# **Context-Dependent Manifold Learning in Dynamical Systems:** A Neuromodulated Constrained Autoencoder Approach

Jérôme Adriaens **Guillaume Drion** Pierre Sacré

Neuroengineering Lab, Department of Electrical Engineering and Computer Science, University of Liège



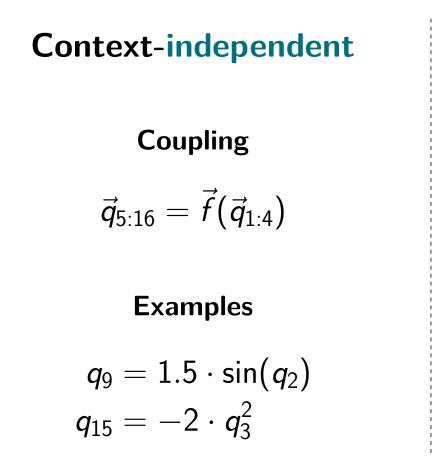


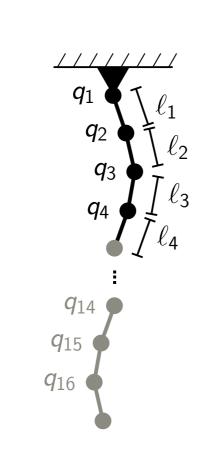


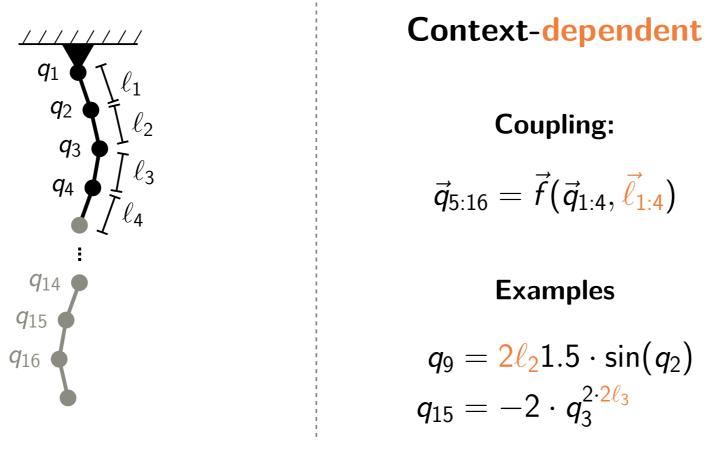
## **Context-aware methods are required for ROM of systems with context**

### **Objective**

Reduce the order of dynamical systems with different physical parameters (or context).







#### Our method combines

- Constrained autoencoders (cAE) from Otto et al. 2023 for the projection property when compressing the state, and
- neuromodulation mechanisms inspired by biology and used in Vecoven et al. 2020 to allow the adaptation to varying external parameters.

# **Constrained Autoencoder (cAE)**

They comprise biorthogonal layers and smooth activation function pairs.

#### **Smooth activation functions:**

We extend standard activation function, defined as element-wise inverse pairs  $\sigma_{\pm}(\cdot, \alpha)$ , by changing their fixed parameter  $\boldsymbol{\alpha}$  with a context-modulated vector  $\vec{\alpha}(\vec{c})$ .

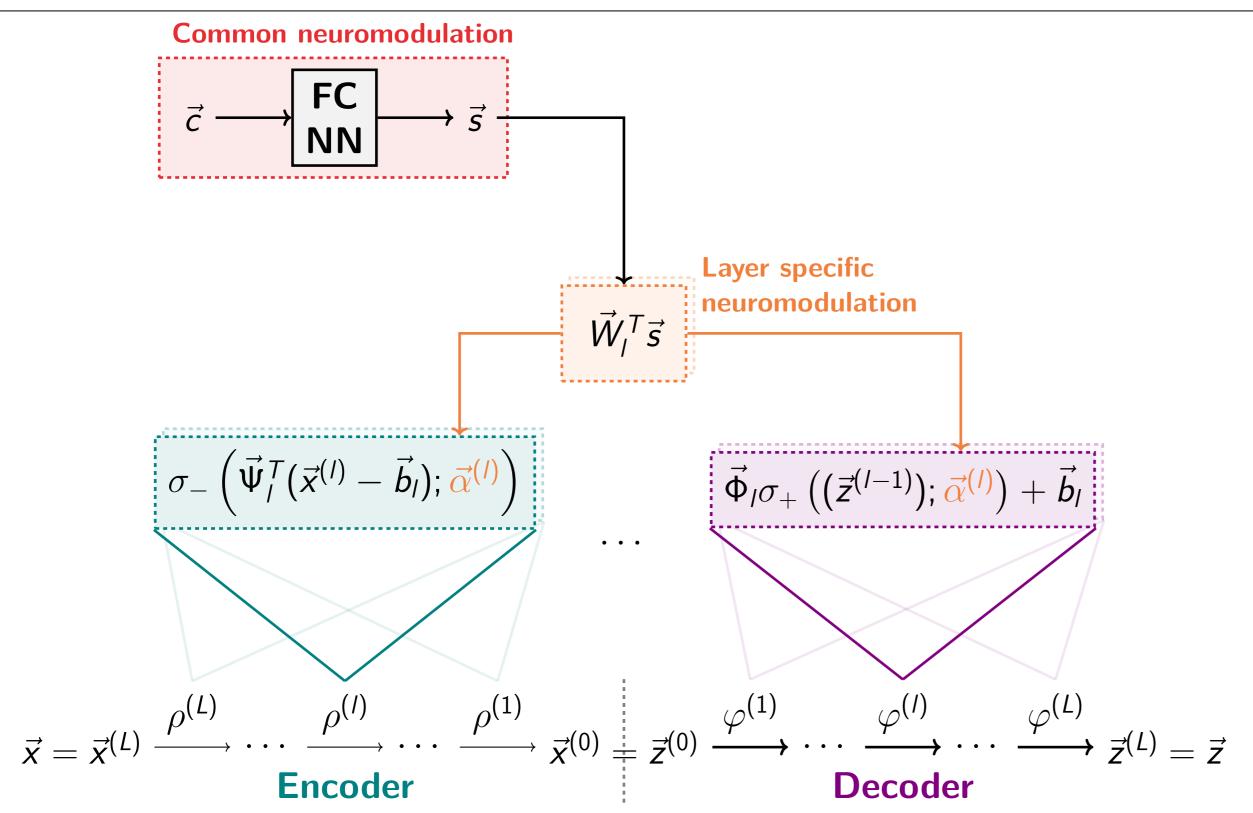
## **Biorthogonal layer pairs:**

We denote the encoder  $\rho$  and decoder  $\varphi$ , and they satisfy  $\rho \circ \varphi = Id$  such that  $P = \varphi \circ \rho$ is a projection. The encoder  $\rho$  and decoder  $\varphi$  are composed of L layers :

$$\rho^{(I)}(\vec{x}^{(I)}) = \sigma_{-} \left( \vec{\Psi}_{I}^{T} (\vec{x}^{(I)} - \vec{b}_{I}) \right),$$

$$\varphi^{(I)}(\vec{z}^{(I-1)}) = \vec{\Phi}_{I} \sigma_{+} \left( \vec{z}^{(I-1)} \right) + \vec{b}_{I}.$$

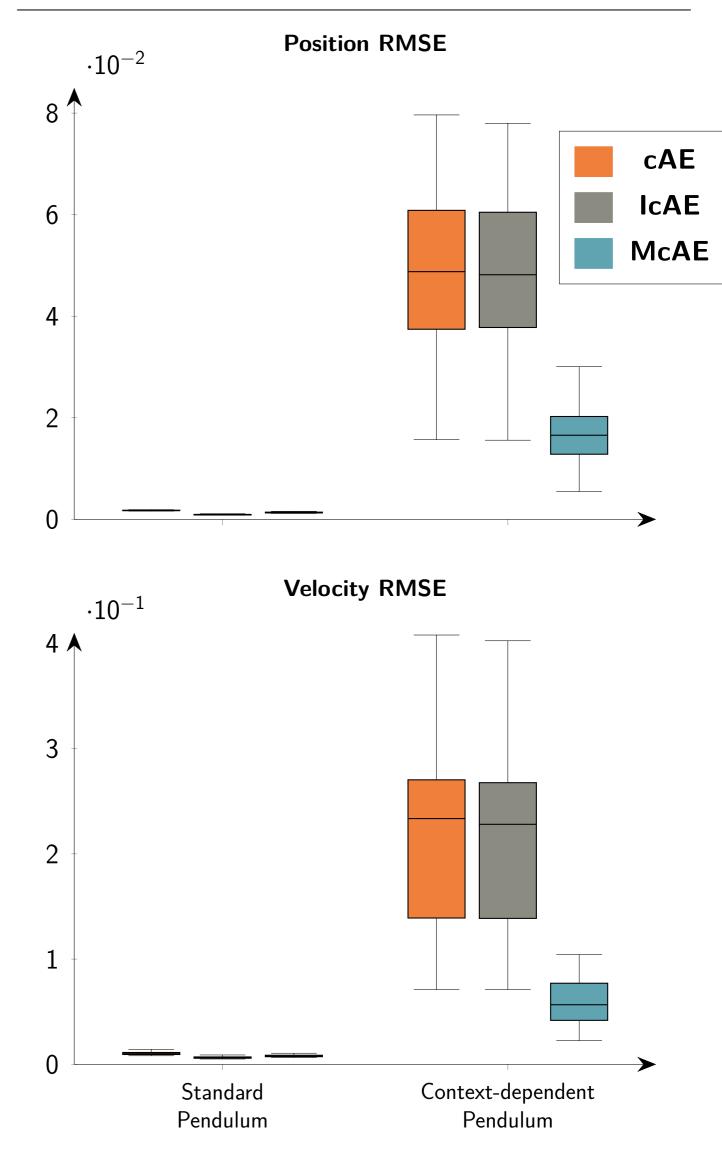
# Neuromodulation can be incorporated in cAE



#### Our neuromodulation process

- 1. Common neuromodulation: A context vector  $\vec{c}$  modulates the network by generating a common neuromodulation signal  $\vec{s}$ .
- 2. Layer-specific neuromodulation: Signal  $\vec{s}$  is then multiplied by the layer-specific weight matrix  $\vec{W}_l$  to produce the activation function parameters  $\vec{\alpha}^{(l)}$ .

# Neuromod. has greater performance



#### **Conclusions and perspectives**

This work introduces a novel approach for context-dependent manifold learning using neuromodulated cAE. Preliminary results demonstrate the potential of our method, particularly in capturing context-dependent relationships in dynamical systems.

#### **Future work**

- Refine and rigorously validate our approach.
- Include a deeper analysis of the latent space.
- Extend experiments to other dynamical systems, for example, a 192 DoF rope, the Lorenz 96 model.