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A APPENDIX A: CHOICE OF NONLINEARITY

If we consider a network with a rectified-linear instead of a tanh nonlinearity, the restrictions on
the network’s representational capacity in the absence of inputs are even more severe (Fig. SI-1). In
this case, the basis functions are all scaled and axis-flipped relu functions that intersect the x axis at
x = 0. Thus they can only represent piecewise linear functions composed of two pieces with a knot
at zero. Adding inputs (or per-neuron biases) allows the network to have universal approximation
capabilities.

-2 0 2
z

0

(m
i z

)

basis functions (no input)

-2 0 2
z

-5

0

5

dz
/d

t

target ODE
fit in basis

-2 0 2
z

0

11

(m
i z

 +
 b

i)

basis functions (w/ input)

-2 0 2
z

-5

0

5

dz
/d

t

A

B

C

D

Figure SI-1: Representational capacity of a 1D low-rank RNN with rectified-linear (relu) nonlinearity.
(A) Set of basis functions obtained by taking random coeffients mi ⇠ N (0, 1) but without input
(vt = 0). (B) Attempting to fit an example ODE using this basis recovers only a piecewise linear fit
with a kink at zero. (C) By adding inputs, basis functions have random offset as well as slope. Here
we set vt = 1 and sampled the input vector coefficients Ii ⇠ N (0, 1). (D) Least squares fitting of n
in the random basis from (C) provides a high-accuracy approximation to the target ODE.

A.1 COMPARISON OF ACTIVATION FUNCTIONS IN ESTIMATING ODES

In this section, we explore the low-rank RNN’s ability to approximate different types of dynamics
(i.e function classes), with different activation functions (i.e basis functions). Our discussion above
highlights how relu units can approximate functions through piecewise linear components. Non-zero
inputs create basis functions which can be used to compose ODEs with "knots" at the shifted offsets.
Alternatively, through our discussion in Section 3, we note tanh units provide smooth non-linear basis
functions. The non-zero inputs create shifted basis functions, which perform a similar role, with
smooth compositions. Following this intuition, if an ODE consists of smooth non-linear components
it can be hypothesized that tanh units would have higher performance. Whereas, if the ODE consists
of piecewise linear dynamics, relu units would prove to be more optimal. To validate this, we
simulate two such ODEs in Fig. SI-2. Trivially, in the case of large enough number of basis functions,
networks comprising of relu or tanh units can approximate any function (i.e they behave as universal
approximators). However, to assess performance, we estimate the smallest networks in both cases
that can fit the ODE within a pre-defined margin of error. As expected, the ODE with smoother
non-linearities can be fit with smaller tanh networks than relu networks (the opposite is true for
piecewise linear ODEs).
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Figure SI-2: Performance comparison of tanh v/s relu in approximating different ODEs. (A) Depicts
an ODE with two stable fixed points and one unstable fixed points. (B) Depicts an ODE with a shifted
knot and two linear components. First column represents MSE (for a network with tanh and relu
activations) as a function of the number of neurons in network. Neurons are added using OMP. Top
row shows scaled basis functions selected after 1, 3, 5 iterations of OMP, along with the linear decay
term �x. Bottom row shows target ODE (black) and RNN fit (orange) after each step of OMP.

A.2 ABSENCE OF INPUTS FOR LIMIT CYCLE

Section 3.1 depicts a limit cycle embedded into the low-rank RNN using our framework. The specific
ODE of our non-linear and non-symmetric system is give as -

dx

dt
=

 
1�

�
z20 + z21

�
p
z20 + z21 + ✏

!
z0 � z1 � 0.35

dy

dt
=

 
1�

�
z20 + z21

�
p

z20 + z21 + ✏

!
z1 + z0 + 0.5

where ✏ is a small constant added for numerical stability. The constant values in each dimension
make the underlying ODE non odd-symmetric.

In this section we show the inability of an RNN without inputs to appropriately approximate this
function. In Fig. SI-3, the first column represents contour plots of the target ODE for each dimension.
The overlayed vertical and horizontal dashed red lines depict X = z1 = 0, Y = z2 = 0 respectively.
Note, there is a slight (left and upwards) shift in the contour plots, indicating the non-radial symmetry.
This is introduced by adding a constant negative decay in z1 and a positive correction in z2. The
second column represented the fitted ODEs for an RNN with inputs, while the last column represents
fitted ODEs for an RNN without inputs. It can be observed the RNN without inputs is unable to create
offsets in any dimension, thus failing at recovering the underlying ODE. To further highlight this we
simulate a sample trajectory from the polar coordinates of a limit cycle (detailed in Section 3.1) in
the last row of Fig. SI-3. As expected, the low-rank RNN with inputs almost perfectly overlaps the
trajectory, unlike the low-rank RNN without inputs.
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Figure SI-3: Influence of inputs in capturing non-symmetrical limit cycle

B GENERAL FORMULATION AND APPLICATION TO BINARY DECISION
MAKING TASK

We apply our framework to a specific group of binary decision making tasks commonly observed
in systems neuroscience. In this task, a rat accumulates evidence of auditory pulses over time from
clicks on its left and right side. At the end of the stimulus period, the rat must turn to the side
which produced more clicks, and is rewarded for inferring this correctly. It has been shown that
multiple underlying dynamical portraits could represent this behavior Luo et al. (2023). We thus
show applicability of our method by using it to recover the intrinsic and input driven dynamics on
four separate synthetically generated dynamic portraits linked to this task Luo et al. (2023). Here,
intuitively, the input dynamics encode for the accumulation of evidence based on the clicks, and a
final decision to turn is made once the accumulation value reaches a specific attractor in the network.
For instance, if the instrinsic dynamics encode a bi-stable attractor, each of the end points represent a
specific decision, and the inputs move the dynamics along a line between them Wong & Wang (2006).
Additionally, consistent with previous studies, we model our simulations to provide equal weights to
left and right clicks but with opposite magnitudes.

We model four flow fields representing intrinsic dynamics, namely a bi-stable attractor, a line attractor,
an non-canonical line attractor and the flow field inferred from Luo et al. (2023). More formally, they
are given as follows -
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Bistable attractors:
dz1 = 10z1(0.7 + z1)(0.7� z1)dt+ cudt

dz2 = �10z2dt

Classic DDM - line attractor:

dz1 =

⇢
cudt z1 2 (�0.7, 0.7)
10z1(0.7� z1)(0.7 + z1)dt z1 /2 (�0.7, 0.7)

dz2 = �30z2
Non-canonical line attractor:

dz1 = 5z2
dz2 = �5z2dt+ cudt

Unsupervised model:
dz1 = 5z1(0.85 + z1)(0.85� z1)dt+ cudt

dz2 = 5(0.5|z1|+ 0.1)(z1 � 1.2z2)

(15)

Here, z1, z2, represent the two latent dimensions, u represents the magnitude of the input clicks, and
c represents if its positive or negative.
Critically, we observe the input dynamics lie in a dimension parallel to the recurrent activity. Or
alternatively, drive the system in the dimensionality spanned by the recurrent activity. We thus present
a general formulation of our equations to model these input dynamics. Following Eqn 6, we now
not only observe orthogonal (I = Iperp) neuron specific inputs, but additional input dynamics that
influence the recurrent activity (Ipar, spans the same direction as m), thus updating Eqn 6 as :

x(t) = mz(t) + Iparv
0(t) + Iperpv(t), (16)

Our goal of embedding the ODE g(z) into the network can now be viewed as setting the model
parameters so that

g(z) + z ⇡ n>�(mz+ Iparv
0(t) + Iperpv(t)) (17)

where v0(t) represents the low-pass filtered input which drives the system in the dimensions spanned
by the recurrence (m). This allows us to follow a similar setup to our discussions in Sec. 3, with the
exception that auditory inputs are applied along Ipar or I = Iperp, or both.

As shown in Fig SI-4, each row represents one of the above dynamical regimes. The first column
represents the dynamics along z1, or z2, and the RNN fitted version. Next, we model two right (or
positive) clicks at t = 0.5 and t = 1 second and a single left (negative) click at t = 2.5 second. The
second column represents the ODE when we start from (z = 0), pushed by these input dynamics,
for our fitted RNN dynamics (Eqn 7) against the true ODE (computed using Euler method). Lastly,
we also recover the underlying flow fields, as indicated by the last column. In Fig SI-5, we embed a
non-canonical line-attractor in which input axis is perpendicular to the line attractor and non-normal
dynamics give rise to movement along the line attractor. We successfully embedded all three of these
systems with rank 1 RNNs. Lastly, we also embed a system with rotational dynamics between fixed
points with integration along the diagonal between them. This is done through a rank 2 RNN with
inputs along each of the directions spanned by Ipar(Fig. SI-5 B). This proves the flexibility of our
framework in embedding dynamics associated with neuroscience tasks.

C ADDITIONAL TASKS AND COMPARISONS

C.1 DISCUSSION ON FORCE FRAMEWORK

Below we discuss some ways in which our methodology differs from the FORCE/FULL-FORCE
(Sussillo & Abbott, 2009; DePasquale et al., 2018) training schemes.

1. Initialization with Full-Rank Weight Matrix: FORCE/FULL-FORCE methods require
full rank-initializations, and learn low-rank updates on this initilalization over time. This
comes at the cost of interpretibility as the dynamics of such networks need to be analysed
post training through methods such as PCA. On the other hand, our framework directly
models the latent low-dimensional dynamic and doesn’t ever need full-rank initializations
and is highly interpretable.
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Figure SI-4: Two different dynamical portraits for binary decision making task: (A) bi-stable attractor
ODE and (B) line attractor ODE. First column represents the true underlying ODE and the RNN
estimate learned using least squares. Second column depicts a sample trajectory driven by momentary
input clicks. A right click creates a drift towards the positive stable fixed point where as a left click,
towards the negative stable fixed point for A. For B, accumulation along the line takes place with no
diffusion. Third column represents the flow-field estimated by the RNN.
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2. Senstive to initialization and requires multiple epochs: One of the motivations of FORCE
is that it introduces the benefits of training networks that exhibit chaotic activity prior
to training. While powerful, it is observed this results in these networks needing mul-
tiple epochs/iterations. Additionally, these networks exhibit stochastic results based on
initialization. In contrast, our method provides a deterministic and single-step closed form
solution.

3. Doesn’t Directly Embed an ODE, but Produces a Set of Target Trajectories: A stark
difference between our framework is unlike other training methodologies similar to FORCE
and FULL-FORCE that are trained against target trajectories, we can also directly model the
underlying ODE. Thus, in cases where such a hypothesized ODE exists, we can represent
the entire space of the low-dimensional dynamic.

C.2 3D LORENZ ATTRACTOR

In addition to the 1-dimensional and 2-dimensional ODEs described in the main text, we also scale
our method to the Lorenz attractor. Specifically, we train our network on the Lorenz attractor over a
set of 10 separate trajectories (start location denoted by red circles in Fig SI-6). Additionally, the
error plots in Fig SI-6 indicates our network learns an accurate representation of this system.
Our formulation follows from our descriptions in Sec. 3.1, with one extra dimension. This can be
formalized as a rank-3 RNN, written as the problem of fitting three different nonlinear functions
g1(z), g2(z) and g3(z) using three different linear combinations of the same 3D basis functions:

g(z) =

"
g1(z)
g2(z)
g3(z)

#
⇡ �

"
z1
z2
z3

#
+

2

4
n>
1 �(Mz+ I)

n>
2 �(Mz+ I)

n>
3 �(Mz+ I)

3

5 , (18)

where M = [m1m2m2] is a d⇥ 3 matrix, I is once again a column vector of offsets, and we have
assumed a constant filtered input, v = 1.
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Figure SI-6: Lorenz attractor

Lastly, in Fig SI-7) we also show the efficacy of our model on a sample test trajectory. As shown, our
low-rank RNN model recovers the time-traces with high accuracy.

A B

-300

200

X

0 2 4
Time (s)

-400

400

Y

0 2 4
Time (s) 0 2 4

Time (s)

-200

200

Z

Time Series of Sample Test Trajectory True and Fitted Test Trajectory

200
-200

X
-400

400

Y

200

-200

Z

RNN estimate
Target ODE

Trajectory start

Figure SI-7: Performance on sample test trajectory
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D OMP FOR 2D LIMIT CYCLE

Following our discussion on the multi-dimensional case and OMP (Sec. 3.1 and 4), we apply our
framework to learn the smallest number of neurons needed to fit an RNN for the limit cycle ODE. As
depicted in Fig SI-8), with the addition of neurons we start noticing periodicity in trajectories with
just 6 neurons. Finally, we obtain near perfect fits with 20 neurons.
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Figure SI-8: OMP for 2d Limit Cycle. Column 1 shows the single basis function added the corre-
sponding iteration of OMP. Columns 2 and 3 represent the estimated flow-fields via a learnt linear
weight, i.e two separate weights are learnt using the same basis function. Last column depicts a
sample trajectory. Note, periodicity of the limit cycle starts appearing as more neurons are added.

E PARAMETER DISTRIBUTION OF RANDOM BASIS

In this section we delve into the role of the distribution from which the random basis is sampled.
As shown in Section 4, each basis function approximates the ODE (g(z)) over some finite domain
(z). Thus, first, it is critical the basis functions span the domain of the function being approximated.
Second, these functions need not be odd symmetric and hence basis functions need to also be shifted
to capture these movements. As shown in Fig SI-9), as long as these properties are met (i.e both the
uniform grid and standard normal generate basis functions in the same domain, with the same offset
ranges), the exact underlying distribution from which the basis functions are drawn does not play a
critical role. This can be seen as the MSE values follow similar trends with greedy addition of basis
functions (panel C). Qualitatively, this can also be observed via similar reconstruction of the ODE
across iterations of OMP (panel A,B).
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Figure SI-9: Influence of distribution of basis functions. (A,B) RNN estimated fit of Bi-stable
attractor ODE the true underlying ODE over 1,3,5 iterations of OMP. In the top row basis functions
(both mi and Ii) are generated over a uniform grid spanning +1 to �1. Alternatively the bottom row
consists of basis functions generated from a standard normal (i.e mi ⇠ N (0, 1), and Ii ⇠ N (0, 1)).
(C) Mean squared error (MSE) between target ODE and RNN approximation as a function of the
number of RNN neurons added by OMP (blue: basis functions drawn from uniform grid, green: basis
functions drawn from standard normal).

F ADDITIONAL TRAINING DETAILS

In Section 6, both our framework and the networks trained with BPTT are trained from a set of
teacher trajectories, which are simulated from the underlying ODE (eg. for binary decision making -
they start somewhere on the grid and eventually converge to one of the two fixed points). However,
unlike previous sections, our method here can be broken into two main steps -

1. Estimate ODE: Through a finite differencing approach (euler), we compute the difference
between every pair of points along the training trajectory. Thus, using a small time bin, we
estimate the value of g(z) along each point of the trajectory. This is used to populate our
target vector for regression.

2. Perform Regression: Our basis matrix is evaluated at grid points along these training
trajectories. Given this design matrix, and target we compute the necessary weights through
Eqn 9.

Lastly, both our framework and the networks trained with BPTT must reproduce a set of target
trajectories (eg. blue lines in In Fig. 5, panel A) from an input pulse train (eg. representing bit value
for each channel over the time interval). Thus, both our method and models trained with gradient
methods are trained to uncover underlying dynamics (from data points) that solve the task.

As shown in Table 1, 2, our framework provides significantly faster training.

Table 1: Training Time For Binary-Decision Making Task
Model Type Size Time(s)

Low Rank (r = 1) 5 62.419
Low Rank (r = 1) 10 62.468

Full Rank 2 29.161
Full Rank 3 29.209
Full Rank 5 29.025
Full Rank 10 29.392
Full Rank 50 28.998
Our Model 5 0.069
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Table 2: Training Time For 3-Bit Flip Flop Task
Model Type Size Time(s)

Low Rank (r = 3) 5 305.256
Low Rank (r = 3) 10 303.559

Full Rank 3 170.512
Full Rank 5 169.076
Full Rank 10 170.239
Full Rank 50 173.590
Our Model 5 0.09

F.1 APPLICATION TO HIGH DIMENSIONAL NOISY DATA

We further validate our framework by discussing its application to high-dimensional noisy data. In this
case we assume we have access to high-dimensional noisy rate-based neural recordings. Specifically,
this simulation is achieved by simulating a trajectory from the bi-stable ODE in Fig. SI-5 B. This
trajectory z(t), starts somewhere on the grid of z, and is run forward until it converges to one of
the fixed points. To convert this into a high-dimensional noisy rate based recordings we take the
following steps. For each value along this trajectory z(t) we -

1. Project it into a high dimensional space through a linear weight matrix (values are drawn
between 0-1).

2. This linear mapping is made non-linear via the tanh activation
3. Finally, we independently add Gaussian noise to each of the dimensions (N (0, 0.01)).

We thus assume we have access to these high-dimensional recordings. We project the data onto the
top PC’s(since the underlying dynamic here is 1-d, the first PC dimension captures the dynamic). In
Fig. SI-10, the low-dimensional trajectory was first projected into a 1000 dimensional space. PCA on
this trajectory showed the single top PC captured most of the variance in the data. As shown, through
this projection we recover a noisy trajectory that represents the true low-dimensional dynamic. The
rank of the network will depend on the number of PC dimensions needed, in this case 1 suffices.
Furthermore, as noise in the system increases this recovery will also become more noisy (or need
more dimensions to capture it). Other confounding factors such as low-resolution recordings or sparse
recordings could also influence recovery (although not explored here).

Finally, once we have access to these trajectories the approach discussed in Section F can once again
be followed.

Figure SI-10: Recovering low-dimensional trajectory from noisy dimensional data
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