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ABSTRACT

Learning trustworthy and reliable offline policies presents significant challenges
due to the inherent uncertainty in pre-collected datasets. In this paper, we propose
a novel offline reinforcement learning method to tackle this issue. Inspired by the
concepts of Lyapunov stability and control-invariant sets from control theory, the
central idea is to introduce a restricted state space for the agent to operate within.
This approach allows the learned models to exhibit reduced Bellman uncertainty
and make reliable decisions. To achieve this, we regulate the expected Bellman
uncertainty associated with the new policy, ensuring that its growth trend in subse-
quent states remains within acceptable limits. The resulting method, termed Lya-
punov Uncertainty Control (LUC), is shown to guarantee that the agent remains
within a low-uncertainty state enclosure throughout its entire trajectory. Further-
more, we perform extensive theoretical and experimental analysis to showcase the
effectiveness and feasibility of the proposed LUC.

1 INTRODUCTION

Offline reinforcement learning (RL) allows policy learning from historical data without real-world
interaction. However, ensuring reliable sequential decision-making from offline data poses a signifi-
cant challenge in practical applications. For example, in healthcare (Tang & Wiens, 2021), a reliable
diagnostic agent requires avoiding unfamiliar approaches that may introduce errors in subsequent
procedures. Similar requirements exist in fields such as autonomous driving (Kiran et al., 2022),
robotics control (Lobbezoo et al., 2021), and others.

The reliability of offline RL is undermined by various sources of uncertainty (Der Kiureghian &
Ditlevsen, 2009). Specifically, this uncertainty typically appears in two forms: aleatoric uncertainty
related to the intrinsic randomness of a phenomenon and epistemic uncertainty stemming from in-
adequate data. We primarily focus on managing the latter, which can lead to elevated Bellman
uncertainty for offline RL agents - a measure of the bias in the learned value function over the
provided data (Jin et al., 2021), resulting in unreliable decision-making. While several previous
methods (Yu et al., 2020; Bai et al., 2022; Sun et al., 2023) address this issue by incorporating pes-
simistic constraints, it is difficult to prevent the learnt agents from entering high-uncertainty regions
during testing. An example is shown in Figure 1, where MuJoCo agents trained using pessimistic
frameworks like PBRL (Bai et al., 2022) encounter issues due to exposure to in-distributional states
that, despite appearing safe, carry high-risk consequences, namely boundary states. This case un-
derscores the importance of defining a low-uncertainty region for the agent to operate within and
excluding high-risk boundary states.

Inspired by control-invariant sets in control theory (Kerrigan, 2000; Richter & Roy, 2017), where a
closed region is delineated in the state space to offer a reliable working environment for the agent,
a recent method named Lyapunov Density Model (Kang et al., 2022) defines a region based on
data density distribution to ensure adequate data support for the agent during operation. However,
setting a reliable region based on a common and pessimistic density criterion overlooks the issue of
performance imbalances in complex environments, where data requirements for achieving a certain
performance level may vary across regions. For example, in autonomous driving, data needs for
learning on a smooth highway differ significantly from those on a rugged mountain road. Instead,
we advocate using a metric linked to model performance (e.g., value functions, policies) - Bellman
uncertainty - for region definition to meet reliability standards in complex environments.
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Figure 1: (left) Solely constraining current step’s uncertainty is insufficient to identify those bound-
ary states that pose a high risk of the agent deviating into high-uncertainty regions. (right) An
illustration of the failure of traditional pessimism-based agents in accumulating errors by deviating
from reliable regions, as demonstrated on a Halfcheetah robotic agent.

In particular, we aim to define a confined state space for the agent’s operation, where the learned
models demonstrate reduced Bellman uncertainty and reliable decision-making. To achieve this, we
introduce a novel offline reinforcement learning method that regulates the expected Bellman uncer-
tainty associated with the new policy. This regulation ensures that, at subsequent states, the growth
trend of uncertainty remains within acceptable limits, allowing the agent to navigate low-uncertainty
regions that serve as safe zones. Drawing inspiration from the control Lyapunov functions used in
optimal control, we refer to our approach as Lyapunov Uncertainty Control (LUC).

We implement our Lyapunov Uncertainty Control (LUC) method using a standard deviation-based
uncertainty measure that relies on Q-ensembles, as described in Bai et al. (2022). Theoretically,
we demonstrate that our approach can confine the learned agent to operate within a low-uncertainty
state enclosure, resulting in secure and reliable trajectories. Furthermore, in certain scenarios, it
can enhance the minimum performance bound of the new policy. Finally, we conduct extensive ex-
periments to showcase the effectiveness and feasibility of LUC across various tailored benchmarks,
including out-of-distribution (OOD) benchmarks and those with poor demonstrations.

The subsequent sections, after a brief review of related works, Section 3 present a concise overview
of the fundamental concepts in offline RL. Section 4 elaborates on the LUC methodology, providing
a detailed theoretical analysis of its effectiveness and implementation insights. Section 5 presents
experimental results evaluating LUC’s performance across various scenarios. To conclude, the paper
summarizes the findings and contributions, along with a brief discussion on limitations.

2 RELATED WORKS

Offline RL algorithms. Dealing with distributional shift poses a significant challenge for offline
RL algorithms. Previous works, including CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019),
and BRAC (Wu et al., 2019), have aimed to tackle this issue by integrating conservative principles to
prevent out-of-distribution (OOD) actions. However, these methods mainly concentrate on reducing
the disparity between the new policy and the behavior policy that gathered the dataset. On the
other hand, approaches like Implicit Q-Learning (IQL) (Kostrikov et al., 2022) entirely avoid OOD
queries for actions during TD target estimation. Nonetheless, these methods heavily depend on the
action distribution of the behavior policy, leading to a lack of generalization capability.

Pessimistic offline RL. Pessimistic offline RL algorithms introduce Bellman uncertainty quan-
tification (Jin et al., 2021; Xie et al., 2021) to determine reliable actions for generalizing to OOD
data. This method has exhibited significant efficacy in model-based offline RL algorithms such
as Model-based Offline Policy Optimization (Yu et al., 2020) and MOdel-Bellman Inconsistency
penalized offLinE Policy Optimization (MOBILE)(Sun et al., 2023), as well as in model-free al-
gorithms like Pessimistic Bootstrapping for offline RL (PBRL)Bai et al. (2022) and Robust Offline
RL (RORL)(Yang et al., 2022). However, this study reveals that solely managing uncertainty at the
current step is insufficient to ensure reliability and safety, given the short-sightedness regarding the
decision’s potential outcomes.
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Consequence-driven offline RL. Consequence-driven offline RL methods have been developed
to address the state distributional shift issue utilizing the concept of state recovery(Zhang et al.,
2022; Jiang et al., 2023). State Deviation Correction(Zhang et al., 2022) involves pre-training a
forward dynamics model to facilitate the recovery process, whereas Out-of-sample State Recovery
(OSR) (Jiang et al., 2023) employs an inverse dynamics model to implicitly execute the concept.
While these techniques assist in rectifying the agent’s behavior deviations from reliable regions,
their unreliability in OOD states may hinder their success rates. In contrast, our LUC approach can
be thought of as a more robust method which not only considers the reliability of the immediate
consequence of executing a policy but that of its long term consequence.

3 PRELIMINARIES

In the standard formulation of reinforcement learning, a Markov Decision Process (MDP) is used to
model the problem. It is represented by a tuple (S,A, P,R, γ, ρ0), where S denotes the state space,
A represents the action space, M is the transition function (in a deterministic transitioned MDP,
M(s, a) = s′, while in a stochastic transitioned MDP, P (s′|s, a) is a distribution of states), R is the
reward function with upper bound Rmax, γ is the discount factor, and ρ0 is the initial state distribu-
tion. A policy, denoted as π : S → A, guides the decision-making process in interacting with the
environment. To evaluate the expected cumulative rewards, a Q-value function Qπ(s, a) is defined
as (1 − γ)E[

∑∞
t=0 γ

tR(st, π(at|st))|s, a]. For convenience, the γ-discounted future state distribu-
tion (stationary state distribution) is defined as dπ(s) = (1−γ)

∑
t = 0∞γtPr(st = s;π, ρ0), with

ρ0 representing the initial state distribution and (1− γ) is the normalization factor.

In the offline setting, Q-Learning (Watkins & Dayan, 1992) is used to learn a Q-value function
Q̂(s, a) and a policy π from a dataset D collected by a behavior policy πβ . The dataset consists
of quadruples (s, a, r, s′) ∼ dπβ (s)πβ(a|s)P (r|s, a)P (s′|s, a). The objective is to minimize the
Bellman error over the offline dataset (Watkins & Dayan, 1992) and search for a good policy in
the policy candidate set Π ⊂ (S → △(A)) under the supervision of a value-function class F ⊂
(S ×A→ [0, Vmax]) to model the Q-value function,

Q←− argmin
Q

E(s,a,r,s′)∼D
[
r + γ[max

π∈Π
Ea′∼π(·|s′)Q(s′, a′)]−Q(s, a)

]2
(1)

More specifically, in this paper, we denote the optimal Bellman operator over Π as T Πf(s, a) =
r(s, a) + γEs′∼P (·|s,a)[maxπ∈Π Ea′∼π(·|s′)Q(s′, a′)], and the empirical Bellman operator as
T̂ Πf(s, a) = r(s, a) + γEs′∼P̂ (·|s,a)[maxπ∈Π Ea′∼π(·|s′)Q(s′, a′)], where P̂ is the empirical dy-
namics model based on the dataset. It is worth noting that the TD target in Eq.(1) is estimated by
the empirical Bellman operator.

4 METHOD

This section provides a detailed introduction to our work. In Sec.4.1, we formally define our objec-
tive mathematically as obtaining a policy that consistently operates within a reliable region. Subse-
quently, in Sec.4.2, we present a specific algorithm to accomplish this objective. Finally, in Sec.4.3,
we analyze the theoretical properties of the algorithm, demonstrating its capability to improve the
performance lower bound of the learned policy under specific scenarios.

4.1 OPERATING WITHIN RELIABLE REGIONS BY LYAPUNOV POLICY

In this section, we formally define our conceptual framework for Lyapunov Uncertainty Control.
Specifically, analogous to control-invariant sets in control theory, we first define reliable regions in
the state space where the policy π can operate effectively. Previous methods defined these regions
using density models (Kang et al., 2022); however, as mentioned earlier, a local region may not
be reliable even with high density due to the complexity and nonlinearity of the underlying envi-
ronment. Instead, we introduce a measurement based on epistemic uncertainty, denoted as ζf (s, a).
The precise computational method for ζf (s, a) will be presented later; however, it is a positive scalar
that is closely related to the agent’s current knowledge, reflecting the generalization capability of the
learned value function f at the input data (s, a). If f generalizes well, ζf (s, a) will be small; con-
versely, if f does not generalize well, ζf (s, a) will be large.
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Using ζf (s, a), we can evaluate whether an induced policy π can make reliable decisions at a given
state s by assessing the uncertainty of the learned value function f . Furthermore, we derive the
following definition of the f − π reliable region in Definition 1:
Definition 1. (f −π reliable region). Given an arbitrary value function f , policy π and a threshold
c, we define the f − π reliable region over the state space,

Gf (π) = {s|ζf (s, π) ≤ c} (2)

where ζf (s, π) = Ea∼π(·|s)ζf (s, a).

As shown in Figure 1, where ’low-uncertainty region’ illustrates the agent’s f − π reliable regions.
If the agent operates beyond its reliable regions, it would accumulate decision errors, finally failing
the task. On the other hand, if an agent with policy π always operate within its f−π reliable regions,
we call this policy a reliable policy, defined in Definition 2.
Definition 2. (Reliable policy). A policy π is reliable if it satisfies that ∀s ∈ D ∩ Gf (π), if ∀t, st ∈
supp(P (st|s0 = s, π)), then st ∈ Gf (π).

Furthermore, a Lyapunov policy, as defined in Definition 3, not only manages uncertainty at the
current step but also addresses the tendencies of these uncertainty one step ahead. In other words, a
Lyapunov policy is capable of controlling current step uncertainty to encompass reliable regions over
the state space, while also restricting one-step forward uncertainty to ensure trajectory reliability.
Definition 3. (Lyapunov policy). Given an arbitrary value function f and offline dataset D. A
policy π is a Lyapunov policy if it satisfies

1.∀s ∈ D, ζf (s, π) ≤ c; 2.∀s ∈ D,max
â∈π

ζf (M(s, â), π) ≤ ζf (s, π). (3)

where M is the deterministic transition.

Then we have the following results, shown in Theorem 1,
Theorem 1. In a deterministic transitioned MDP, a Lyapunov policy π is a reliable policy.

The proof of Theorem 1 is given in Appendix A.1. Essentially, this theorem says that a Lyapunov
policy is also a Lyapunov reliable policy. In other words, if a policy is a Lyapunov policy, then it
will operate within its enclosed reliable region.
Proposition 1. (Existence of reliable policy.) Suppose the dataset have a sufficient coverage over
the optimal policy as in Assumption 1, i.e., sups,a

π∗(a|s)
πβ(a|s) ≤ C∗. Then there exists a reliable policy.

Proof of Proposition 1 could be seen in Appendix A.1. Proposition 1 shows that there would always
exist a reliable policy in the MDP system with sufficient data, which motivates us to learn such a
policy for reliable control.

4.2 IMPLEMENTING LYAPUNOV UNCERTAINTY CONTROL BY VALUE ESTIMATION

In this section, we use the Bellman uncertainty quantifier as in (Jin et al., 2021) to implement the
value-epistemic uncertainty in Definition 1,

ζf (s, a) = ∥T f − T̂ f∥(s, a) (4)

where f is the learned value function. T is an arbitrary Bellman operator, while T̂ is its empirical
version according to the dataset. Previous studies (An et al., 2021) suggest that Bellman uncertainty
can rely on model predictions to evaluate state-action pairs. High variance in the model’s prediction
for a particular action implies inadequate data support, leading to low reliability. This property
confirms that Bellman uncertainty aligns with the requirement in Definition 1.

Next, our objective is to acquire the Lyapunov reliable policy outlined in Definition 3 from the
offline dataset using a model-free approach. Here, we present the Lyapunov value estimation, which
straightforwardly penalizes not only the Q-value functions using the uncertainty quantifier from
Eq.(4) at the current time step but also the increasing decision uncertainty tendency based on the
next time step’s situation, as,

LLUC(s, a, s
′, a′, f) = Ea∼π(â|s)ζf (s, â) + β · (ζf (s′, a′)− ζf (s, a)) (5)

4
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Subsequently, we apply regularization using the offline datasetD and the learned models (Q function
fk and new policy π), incorporating it as a penalty in the value estimation,

fk(s, a)← fk(s, a)− β̂ · Ea′∼π(·|s′)LLUC(s, a, s
′, a′, fk) (6)

where fk is the Q function learned at the kth iteration. β̂ is the balance coefficient. (s, a, s′) is the
tuple sampled from the offline dataset D, and the π is the currently learned policy.
Proposition 2. Suppose the action distribution of new policy π(a|s) is positive correlated to the
learnt Q function f(s, a), i.e., π(a|s) ∝ f(s, a). Then the proposed Lyapunov value estimation in
Eq.(5) induces a Lyapunov reliable policy as defined in Definition 3.

The proof is available in Appendix A.1. Proposition 2 demonstrates that the policy induced by the
value function trained with Eq.(6) may exhibit the traits of the Lyapunov reliable policy described
in Definition 3, fulfilling the reliability criteria in our study.

Then like previous pessimistic methods (An et al., 2021; Bai et al., 2022; Yang et al., 2022), we
approximate the uncertainty quantifier in Eq.(4) as the standard deviation as,

Γf (s, a) ≈ β · Std(f i(s, a)) = β ·

√√√√ 1

K

K∑
i=1

(
f i(s, a)− f̄(s, a)

)
(7)

where {f i}Ki=1 is the learned Q-ensembles and f̄ is the average of the K Q-esembles, and β is the
balance-coefficient. Then the objective in Eq.(5) is converted to,

LLUC(s, a, s
′, a′, f) = (1− β) · Std(f i(s, a)) + β · γ · Std(f i(s′, a′)) (8)

where Uf (s, a) = std(f i(s, a)) and {f i}Ki=1 is the learned K Q-ensembles. In practice, the β is
usually selected in (0, 1). Then the regularization of LUC is,

LLUC(f
i, π) = E(ŝ,â,ŝ′∼D̂)(f

i(ŝ, â)− β̂ · Eâ′∼π(·|ŝ′)LLUC(ŝ, â, ŝ
′, â′, f)) (9)

where D̂ is the constructed noisy dataset. To be specific, the noised samples in D̂, as x̂ = (ŝ, â, ŝ′),
are the noised version of samples, x = (s, a, s′), in the original offline datasetD, with x̂ = x+λ · ϵ,
and ϵ is the attached perturbation. Previous studies (Bai et al., 2022; Laskey et al., 2017; Zhang
et al., 2022; Jiang et al., 2023) have empirically demonstrated the effectiveness of noise injection
in regulating the out-of-distribution (OOD) performance of the trained agent. In the majority of
our experiments, ϵ is randomly drawn from a standard Gaussian distribution (also, in the OOD
observation experiments in Appendix B.1, ϵ is generated adversarially as in (Yang et al., 2022)).

Then the loss functions of the ensemble critic networks (Lc) and the actor network (La) are as,

Lc = E(s,a,r,s′)∼D
[(
r + γEa′∼π(·|s′)[ min

i=1...K
f ′
i(s

′, a′)]− f(s, a)
]2

+
1

K

K∑
i=1

LLUC(f
i, π) (10)

La = Es∼DEa∼π(·|s)
[

min
i=1...K

f ′
i(s

′, a′)
]

(11)

To sum up, we present our overall approach in Algorithm 1, as follows,

Algorithm 1 The pseudocode of Lyapunov Uncertainty Control (LUC) algorithm
Input: The offline dataset D. Maximum of episode T .

Initialize the policy network, Q-network.
Perform the noise injection to generate the noisy dataset D̂.
while t < T do

Sample mini-batch of transitions (s, a, r, s′) ∼ D and transitions (ŝ, â, ŝ′) ∼ D̂
Update the Q-network minimizing Lq according to Eq.(10)
Update the policy network minimizing Lπ according to Eq.(11)

end while
Output: The learned policy network π.

5
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4.3 THEORETICAL ANALYSIS

In this section 1, we provide theoretical evidences to demonstrate the effectiveness of the proposed
Lyapunov uncertainty control method in improve the performance lower bound of the learned policy.
We first define Deviation risk in Definition 4 based on the uncertainty quantifier in Eq.(4), and then
Lemma 1 shows that it is critical to control the induced policy’s Deviation risk to guarantee the
convergence property of the learned value function. Also, we bound the Deviation risk in Lemma 2.
Finally, Theorem 2 and Proposition 3 show that Lyapunov uncertainty control helps to enhance the
performance lower bound of learned agent.

First we define the policy candidate set Π based on a version space of all the functions f ∈ F , where
we have ∀π ∈ Π,∃f ∈ F , π(a|s) ∝ f(s, a), and ∀f ∈ F ,∃π ∈ Π, π is the greedy policy according
to f . Then we define a corresponding Bellman operator T Πf(s, a) = r+ γEs′∼P maxπ∈Π f(s′, π)

and its empirical version is T̂ Πf(s, a) = r+γEs′∼P̂ maxπ∈Π f(s′, π). Then before the introduction
of theoretical results, a basic assumption should be made.
Assumption 1. (Optimal coverage.) (Xie et al., 2021) We assume the dataset have sufficient cover-
age over the optimal policy’s visitation, i.e., sups,a

π∗(a|s)
πβ(a|s) ≤ C∗, and π∗ ∈ Π.

Similar assumptions has been utilized in theoretical analysis for offline RL (Xie et al., 2021). Com-
pared with the more common assumption - Concentrability assumption (Munos, 2005; Kumar et al.,
2019) that the dataset should fully cover the whole state space, Assumption 1 is much looser and
more feasible in practice.

We define the Deviation risk of a policy in Definition 4 to quantify whether a new policy can limit
the agent to operate in regions with lower Bellman uncertainty (reliable regions) and possess the
capability to recover the agent from high-risk regions. If the deviation risk of a certain policy is
low, even below 1, it indicates that the agent guided by this policy has a strong error recovery and
generalization ability for those unseen regions.
Definition 4. (Deviation risk) We define the most risk of a policy π that the agent is able to recover
to the regions with low uncertainty, i.e., its familiar regions, from given (s0, a0) pair,

Riskf (π)
∣∣
s0,a0

= sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
∥T Πf − T̂ Πf∥(sT , aT )
∥T Πf − T̂ Πf∥(s0, a0)

= sup
T≥0

EsT ,aT

ζT
ζ0

(12)

where T Π is true Bellman operator and T̂ Π is the empirical Bellman over policy candidate set Π.

Then, we introduce Lemma 1 which serves as a crucial step in establishing the connection between
the learned value function and the optimal value function, while another key aspect is how to effec-
tively control the Deviation Risk.
Lemma 1. Denote the empirical Bellman operator as T̂ Π over an arbitrary policy candidate set Π.
We have T̂ Πf(s, a) = r + γEs′∼P̂ maxπ∈Π f(s′, π). Then for any value function f̂ , the fixed point
f̂∗ and t ≥ 0, we have,

∥T̂ Π,(t)f̂ − T̂ Π,(t)f̂∗∥d ≤ sup
s0,a0,d(s0,a0)>0

γt ·Riskf̂ (π̂)
∣∣
s0,a0
∥f̂ − f̂∗∥d (13)

where the policy π̂ is the greedy policy induced by f̂ . And ∥x∥d =
∑

x d(x)|x| is a distributional
weighted norm, where d here is the density of the dataset.

Lemma 2 provides an upper bound on the deviation risk, indicating that by controlling the growth
tendency of decision uncertainty along trajectories generated by policies in the policy candidate set,
one can effectively bound the Deviation risk of any policy.
Lemma 2. (Bound of deviation risk.) Given an arbitrary policy π and state-action pair (s0, a0).
Then its Deviation Risk could be controlled by the maximum growth tendency of the policy of the
policy candidate set Π,

Riskf (π)
∣∣
s0,a0

≤ O

(
sup

π∈Π,T≥0
EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζf,t+1 − γtζf,t)
2

)
(14)

where ζf,t = ∥T̂ Πf − T Πf∥(st, at) is the Bellman uncertainty at time step t.
1All the proofs of the lemmas and theorems in this section could be found in Appendix A.2.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Then with the help of the lemmas above, we can bound the d−norm of the learned value function at
k time step with the true optimal value function.

Theorem 2 shows that the value function obtained through k-step iterations of the empirical Bellman
operator is determined by two factors concerning the true optimal value function: 1) the single-step
Bellman uncertainty generated by policies in the policy candidate set, and 2) the growth tendency
of Bellman uncertainty along trajectories generated by policies in the policy candidate set. The
former has been the focus of previous methods like PBRL (Bai et al., 2022); however, Theorem 2
in this paper indicates that to learn a better value function, attention must be paid to both factors
simultaneously.
Theorem 2. (Performance lower bound.) Given an MDP with max reward Rmax and a dataset
of size N . Given (s, a) pair, we denote its data density over the dataset is d(s, a). Given an
empirical Bellman operator T̂ Π and an arbitrary policy candidate set Π, where T̂ Πf(s, a) =
r(s, a) + γEs′∼P̂ (s′|s,a) maxπ∈Π f(s′, π). Denote the learnt value function as fk, with k iterations

of f̂k = T̂ Πf̂k−1, and the true optimal value function as f∗. Then we have,

∥f̂k − f∗∥d ≤
C∗

1− γ
· sup
π∈Π

∑
s0

d(s0)ζf̂k(s0, π)+

O

 sup
π∈Π,T≥0

s0,a0,d(s0,a0)>0

EP (τT |π,s0,a0)(

T−1∑
t=0

[γt+1ζf̂k,t+1 − γtζf̂k,t])
2

 (15)

where ζf̂k,t is the Bellman uncertainty at time step t, i.e., ζf̂k,t = ∥T
Πf̂k−T̂ Πf̂k∥(st, at). τT is the

trajectory with length of T . And C∗ is assumed by sups,a
π∗(a|s)
πβ(a|s) ≤ C∗.

Then to further simplify the calculation complexity, Proposition 3 indicates that one-step Lyapunov
Uncertainty-penalization could bound the second term in Eq.15.
Proposition 3. If the first term of Eq.(15) is bounded, i.e., ∀π ∈ Π, we have Ed(s0)ζf̂k(s0, π) ≤ c,
then we can bound the second term with one-step Lyapunov Uncertainty-penalization, i.e., ∀s ∼ D,

min
π

[γEP (s′|s,π)ζf̂k,t+1(s
′, π)− ζf̂k,t+1(s, π)]⇒ min

π
EP (τT |π,s0=s)(

T−1∑
t=0

[γt+1ζf̂k,t+1 − γtζf̂k,t]

Furthermore, assume the dataset fully covers dynamics modes, i.e., ∀s, a ∈ D, supp(P (s′|s, a)) ⊆
supp(P̂ (s′|s, a)), then the left part is controlled by Lyapunov value estimation in Eq.(5).

Then the left term in Proposition 3 could be empirically estimated by the Lyapunov value estimation
as in Definition 3. Theorem 2 and Proposition 3 demonstrate that to control the performance lower
bound of the learned agent, despite controlling the current step’s Bellman uncertainty, it is also
important to control the one-step forward growth tendency of the Bellman uncertainty along with
the whole trajectory, which is the main contribution of this paper. This helps the learned value
function to be more likely to converge to the fixed point of the empirical Bellman operator, which is
hence for controlling the performance lower bound of the learned agent.

5 EXPERIMENTAL RESULTS

Our experiments primarily aim to address three key questions:

1. Can LUC enhance the state-of-the-art performance on standard MuJoCo benchmarks?
2. Is LUC capable of consistently learning reliable operation regions from noisy datasets with

poor demonstrations?
3. Does LUC exhibit superior generalization ability in avoiding deviations from reliable re-

gions under various types of OOD perturbations?

Our experimental section includes the following components: first, we validate the performance
of the method proposed in this paper on standard D4RL benchmarks, particularly on non-expert

7
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Table 1: Normalized scores on standard MuJoCo tasks, averaged over 4 random seeds. Part of the
results are reported in the RORL and MOBILE papers. Top two scores for each task are highlighted.
(·) indicates the average without ’expert’ datasets.

Task Name CQL PBRL MOPO RORL MOBILE LUC (Ours)
halfcheetah random 31.3±3.5 11.0±5.8 35.4±2.5 28.5±0.8 39.3±3.0 31.3 ± 1.4

medium 46.9±0.4 57.9±1.5 42.3±1.6 66.8±0.7 74.6±1.2 68.2 ± 1.1
medium-expert 95.0±1.4 92.3±1.1 63.3±38.0 107.8±1.1 108.2±2.5 111.6± 1.2
medium-replay 45.3±0.3 45.1±8.0 53.1±2.0 61.9±1.5 71.7±1.2 65.9 ± 1.9

expert 97.3±1.1 92.4±1.7 – 105.2±0.7 – 108.3± 0.5
hopper random 5.3±0.6 26.8±9.3 11.7±0.4 31.4±0.1 31.9±0.6 31.9 ± 1.4

medium 61.9±6.4 75.3±31.2 28.0±12.4 104.8±0.1 106.6±0.6 106.9± 0.4
medium-expert 96.9±15.1 110.8±0.8 23.7±6.0 112.7±0.2 112.6±0.2 114.3± 1.1
medium-replay 86.3±7.3 100.6±1.0 67.5±24.7 102.8±0.5 103.9±1.0 103.6± 0.7

expert 106.5±9.1 110.5±0.4 – 112.8±0.2 – 114.2± 0.4
walker2d random 5.4±1.7 8.1±4.4 13.6±2.6 21.4±0.2 17.9±3.0 25.6 ± 1.2

medium 79.5±3.2 89.6±0.7 17.8±19.3 102.4±1.4 87.7±1.1 103.6± 1.3
medium-expert 109.1±0.2 110.1±0.3 44.6±12.9 121.2±1.5 115.2±0.7 124.1± 0.9
medium-replay 76.8±10.0 77.7±14.5 39.0±9.6 90.4 ±0.5 89.9±1.5 92.8 ± 1.5

expert 109.3±0.1 108.3±0.3 – 115.4±0.5 – 116.2± 0.4
Average score 70.2 74.4 (36.7) 85.7 (80.0) 87.9 (81.7)

datasets, demonstrating our method’s superiority over others, addressing question 1. Next, to ad-
dress question 2, we design noise data at different levels - where noise represents the discrepancy
between the policy and the optimal policy, resulting in varying degrees of poor demonstrations. We
then evaluate the performance of different algorithms on such noisy data. Subsequently, we in-
troduce Out-of-distribution (OOD) MuJoCo benchmarks with various perturbations to increase the
likelihood of entering high-uncertainty states, assessing the agent’s OOD generalization capability,
answering question 3. Finally, we conduct ablation experiments to verify the effectiveness of the
LUC method. A brief introduction of our code is provided in Appendix B.2.

5.1 LEARNING ON STANDARD MUJOCO BENCHMARKS

We assess our method using the D4RL benchmark (Fu et al., 2020) across various continuous-control
tasks and datasets. We compare LUC with several offline RL algorithms, including CQL (Kumar
et al., 2020), PBRL (Bai et al., 2022), MOPO (Yu et al., 2020), RORL (Yang et al., 2022), and
MOBILE (Sun et al., 2023). Among these, PBRL (Bai et al., 2022), MOPO (Yu et al., 2020), and
MOBILE (Sun et al., 2023) are most closely related to LUC as they are all based on uncertainty
penalization techniques2.

The results are presented in Table 1. It is evident that our method, LUC, outperforms other methods
in most tasks and achieves a higher overall score. Particularly, LUC performs significantly better
on non-expert datasets, notably the ’medium-expert’ dataset, showcasing its robustness against the
reward shift due to the conservative regularization term on non-expert data. Additionally, LUC’s
performance in the ’hopper’ and ’walker2d’ environments surpasses the State-of-the-art (SOTA),
possibly due to these environments being more susceptible to noise from non-expert data.

5.2 LEARNING ON TASKS WITH DIFFERENT LEVELS OF NON-EXPERT NOISE

In this section, we modify the discrepancy between the behavioral policy and the optimal policy by
blending datasets produced from expert and random policies at various proportions to generate noisy
datasets at different levels. Evaluating these datasets not only validates the influence of non-expert
problems on conventional conservative constraints but also confirms the robustness of the proposed
LUC method against noise stemming from non-expert data. We compare several representative
methods: CQL (Kumar et al., 2020), PBRL (Bai et al., 2022), and SDC (Zhang et al., 2022).

2Unfortunately, as the LDM method (Kang et al., 2022) is mainly used in model-based RL as a constraint
on the model optimizer, it is unclear how this method could be properly used for the task of offline RL, so we
did not make any comparison with this method at the current stage.
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Figure 2: Results of CQL, PBRL SDC and LUC on tasks with different levels of non-expert data.

The results are depicted in Figure 2. It is evident that most constraint-based methods are influenced
by non-expert issues, wherein an increase in the discrepancy between the behavioral policy and the
optimal policy leads to a substantial performance decline. However, as the randomness level rises,
the performance degradation of LUC is comparatively minor, suggesting that LUC demonstrates
greater resilience to noise from non-expert data under suboptimal behavioral policy settings. Partic-
ularly at elevated randomness levels (e.g., 0.9), LUC can maintain effective performance on these
benchmarks.

5.3 TESTING ON OUT-OF-DISTRIBUTION MUJOCO BENCHMARKS

To evaluate the agent’s capacity to avoid straying from reliable regions, we introduce three types of
OOD perturbations, applying varying intensities of perturbations at different intervals to the agent
employed for a higher risk of deviation. This investigation encompasses three combinations of noise
intensities and intervals3. It is important to highlight that our approach in this study differs from the
perturbation noise discussed in Yang et al. (2022); our method modifies the actual state in which the
agent operates, rather than solely perturbing state observations. The research is centered on three
MuJoCo environments: Halfcheetah, Hopper, and Walker2d; with the agent trained on ’medium-
expert’ datasets.

Table 2: The results of OSR, RORL and LUC (ours) on Out-of-distribution MuJoCo benchmarks.
The highest scores for each task are highlighted.

Halfcheetah-ood Hopper-ood Walker2d-ood
small medium large small medium large small medium large

OSR 93.8 90.4 88.7 111.3 103.4 85.7 112.7 110.5 105.8
RORL 102.7 94.3 82.4 111.5 92.8 72.7 117.4 107.3 86.9
LUC(ours) 104.8 102.9 99.0 110.9 106.6 83.3 119.4 114.5 111.9

We have chosen two key algorithms, OSR and RORL, tailored for managing OOD states and obser-
vations, to contrast with the proposed LUC in these OOD benchmarks. The outcomes are detailed in
Table 2. Analysis reveals that LUC surpasses the other two methods across the majority of tasks, no-
tably demonstrating substantial benefits in extensive OOD perturbation assignments like Halfchee-
tah and Walker2d. This implies that these settings might be more sensitive to OOD perturbations,
necessitating advanced the agent to tackle OOD scenarios.

To delve deeper into the factors contributing to the superior performance of LUC in Halfcheetah-
ood and Walker2d-ood tasks, we present the visualized results of LUC in Figure 3. The analysis
reveals that each perturbation event leads the agent into high-uncertainty regions; however, LUC
effectively prevents error accumulation and guides the agent back to lower-error (reliable) regions.
This underscores the robustness of LUC in handling OOD scenarios by constraining the agent to
operate within the reliable regions.

5.4 ABLATION STUDY

3Details regarding the construction of Out-of-distribution MuJoCo benchmarks are outlined in Appendix
B.3.
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Figure 3: Visualized results of LUC on OOD MuJoCo benchmarks - ’Halfcheetah’ and ’Walker2d’,
with large scales of perturbations. The Bellman uncertainty (error) is estimated by the standard
deviation uncertainty based on the learned Q-ensembles. The interval between every two frames is
about five steps.

In this section, we performed ablation exper-
iments on the proposed LUC method to con-
firm its contribution to the overall framework.
The findings, illustrated in Figure 4, demon-
strate a substantial performance enhancement in
the LUC module compared to LUC without re-
ward shaping, particularly on certain non-expert
datasets. This highlights the pivotal role of the
LUC method in improving the performance of
pessimistic offline RL approaches.

Furthermore, we conducted experiments on Out-
of-Distribution (OOD) observation benchmarks
to further validate the robustness of the proposed
method, as detailed in Appendix B.1. More in-

formation on additional experiments, including
parameters and more, can be found in Appendix
B.

Figure 4: Ablation study.

6 CONCLUSION

This paper aims to identify a reliable operational region for the agent based on offline data. To
achieve this, we introduce the Lyapunov Uncertainty Control (LUC) algorithm in an offline, model-
free manner. Theoretically, in deterministic MDPs or when the dataset fully covers all dynamic
modes, LUC can confine the agent’s operations within low-uncertainty areas, thereby enhancing
decision-making reliability. Empirically, LUC-trained agents demonstrate superior robustness and
reliability in high-risk scenarios compared to various other methods. In future works, LUC can
serve as a versatile tool in diverse offline reinforcement learning frameworks, including model-based
approaches, potentially paving the way for new research opportunities.
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A APPENDIX

A.1 PROOFS OF MAIN THEOREMS IN SEC.4.1

Proposition 1. (Existence of reliable policy.) Suppose the dataset have a sufficient coverage over
the optimal policy, i.e., sups,a

π∗(a|s)
πβ(a|s) ≤ C∗). Then there exists a reliable policy.

Proof sketch. From the assumption that the dataset have a sufficient over the optimal policy, we
have all the behaviors of the optimal policy would be supported by the dataset, i.e., π∗ ⊆ D. Then
the optimal stationary state distribution is also supported by the dataset dπ

∗
(s) ⊆ D. Due to the fact

that all the states over the dataset are contained in the f−π∗ reliable region, and dπ
∗
(s) ⊆ D, so the

optimal policy would never operate beyond its f − π∗ reliable region, hence it is a reliable policy.

Theorem 1. In an MDP with deterministic transition, Lyapunov policy π is a reliable policy as
defined in Definition 2.

Proof of Theorem 1. We prove this theorem in a contradiction way. Denote the deterministic
transition as M(s, a) = s′. First, we suppose the Lyapunov policy π is not a reliable policy, then
we have: ∀s0 ∈ D ∩ Gf (π), ∃t, st ∈ supp(P (st|s0, π)), such that st /∈ Gf (π). Then we have
ζf (st, π) > c. Then we aim to find the contradiction. From the definition of Lyapunov policy,
∀s ∈ D, we have,

c < ζf (st, π) ≤ max
â∈π

ζf (P (st−1, â), π) ≤ ϵf (st−1, π) (16)

Then we have ϵf (st−1, π) > c. By recurrently applying the above derivation by t times, we would
have ζf (s0, π) > c. Then we have s0 /∈ Gf (π), which is conflicted with s0 ∈ D∩Gf (π). Completing
the proof, and we can conclude that the Lyapunov policy is reliable.

Proposition 2. Suppose the action distribution of new policy π(a|s) is positive correlated to the
learnt Q function f(s, a), i.e., π(a|s) ∝ f(s, a). Then the proposed Lyapunov value estimation
induces a Lyapunov policy as defined in Definition 3.

Proof of Proposition 2. Denote the empirical behavior of the dataset D as πβ , whose actions are
always supported by the dataset. The Lyapunov value estimation implicitly penalize the new policy
π at an given state s with two aspects:

1) minπ Ea∼π(a|s)ζf (s, a); This constrains the new policy would not generated OOD actions beyond
the demonstration of the offline data, i.e., supp(π(a|s)) ⊂ supp(πβ(a|s)). In previous works Wu
et al. (2022); Mao et al. (2024), such supported constraint is often achieved in a data density based
way as minπ

∑
a/∈πβ

π(a|s). Then we will show that the current step’s error controlling minimizes
the upper bound of the above supported constraint,

min
π

∑
a/∈πβ

π(a|s)⇔ max
π

Ea∈π(a|s)d(s, a) (17)

≤(a) max
π

C · Ea∈π(a|s)
1

ζ2f (s, a)
(18)

⇔ min
π

Ea∈π(a|s)ζ
2
f (s, a) (19)

⇔(b) min
π

Ea∈π(a|s)ζf (s, a) (20)

The inequality (a) holds because of the Lemma 3 in Appendix A.2. The equivalence (b) holds
because the Bellman uncertainty is always non-negative.

Then with this constraint, we can have the new policy would reject the actions that is not supported
by the behavior policy. This means, the new policy would only select the data-supported actions.

2) ∀s, a ∈ D, we have ζf (M(s, a), π) ≤ ζf (s, a). This could also be consider as,
min
a∈πβ

ζf (s, a)− ζf (M(s, a), π) (21)

≤(a) min
a∈π

ζf (s, a)− ζf (M(s, a), π) (22)

≤ζf (s, am)− ζf (M(s, am), π) (23)
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where am = argmaxam∈π ζf (M(s, am), π). The (a) holds because of the assumption that the
condition 1) is perfectly confirmed, i.e., supp(π(a|s)) ⊂ supp(πβ(a|s)).
Then we have ∀s ∈ D,maxâ∈π ζf (M(s, â), π) ≤ ζf (s, π). And we can conclude that the Lyapunov
value estimation would help to induce a Lyapunov policy.

A.2 PROOFS OF MAIN THEOREM WITH STOCHASTIC TRANSITION SETTING

Definition 5. (Recoverability) Define the recoverability of a given policy π from the given (s0, a0)
pair,

R(π)
∣∣
s0,a0

= inf
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
d(sT , aT )

d(s0, a0)
(24)

where d(s, a) is the data density at (s, a).

Definition 6. (Recoverability risk) We define the most risk of a policy π that the agent is able to
recover to the regions with low Bellman uncertainty, i.e., its familiar regions, from the given (s0, a0)
pair,

Risk(π)
∣∣
s0,a0

= sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
∥T πf − T̂ πf∥(sT , aT )
∥T πf − T̂ πf∥(s0, a0)

= sup
T≥0

EsT ,aT

ζT
ζ0

(25)

where T π is the true Bellman operator and T̂ π is the empirical Bellman.

Lemma 3. Given an MDP with max reward Rmax and a dataset of size N . The dimension of state
space is |S| and that of action space is |A|. Given (s, a) pair, we denote its data density over the
dataset is d(s, a). Then with probability 1− δ, we have,

d(s, a) ≤ γ2 ·R2
max

2

N · ∥T πf − T̂ πf∥2(s, a)
log(
|S||A| · 2|S|

δ
) (26)

where ∥T πf − T̂ πf∥(s, a) is Bellman uncertainty.

Proof of Lemma 3.

∥T πf − T̂ πf∥(s, a) = γ∥
∑
s′

(P̂ (s′|s, a)− P (s′|s, a)) · f(s′, π)∥ (27)

≤ γ∥
∑
s′

(P̂ (s′|s, a)− P (s′|s, a))∥ · ∥f(s′, π)∥ (28)

≤ γ ·Rmax · ∥P̂ (s′|s, a)− P (s′|s, a)∥1 (29)

≤(a) γ ·Rmax ·

√
2

N(s, a)
log(
|S||A| · 2|S|

δ
) (30)

⇒ d(s, a) ≤ γ2 ·R2
max

2

N · ∥T πf − T̂ πf∥2(s, a)
log(
|S||A| · 2|S|

δ
) (31)

The inequality (a) holds because of the Proposition 9 in Ghavamzadeh et al. (2016). And N(s, a) is
the number of (s, a) samples in the dataset, so the density d(s, a) = N(s,a)

N . Completing the proof.

Then we give Lemma 4, which is a general formulation of Lemma 2 in the main text.

Lemma 4. For any policy π and (s0, a0) pair, we have,

Risk(π)
∣∣
s0,a0

= sup
T≥0

Eπ

[∑T−1
t=0 [γt+1ζt+1 − γtζt] + ζ0

ζ0 · γT

∣∣s0, a0] (32)
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Proof of Lemma 4.

Risk(π)
∣∣
s0,a0

= sup
T≥0

Eπ

[
ζT
ζ0

∣∣s0, a0] (33)

= sup
T≥0

Eπ

[
γT ζT − γT−1ζT−1 + γT−1ζT−1 − ...+ γζ1 − ζ0 + ζ0

ζ0 · γT

∣∣s0, a0] (34)

= sup
T≥0

Eπ

[∑T−1
t=0 [γt+1ζt+1 − γtζt] + ζ0

ζ0 · γT

∣∣s0, a0] (35)

Completing the proof.
Lemma 5. Given an arbitrary Bellman operator (maybe empirical Bellman operator) T and an
arbitrary policy candidate set Π. We have T f(s, a) = r + γEs′ maxπ∈Π f(s′, π). Then for any
value function f1, f2 ∈ F and t ≥ 0, we have,

∥T (t)f1 − T (t)f2∥d ≤ sup
s0,a0,d(s0,a0)>0

γt

R(π̂)
∣∣
s0,a0

∥f1 − f2∥d (36)

We denote the greedy policy induced by f1 as π1 and the greedy policy induced by f2 as π2. Then π̂
is the pessimistic policy of f1 and f2, i.e., π̂(a|s) = π1(a|s) if f1(s, π1) ≤ f2(s, π2) and π̂(a|s) =
π2(a|s) if f2(s, π2) ≤ f1(s, π1). And ∥x∥d =

∑
x d(x)|x| is a distributional weighted norm, where

d here is the density of the dataset.

Proof of Lemma 5. First we denote π1(a|s) = argmaxπ∈Π f1(s, π) and π2(a|s) =
argmaxπ∈Π f2(s, π). Then,

(T f1 − T f2)(s, a) = γEP (s′|s,a)[f1(s
′, π1)− f2(s

′, π2)] (37)

≤ γEP (s′|s,a)[f1(s
′, π1)− f2(s

′, π1)] (38)

On the other hand,

(T f1 − T f2)(s, a) ≥ γEP (s′|s,a)[f1(s
′, π2)− f2(s

′, π2)] (39)

Then we construct π̂(a|s) = π1(a|s) if f1(s, π1) ≤ f2(s, π2) and π̂(a|s) = π2(a|s) if f2(s, π2) ≤
f1(s, π1). So we have,

|T f1 − T f2|(s, a) ≤ γ|EP (s′|s,a)[f1(s
′, π̂)− f2(s

′, π̂)]| (40)

Then if we recursively apply the π̂, we would have,

|T (t)f1 − T (t)f2|(s, a) ≤ γt · |EP (st,at|π̂,s0=s,a0=a)[f1(st, at)− f2(st, at)]| (41)

Then we aim to bound the ∥T (t)f1 − T (t)f2∥d,

∥T (t)f1 − T (t)f2∥d =
∑
s0,a0

|T (t)f1 − T (t)f2|(s0, a0)d(s0, a0) (42)

≤ γt ·
∑
s0,a0

|EP (st,at|π̂,s0,a0)[f1(st, at)− f2(st, at)]|d(s0, a0) (43)

≤ γt ·
∑
s0,a0

∑
st,at

d(s0, a0)P (st, at|π̂, s0, a0)|[f1(st, at)− f2(st, at)]| (44)

≤ sup
s0,a0,d(s0,a0)>0

γt

R(π̂)
∣∣
s0,a0

·
∑
st,at

d(st, at)|[f1(st, at)− f2(st, at)]| (45)

= sup
s0,a0,d(s0,a0)>0

γt

R(π̂)
∣∣
s0,a0

· ∥[f1(st, at)− f2(st, at)]∥d (46)

Completing the proof.
Corollary 1. Especially, if the f2 in Lemma 5 is the fix point of T , as f∗, then we have,

∥T (t)f1 − f∗∥d ≤
∑
s0,a0

γt

R(π1)
∣∣
s0,a0

∥f1 − f∗∥d (47)
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This is easily obtained by the fact that ∀s, f∗(s, π∗) ≥ f1(s, π1).

Lemma 6. Denote the learnt value function as fk, with k iterations of fk = T fk−1, and the fixed
point of T is f∗. Then,

∥fk − f∗∥d ≤ R(π0) · γk · ∥△(0)∥d + ϵmax ·
k∑

t=1

[R(π̂t−1) · γt] + ϵmax (48)

where R(πk) =
∑

s0,a0

1

R(πk)
∣∣
s0,a0

, ϵmax = maxt≤k−1 ∥ft+1 − T ft∥d and△(0) = ∥f0 − f∗∥∞.

Proof of Lemma 6.

∥fk − f∗∥d ≤∥T fk−1 − f∗∥d + ∥fk − T fk−1∥d (49)

≤∥T (2)fk−2 − f∗∥d + ∥T fk−1 − T (2)fk−2∥d + ϵmax (50)

≤∥T (2)fk−2 − f∗∥d +R(πk−1) · γ · ϵmax + ϵmax (51)
............. (52)

≤∥T (k)f0 − f∗∥d + ϵmax ·
k∑

t=1

[R(π̂t−1) · γt] + ϵmax (53)

≤(a)R(π0) · γk · ∥△(0)∥d + ϵmax ·
k∑

t=1

[R(π̂t−1) · γt] + ϵmax (54)

The inequality (a) holds because of Corollary 1. Completing the proof.

Lemma 7. Given an MDP with max reward Rmax and a dataset of size N . The dimension of state
space is |S| and that of action space is |A|. Given (s, a) pair, we denote its data density over the
dataset is d(s, a). Given an empirical Bellman operator T̂ and an arbitrary policy candidate set Π,
where T̂ f(s, a) = r(s, a) + γEs′∼P̂ (s′|s,a) maxπ∈Π f(s′, π). Denote the learnt value function as

fk, with k iterations of f̂k = T̂ f̂k−1, and the fixed point of T̂ is f̂∗. Then we have,

∥f̂k − f̂∗∥d ≤ O

(
sup

s0,a0,d(s0,a0)>0

sup
π∈Π,T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζt+1 − γtζt)
2

)
(55)

where ζt is the Bellman uncertainty at time step t, i.e., ζt = ∥T πf − T̂ πf∥(st, at).

Proof of Lemma 7. From Lemma 6 we have known that if we want to bound ∥f̂k − f̂∗∥d, we should
bound 1

R(π)
∣∣
s0,a0

at each time steps.

1

R(π)
∣∣
s0,a0

= sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
d(s0, a0)

d(sT , aT )
(56)

With Lemma 3, we have,

1

R(π)
∣∣
s0,a0

= sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
d(s0, a0)

d(sT , aT )
(57)

≤(a) sup
T≥0

(
EsT ,aT∼P (sT ,aT |π,s0,a0)

∥T πf − T̂ πf∥(sT , aT )
∥T πf − T̂ πf∥(s0, a0)

)2

(58)
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The inequality (a) holds because of d(s0, a0) · ζ0 ≤ supT EsT ,aT
d(sT , aT ) · ζT . Then following

Lemma 2, we have,

sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)
∥T πf − T̂ πf∥2(sT , aT )
∥T πf − T̂ πf∥2(s0, a0)

(59)

= sup
T≥0

EsT ,aT∼P (sT ,aT |π,s0,a0)

(∑T−1
t=0 [γt+1ζt+1 − γtζt]

ζ0 · γT
+

1

γT

)2

(60)

≤O

(
sup

π∈Π,T≥0
EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζt+1 − γtζt)
2

)
(61)

Completing the proof.

Please note that Lemma 7 holds for any estimation value function f . And we can utilize the learned
f̂k at the kth iteration.

Furthermore, by plugging Eq.(61) in Corollary 1, we would have the proof for Lemma 1. Then
we give the proof for Theorem 2 in the main text.

Theorem 2. Given an MDP with max reward Rmax and a dataset of size N . The dimension of state
space is |S| and that of action space is |A|. Given (s, a) pair, we denote its data density over the
dataset is d(s, a). Given an empirical Bellman operator T̂ Π and an arbitrary policy candidate set
Π, where T̂ Πf(s, a) = r(s, a) + γEs′∼P̂ (s′|s,a) maxπ∈Π f(s′, π). Denote the learnt value function

as fk, with k iterations of f̂k = T̂ Πf̂k−1, and the true optimal value function as f∗. Then we have,

∥f̂k − f∗∥d ≤
C∗

1− γ
· sup
π∈Π

∑
s0

d(s0)ζ(s0, π)+ (62)

O

 sup
π∈Π,T≥0

s0,a0,d(s0,a0)>0

EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζt+1 − γtζt)
2

 (63)

where ζt is the Bellman uncertainty at time step t, i.e., ζt = ∥T Πf̂k − T̂ Πf̂k∥(st, at).
Proof of Theorem 2.

∥f̂k − f∗∥d ≤ ∥f̂k − f̂∗∥d + ∥f̂∗ − f∗∥d (64)

where f̂∗ is the fixed point of T̂ Π. Then Lemma 7 bounds ∥f̂k − f̂∗∥d, i.e.,

∥f̂k − f̂∗∥d ≤ O

 sup
π∈Π,T≥0

s0,a0,d(s0,a0)>0

EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζt+1 − γtζt)
2

 (65)

On the other hand,

∥f̂∗ − f∗∥d ≤ ∥T̂ Πf̂∗ − T̂ Πf∗∥d + ∥T̂ Πf∗ − T Πf∗∥d (66)

≤ ∥T̂ Πf∗ − T Πf∗∥d + γ∥f̂∗ − f∗∥d (67)

⇒ ∥f̂∗ − f∗∥d ≤
∥T̂ Πf∗ − T Πf∗∥d

1− γ
(68)

Then due to the optimal coverage assumption that sups,a
π∗(a|s)
πβ(a|s) ≤ C∗, and π∗ ∈ Π, we have,
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∥T̂ Πf∗ − T Πf∗∥d = ∥
∑
s′

(P (s′|s, a)− P̂ (s′|s, a))max
π∈Π

f∗(s′, π)∥d (69)

= ∥
∑
s′

(P (s′|s, a)− P̂ (s′|s, a))f∗(s′, π∗)∥d (70)

≤ C∗ sup
π∈Π

∑
s0,a0

d(s0, a0)Ea∼π(a|s0)∥T̂
Πf∗ − T f∗∥(s0, a) (71)

≤ C∗ sup
π∈Π

∑
s0,a0

d(s0, a0)Ea∼π(a|s0)∥T̂
Πf̂k − T f̂k∥(s0, a) (72)

The last inequality holds because the assumption that the optimal policy is reliable, so its value
function would have an ideally low uncertainty.

Therefore, we have,

∥f̂k − f∗∥d ≤ sup
π∈Π

∑
s0

d(s0)ζ(s0, π)+ (73)

O

 sup
π∈Π,T≥0

s0,a0,d(s0,a0)>0

EsT ,aT∼P (sT ,aT |π,s0,a0)(

T−1∑
t=0

γt+1ζt+1 − γtζt)
2

 (74)

Completing the proof.

Theorem 2 inspires us that when restricting the policy candidate set, it is essential not only to con-
strain the uncertainty of the new policy’s actions, as in traditional pessimistic algorithms, but also
to limit the growth tendency of the Bellman uncertainty caused by the new policy. By controlling
this tendency to be as minimal as possible, even ensuring that the Bellman uncertainty monoton-
ically decreases over time steps, we can guarantee that the learned value function exhibits better
performance and consequently induces a policy with superior performance.

Proposition 3. If the first term of Eq.(15) is bounded, i.e., ∀π ∈ Π, we have Ed(s0)ζf̂k(s0, π) ≤ c,
then we can bound the second term with one-step Lyapunov Uncertainty-penalization, i.e., ∀s ∼ D,

min
π

[γEP (s′|s,a)ζf̂k,t+1(s
′, π)− ζf̂k,t+1(s, π)] (75)

⇒min
π

EP (τT |π,s0=s)(

T−1∑
t=0

[γt+1ζf̂k,t+1 − γtζf̂k,t] (76)

Furthermore, if we assume the dataset fully covers dynamics modes, i.e., ∀s, a ∈ D, P (s′|s, a) ⊆
P̂ (s′|s, a), then the left part could be controlled by Lyapunov value estimation.

Proof of Proposition 3. minπ Ea∼π(a|s)ζf (s, a); This constrains the new policy would not generated
OOD actions beyond the demonstration of the offline data, i.e., supp(π(a|s)) ⊂ supp(πβ(a|s)). In
previous works Wu et al. (2022); Mao et al. (2024), such supported constraint is often achieved in
a data density based way as minπ

∑
a/∈πβ

π(a|s). Then we will show that the current step’s error
controlling minimizes the upper bound of the above supported constraint,

min
π

∑
a/∈πβ

π(a|s)⇔ max
π

Ea∈π(a|s)d(s, a) (77)

≤(a) max
π

C · Ea∈π(a|s)
1

ζ2f (s, a)
(78)

⇔ min
π

Ea∈π(a|s)ζ
2
f (s, a) (79)

⇔(b) min
π

Ea∈π(a|s)ζf (s, a) (80)

The inequality (a) holds because of the Lemma 3 in Appendix A.2. The equivalence (b) holds
because the Bellman uncertainty is always non-negative.
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Then with this constraint, we can have the new policy would reject the actions that is not supported
by the behavior policy. This means, the new policy would only select the data-supported actions.
Then,

min
π

EP (τT |π,s0=s,a0=a)(

T−1∑
t=0

[γt+1ζf̂k,t+1 − γtζf̂k,t] (81)

≤(a) min
π

1− γT

1− γ
max

st∈P (st|π,s0=s)
(γEP (st+1|st,π)ζf̂k(st+1, π)− ζf̂k(st, π)) (82)

≤(b) min
π

1− γT

1− γ
max

st∈P (st|πβ ,s0=s)
(γEP (st+1|st,π)ζf̂k(st+1, π)− ζf̂k(st, π)) (83)

≤(c) min
π

1− γT

1− γ
max
s∈D

(γEP (s′|s,π)ζf̂k(s
′, π)− ζf̂k(s, π)) (84)

The inequality (a) is obtained using the formula for the sum of a geometric series. The inequal-
ity (b) is due to π ⊆ πβ , where πβ is the behavior policy. Finally, inequality (c) holds because
P (st|πβ , s0 = s) ⊆ D. Then we have, ∀s ∈ D,

min
π

(γEP (s′|s,π)ζf̂k(s
′, π)− ζf̂k(s, π))⇒ min

π
EP (τT |π,s0=s)(

T−1∑
t=0

[γt+1ζf̂k,t+1 − γtζf̂k,t] (85)

Then we would bound the left part through the Lyapunov value estimation. Due to π(a|s) ∝
f̂k(s, a), then the penalization to the s, a pairs is equivalent to minimize the preference of π to
the action a at state s. In this way, the Lyapunov Uncertainty-penalization could be converted to,

min
π

(γ max
s′∈P̂ (s′|s,π)

ζf̂k(s
′, π)− ζf̂k(s, π)) ≥ min

π
(γ max

s′∈P (s′|s,π)
ζf̂k(s

′, π)− ζf̂k(s, π)) (86)

≥ min
π

(γEP (s′|s,π)ζf̂k(s
′, π)− ζf̂k(s, π)) (87)

The first inequality holds because of P (s′|s, a) ⊆ P̂ (s′|s, a). Completing the proof.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TESTING ON ENVIRONMENTS WITH OOD OBSERVATIONS

In this section, we conducted tests on benchmarks with OOD observations. This type of testing is
primarily aimed at evaluating the generalization ability of conservative/pessimistic methods in of-
fline reinforcement learning when there may be some noise present in the environment to make the
agent deviate from the in-distributional regions. To address this challenge, we compared the perfor-
mance of the proposed LUC method with RORL (Yang et al., 2022) and OSR (Jiang et al., 2023)
methods. These two methods are also improvements upon traditional conservative methods, incor-
porating enhancements such as smoothness constraints (RORL) and recovery constraints (OSR) to
enhance the generalization performance of models on unknown states. We utilize the models trained
on the ’medium’ datasets of the three benchmarks - ’Halfcheetah’, ’Hopper’ and ’Walker2d’, and
three kinds of OOD noises - ’random’, ’action diff’ and ’min Q’ like in (Yang et al., 2022).

The results are shown in the Figure 5. We can observe that the proposed LUC method achieved good
results on most benchmarks, particularly on the two types of adversarial attacks related to action
differences. This may be because the learning approach in this paper has the weakest reliance on the
behavioral policy, as the conservatism of LUC mainly stems from the evaluation of consequential
reliability rather than a specific action distribution. In the context of min Q, this tests the robustness
of these methods in maintaining the optimality of the value function. In this type of attack, LUC
also exhibited superior performance compared to other methods, indicating that LUC has better
robustness in dealing with the OOD situations than other methods.
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Figure 5: Results of RORL, OSR and LUC on environments with OOD observations.

B.2 CODE

We constructed our approach based on the RORL project available on GitHub4. The rationale behind
selecting YangRui2015’s project is as follows: 1) The RORL framework serves as a fundamental
benchmark for conservative offline reinforcement learning, built on the PBRL implementation (Bai
et al., 2022). 2) Implementing conservative Q functions is straightforward with the RORL frame-
work. 3) As far as we are aware, the RORL framework stands out as the leading baseline in MuJoCo
benchmarks. The code for our approach is included in the supplementary material.

B.3 CONSTRUCTION OF OUT-OF-DISTRIBUTION MUJOCO BENCHMARKS

In this section, we introduce how to construct the testing environments for Out-of-distribution Mu-
JoCo benchmarks in detail. First, we set three kinds of perturbations (different scales and intervals)
over three kinds of MuJoCo environments as shown in Table 3. The perturbation is randomly sam-
pled from the Uniform distribution.

Table 3: Parameters for the construction of Out-of-distribution MuJoCo benchmarks.
Halfcheetah Hopper Walker2d

small medium large small medium large small medium large
scales 0.05 0.15 0.3 0.01 0.03 0.05 0.03 0.05 0.07
intervals 10 50 100 100 100 100 10 50 100

Then we visualize some of the perturbed situations, as is shown in Figure 6.

B.4 HYPERPARAMETERS OF LUC

In Table 4 and Table 5, we give the hyperparameters used by LUC to generate Table 1 results. The
λLUC is the weight of the reward shaping.

4Project of RORL: https://github.com/YangRui2015/RORL
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Figure 6: Some visualized samples of perturbations. The samples in blue box is the normal states,
while the red box is the corresponding perturbed states. First line is the small scales of perturbation;
second line is medium; third line is large.

Table 4: Hyperparameters of LUC in standard MuJoCo benchmarks.
Halfcheetah Hopper Walker2d

λLUC 0.1 0.1 0.05

Table 5: Hyperparameters of LUC in adversarial attack benchmarks.
Halfcheetah Hopper Walker2d

λLUC 0.1 0.1 0.1

B.5 NEURAL NETWORK STRUCTURES OF LUC

In this section, we introduce the structure of the networks we use in this paper: policy network and
Q network.

The structure of the policy network and Q networks is as shown in Table 6, where ’s dim’ is the
dimension of states and ’a dim’ is the dimension of actions. ’h dim’ is the dimension of the hidden
layers, which is usually 256 in our experiments. The policy network is a Guassian policy and the Q
networks includes ten Q function networks and ten target Q function networks.

Table 6: The structure of the policy net and the Q networks.
policy net Q net

Linear(s dim, 256) Linear(s dim, h dim)
Relu() Relu()
Linear(h dim, h dim) Linear(h dim, h dim)
Relu() Relu()
Linear(h dim, a dim) Linear(h dim, 1)

B.6 COMPUTE RESOURCES

We conducted all our experiments using a server equipped with one Intel Xeon Gold 5218 CPU,
with 32 cores and 64 threads, and 256GB of DDR4 memory. We used a NVIDIA RTX3090 GPU
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with 24GB of memory for our deep learning experiments. All computations were performed using
Python 3.8 and the PyTorch deep learning framework.

C DISCUSSION OF LIMITATIONS

In highly stochastic MDP environments with incomplete dataset coverage of transition outcomes,
this paper’s method may increase the likelihood of the agent straying from low-uncertainty regions,
compromising decision reliability. Nevertheless, experimental results in Section 5.3 highlight the
superior reliability of our LUC method over alternative approaches, showcasing enhanced general-
ization abilities in addressing previously unseen OOD scenarios.
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