piecewise linear fit
with a kink at zero. (C) By adding inputs, basis functions have random offset as well as slope. Here
we set vt = 1 and sampled the input vector coefficients Ii ⇠ N (0, 1). (D) Least squares fitting of n
in the random basis from (C) provides a high-accuracy approximation to the target ODE.

A.1 COMPARISON OF ACTIVATION FUNCTIONS IN ESTIMATING ODES

In this section, we explore the low-rank RNN’s ability to approximate different types of dynamics
(i.e function classes), with different activation functions (i.e basis functions). Our discussion above
highlights how relu units can approximate functions through piecewise linear components. Non-zero
inputs create basis functions which can be used to compose ODEs with "knots" at the shifted offsets.
Alternatively, through our discussion in Section 3, we note tanh units provide smooth non-linear basis
functions. The non-zero inputs create shifted basis functions, which perform a similar role, with
smooth compositions. Following this intuition, if an ODE consists of smooth non-linear components
it can be hypothesized that tanh units would have higher performance. Whereas, if the ODE consists
of piecewise linear dynamics, relu units would prove to be more optimal. To validate this, we
simulate two such ODEs in Fig. SI-2. Trivially, in the case of large enough number of basis functions,
networks comprising of relu or tanh units can approximate any function (i.e they behave as universal
approximators). However, to assess performance, we estimate the smallest networks in both cases
that can fit the ODE within a pre-defined margin of error. As expected, the ODE with smoother
non-linearities can be fit with smaller tanh networks than relu networks (the opposite is true for
piecewise linear ODEs).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A

B

ODE 1

ODE 2

Comparison of activation functions

Comparison of activation functions

-6 0 6

5 neurons
tanh

linear decay

0

dz
/d

t

fit in basis
target ODE

-6 0 6 -6 0 6

relu
5 neurons

relu
12 neurons

4 neurons
tanh tanh

25 neurons
relu

4 neurons

00

dz
/d

t

0

z z z

0

fit in basis
target ODE

z z zNumber of neurons

linear decay

MSE relu
MSE tanh

M
SE

10-1

102

MSE, n=5

5 12

MSE relu
MSE tanh

MSE, n=4

4 25

M
SE

10-1

10-6

Figure SI-2: Performance comparison of tanh v/s relu in approximating different ODEs. (A) Depicts
an ODE with two stable fixed points and one unstable fixed points. (B) Depicts an ODE with a shifted
knot and two linear components. First column represents MSE (for a network with tanh and relu
activations) as a function of the number of neurons in network. Neurons are added using OMP. Top
row shows scaled basis functions selected after 1, 3, 5 iterations of OMP, along with the linear decay
term �x. Bottom row shows target ODE (black) and RNN fit (orange) after each step of OMP.

A.2 ABSENCE OF INPUTS FOR LIMIT CYCLE

Section 3.1 depicts a limit cycle embedded into the low-rank RNN using our framework. The specific
ODE of our non-linear and non-symmetric system is give as -

dx

dt
=

1�

�
z20 + z21

�
p
z20 + z21 + ✏

!
z0 � z1 � 0.35

dy

dt
=

1�

�
z20 + z21

�
p

z20 + z21 + ✏

!
z1 + z0 + 0.5

where ✏ is a small constant added for numerical stability. The constant values in each dimension
make the underlying ODE non odd-symmetric.

In this section we show the inability of an RNN without inputs to appropriately approximate this
function. In Fig. SI-3, the first column represents contour plots of the target ODE for each dimension.
The overlayed vertical and horizontal dashed red lines depict X = z1 = 0, Y = z2 = 0 respectively.
Note, there is a slight (left and upwards) shift in the contour plots, indicating the non-radial symmetry.
This is introduced by adding a constant negative decay in z1 and a positive correction in z2. The
second column represented the fitted ODEs for an RNN with inputs, while the last column represents
fitted ODEs for an RNN without inputs. It can be observed the RNN without inputs is unable to create
offsets in any dimension, thus failing at recovering the underlying ODE. To further highlight this we
simulate a sample trajectory from the polar coordinates of a limit cycle (detailed in Section 3.1) in
the last row of Fig. SI-3. As expected, the low-rank RNN with inputs almost perfectly overlaps the
trajectory, unlike the low-rank RNN without inputs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Target dz1/dt

Target dz2/dt

Fitted dz1/dt with inputs

Fitted dz2/dt with inputs

Fitted dz1/dt without inputs

Fitted dz2/dt without inputs

Sample Trajectory

0 1 2 0 1 2

RNN without inputs

Time Time

1

-1

True z1
RNN z1

True z2
RNN z2

RNN with inputs

X,Y=0

Figure SI-3: Influence of inputs in capturing non-symmetrical limit cycle

B GENERAL FORMULATION AND APPLICATION TO BINARY DECISION
MAKING TASK

We apply our framework to a specific group of binary decision making tasks commonly observed
in systems neuroscience. In this task, a rat accumulates evidence of auditory pulses over time from
clicks on its left and right side. At the end of the stimulus period, the rat must turn to the side
which produced more clicks, and is rewarded for inferring this correctly. It has been shown that
multiple underlying dynamical portraits could represent this behavior Luo et al. (2023). We thus
show applicability of our method by using it to recover the intrinsic and input driven dynamics on
four separate synthetically generated dynamic portraits linked to this task Luo et al. (2023). Here,
intuitively, the input dynamics encode for the accumulation of evidence based on the clicks, and a
final decision to turn is made once the accumulation value reaches a specific attractor in the network.
For instance, if the instrinsic dynamics encode a bi-stable attractor, each of the end points represent a
specific decision, and the inputs move the dynamics along a line between them Wong & Wang (2006).
Additionally, consistent with previous studies, we model our simulations to provide equal weights to
left and right clicks but with opposite magnitudes.

We model four flow fields representing intrinsic dynamics, namely a bi-stable attractor, a line attractor,
an non-canonical line attractor and the flow field inferred from Luo et al. (2023). More formally, they
are given as follows -

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Bistable attractors:
dz1 = 10z1(0.7 + z1)(0.7� z1)dt+ cudt

dz2 = �10z2dt

Classic DDM - line attractor:

dz1 =

⇢
cudt z1 2 (�0.7, 0.7)
10z1(0.7� z1)(0.7 + z1)dt z1 /2 (�0.7, 0.7)

dz2 = �30z2
Non-canonical line attractor:

dz1 = 5z2
dz2 = �5z2dt+ cudt

Unsupervised model:
dz1 = 5z1(0.85 + z1)(0.85� z1)dt+ cudt

dz2 = 5(0.5|z1|+ 0.1)(z1 � 1.2z2)

(15)

Here, z1, z2, represent the two latent dimensions, u represents the magnitude of the input clicks, and
c represents if its positive or negative.
Critically, we observe the input dynamics lie in a dimension parallel to the recurrent activity. Or
alternatively, drive the system in the dimensionality spanned by the recurrent activity. We thus present
a general formulation of our equations to model these input dynamics. Following Eqn 6, we now
not only observe orthogonal (I = Iperp) neuron specific inputs, but additional input dynamics that
influence the recurrent activity (Ipar, spans the same direction as m), thus updating Eqn 6 as :

x(t) = mz(t) + Iparv
0(t) + Iperpv(t), (16)

Our goal of embedding the ODE g(z) into the network can now be viewed as setting the model
parameters so that

g(z) + z ⇡ n>�(mz+ Iparv
0(t) + Iperpv(t)) (17)

where v0(t) represents the low-pass filtered input which drives the system in the dimensions spanned
by the recurrence (m). This allows us to follow a similar setup to our discussions in Sec. 3, with the
exception that auditory inputs are applied along Ipar or I = Iperp, or both.

As shown in Fig SI-4, each row represents one of the above dynamical regimes. The first column
represents the dynamics along z1, or z2, and the RNN fitted version. Next, we model two right (or
positive) clicks at t = 0.5 and t = 1 second and a single left (negative) click at t = 2.5 second. The
second column represents the ODE when we start from (z = 0), pushed by these input dynamics,
for our fitted RNN dynamics (Eqn 7) against the true ODE (computed using Euler method). Lastly,
we also recover the underlying flow fields, as indicated by the last column. In Fig SI-5, we embed a
non-canonical line-attractor in which input axis is perpendicular to the line attractor and non-normal
dynamics give rise to movement along the line attractor. We successfully embedded all three of these
systems with rank 1 RNNs. Lastly, we also embed a system with rotational dynamics between fixed
points with integration along the diagonal between them. This is done through a rank 2 RNN with
inputs along each of the directions spanned by Ipar(Fig. SI-5 B). This proves the flexibility of our
framework in embedding dynamics associated with neuroscience tasks.

C ADDITIONAL TASKS AND COMPARISONS

C.1 DISCUSSION ON FORCE FRAMEWORK

Below we discuss some ways in which our methodology differs from the FORCE/FULL-FORCE
(Sussillo & Abbott, 2009; DePasquale et al., 2018) training schemes.

1. Initialization with Full-Rank Weight Matrix: FORCE/FULL-FORCE methods require
full rank-initializations, and learn low-rank updates on this initilalization over time. This
comes at the cost of interpretibility as the dynamics of such networks need to be analysed
post training through methods such as PCA. On the other hand, our framework directly
models the latent low-dimensional dynamic and doesn’t ever need full-rank initializations
and is highly interpretable.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

dz
/d

t

z

Bi-Stable AttractorA
1D Flow Field 2D Flow Field learnt by 1D RNN

Time in seconds
-1.0 1.0

-4.0

4.0

Auditory inputs driving trajectory

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

0.8

-0.8

-1.0
-1.0

1.0

1.0

RNN Learnt Dimension z

Ar
bi

tra
ry

 D
im

en
si

on

B Line Attractor

z-1.0 1.0

dz
/d

t

-1.0

1.0

0

0

1D Flow Field

z

0.8

-0.8

Time in seconds
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Auditory inputs driving trajectory

-1.0 1.0
RNN Learnt Dimension

-1.0

1.0

Ar
bi

tra
ry

 D
im

en
si

on

2D Flow Field learnt by 1D RNN

Target ODE
RNN fit

Left Click occured

Right Click value
Left Click value

+0.8
-0.8

Stable FP
Unstable FP

Right Click occured

Figure SI-4: Two different dynamical portraits for binary decision making task: (A) bi-stable attractor
ODE and (B) line attractor ODE. First column represents the true underlying ODE and the RNN
estimate learned using least squares. Second column depicts a sample trajectory driven by momentary
input clicks. A right click creates a drift towards the positive stable fixed point where as a left click,
towards the negative stable fixed point for A. For B, accumulation along the line takes place with no
diffusion. Third column represents the flow-field estimated by the RNN.

A

z1 1-1

In
pu

t D
im

en
si

on

z1 1-1

z2

1

-1

Non-canonical RNN line
 attractor flow field B Unsupervised-model

 flow field

0 time (s) 4

z1 dim

0 time (s) 4

0.80.5

-0.5 -0.5

-1

1

Input pulse train Input pulse train

inp dim z1dim

z2 dim

Rank 1 RNN Rank 2 RNN

PointAttractor

Line Attractor

trajectory

Figure SI-5: Two additional dynamical portraits for binary decision making task. Top: flow-field for
each ODE, with input driven trajectory highlighted in blue. Bottom: true and fitted trajectories over
time for each dimension.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2. Senstive to initialization and requires multiple epochs: One of the motivations of FORCE
is that it introduces the benefits of training networks that exhibit chaotic activity prior
to training. While powerful, it is observed this results in these networks needing mul-
tiple epochs/iterations. Additionally, these networks exhibit stochastic results based on
initialization. In contrast, our method provides a deterministic and single-step closed form
solution.

3. Doesn’t Directly Embed an ODE, but Produces a Set of Target Trajectories: A stark
difference between our framework is unlike other training methodologies similar to FORCE
and FULL-FORCE that are trained against target trajectories, we can also directly model the
underlying ODE. Thus, in cases where such a hypothesized ODE exists, we can represent
the entire space of the low-dimensional dynamic.

C.2 3D LORENZ ATTRACTOR

In addition to the 1-dimensional and 2-dimensional ODEs described in the main text, we also scale
our method to the Lorenz attractor. Specifically, we train our network on the Lorenz attractor over a
set of 10 separate trajectories (start location denoted by red circles in Fig SI-6). Additionally, the
error plots in Fig SI-6 indicates our network learns an accurate representation of this system.
Our formulation follows from our descriptions in Sec. 3.1, with one extra dimension. This can be
formalized as a rank-3 RNN, written as the problem of fitting three different nonlinear functions
g1(z), g2(z) and g3(z) using three different linear combinations of the same 3D basis functions:

g(z) =

"
g1(z)
g2(z)
g3(z)

#
⇡ �

"
z1
z2
z3

#
+

2

4
n>
1 �(Mz+ I)

n>
2 �(Mz+ I)

n>
3 �(Mz+ I)

3

5 , (18)

where M = [m1m2m2] is a d⇥ 3 matrix, I is once again a column vector of offsets, and we have
assumed a constant filtered input, v = 1.

Error Plots
Data Simulated from trajectories

x

z

y-300
0

200
-400

0

400
-200

0

200

400000200000
-400

300

-400

400

200000 400000 200000 400000
-400

400
trajectory start

True v/s Fitted X

Number of points across all trajectories

True v/s Fitted Y

dx
/d

t

dy
/d

t

dz
/d

t

True
Fitted

Lorenz Attractor

True v/s Fitted Z

Figure SI-6: Lorenz attractor

Lastly, in Fig SI-7) we also show the efficacy of our model on a sample test trajectory. As shown, our
low-rank RNN model recovers the time-traces with high accuracy.

A B

-300

200

X

0 2 4
Time (s)

-400

400

Y

0 2 4
Time (s) 0 2 4

Time (s)

-200

200

Z

Time Series of Sample Test Trajectory True and Fitted Test Trajectory

200
-200

X
-400

400

Y

200

-200

Z

RNN estimate
Target ODE

Trajectory start

Figure SI-7: Performance on sample test trajectory

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D OMP FOR 2D LIMIT CYCLE

Following our discussion on the multi-dimensional case and OMP (Sec. 3.1 and 4), we apply our
framework to learn the smallest number of neurons needed to fit an RNN for the limit cycle ODE. As
depicted in Fig SI-8), with the addition of neurons we start noticing periodicity in trajectories with
just 6 neurons. Finally, we obtain near perfect fits with 20 neurons.

Basis Function AddedIteration

N=1

dim 1 ODE Estimate dim 2 ODE Estimate Trajectory

N=2

N=6

N=10

N=20

Target dim1
RNN fit dim1
Target dim2
RNN fit dim2

Target ODE Dim1 Target ODE Dim 2

Dimension 1

D
im

en
si

on
 2

D
im

en
si

on
 2

D
im

en
si

on
 2

D
im

en
si

on
 2

D
im

en
si

on
 2

Time in secondsDimension 1 Dimension 1

O
D

E
va

lu
e

O
D

E
va

lu
e

O
D

E
va

lu
e

O
D

E
va

lu
e

O
D

E
va

lu
e

Figure SI-8: OMP for 2d Limit Cycle. Column 1 shows the single basis function added the corre-
sponding iteration of OMP. Columns 2 and 3 represent the estimated flow-fields via a learnt linear
weight, i.e two separate weights are learnt using the same basis function. Last column depicts a
sample trajectory. Note, periodicity of the limit cycle starts appearing as more neurons are added.

E PARAMETER DISTRIBUTION OF RANDOM BASIS

In this section we delve into the role of the distribution from which the random basis is sampled.
As shown in Section 4, each basis function approximates the ODE (g(z)) over some finite domain
(z). Thus, first, it is critical the basis functions span the domain of the function being approximated.
Second, these functions need not be odd symmetric and hence basis functions need to also be shifted
to capture these movements. As shown in Fig SI-9), as long as these properties are met (i.e both the
uniform grid and standard normal generate basis functions in the same domain, with the same offset
ranges), the exact underlying distribution from which the basis functions are drawn does not play a
critical role. This can be seen as the MSE values follow similar trends with greedy addition of basis
functions (panel C). Qualitatively, this can also be observed via similar reconstruction of the ODE
across iterations of OMP (panel A,B).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0

-6 0 6 -6 0 6 -6 0 6

dz
/d

t
fit in basis
target ODE

ODE fits with OMPA C

B

approximation error

RNN neurons
1 2 3 4 5

8

0

M
SE

Basis: Normal Distribution
Basis: Uniform Distribution

-6 0 6 -6 0 6 -6 0 6

dz
/d

t

0

zz z

fit in basis
target ODE

1 Neuron 3 Neurons 5 Neurons

Figure SI-9: Influence of distribution of basis functions. (A,B) RNN estimated fit of Bi-stable
attractor ODE the true underlying ODE over 1,3,5 iterations of OMP. In the top row basis functions
(both mi and Ii) are generated over a uniform grid spanning +1 to �1. Alternatively the bottom row
consists of basis functions generated from a standard normal (i.e mi ⇠ N (0, 1), and Ii ⇠ N (0, 1)).
(C) Mean squared error (MSE) between target ODE and RNN approximation as a function of the
number of RNN neurons added by OMP (blue: basis functions drawn from uniform grid, green: basis
functions drawn from standard normal).

F ADDITIONAL TRAINING DETAILS

In Section 6, both our framework and the networks trained with BPTT are trained from a set of
teacher trajectories, which are simulated from the underlying ODE (eg. for binary decision making -
they start somewhere on the grid and eventually converge to one of the two fixed points). However,
unlike previous sections, our method here can be broken into two main steps -

1. Estimate ODE: Through a finite differencing approach (euler), we compute the difference
between every pair of points along the training trajectory. Thus, using a small time bin, we
estimate the value of g(z) along each point of the trajectory. This is used to populate our
target vector for regression.

2. Perform Regression: Our basis matrix is evaluated at grid points along these training
trajectories. Given this design matrix, and target we compute the necessary weights through
Eqn 9.

Lastly, both our framework and the networks trained with BPTT must reproduce a set of target
trajectories (eg. blue lines in In Fig. 5, panel A) from an input pulse train (eg. representing bit value
for each channel over the time interval). Thus, both our method and models trained with gradient
methods are trained to uncover underlying dynamics (from data points) that solve the task.

As shown in Table 1, 2, our framework provides significantly faster training.

Table 1: Training Time For Binary-Decision Making Task
Model Type Size Time(s)

Low Rank (r = 1) 5 62.419
Low Rank (r = 1) 10 62.468

Full Rank 2 29.161
Full Rank 3 29.209
Full Rank 5 29.025
Full Rank 10 29.392
Full Rank 50 28.998
Our Model 5 0.069

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: Training Time For 3-Bit Flip Flop Task
Model Type Size Time(s)

Low Rank (r = 3) 5 305.256
Low Rank (r = 3) 10 303.559

Full Rank 3 170.512
Full Rank 5 169.076
Full Rank 10 170.239
Full Rank 50 173.590
Our Model 5 0.09

F.1 APPLICATION TO HIGH DIMENSIONAL NOISY DATA

We further validate our framework by discussing its application to high-dimensional noisy data. In this
case we assume we have access to high-dimensional noisy rate-based neural recordings. Specifically,
this simulation is achieved by simulating a trajectory from the bi-stable ODE in Fig. SI-5 B. This
trajectory z(t), starts somewhere on the grid of z, and is run forward until it converges to one of
the fixed points. To convert this into a high-dimensional noisy rate based recordings we take the
following steps. For each value along this trajectory z(t) we -

1. Project it into a high dimensional space through a linear weight matrix (values are drawn
between 0-1).

2. This linear mapping is made non-linear via the tanh activation
3. Finally, we independently add Gaussian noise to each of the dimensions (N (0, 0.01)).

We thus assume we have access to these high-dimensional recordings. We project the data onto the
top PC’s(since the underlying dynamic here is 1-d, the first PC dimension captures the dynamic). In
Fig. SI-10, the low-dimensional trajectory was first projected into a 1000 dimensional space. PCA on
this trajectory showed the single top PC captured most of the variance in the data. As shown, through
this projection we recover a noisy trajectory that represents the true low-dimensional dynamic. The
rank of the network will depend on the number of PC dimensions needed, in this case 1 suffices.
Furthermore, as noise in the system increases this recovery will also become more noisy (or need
more dimensions to capture it). Other confounding factors such as low-resolution recordings or sparse
recordings could also influence recovery (although not explored here).

Finally, once we have access to these trajectories the approach discussed in Section F can once again
be followed.

Figure SI-10: Recovering low-dimensional trajectory from noisy dimensional data

22

