
A Overview

The appendix is organized as follows: First, in Section B, we discuss the potential social impacts of
our work. Next, in Section C, we provide experimental details on the qualitative measurements on
image classification datasets presented in Section 6. Then, in Section D, we illustrate the extension of
generalized representers to explain vector-output target functions. Finally, we provide proofs of our
theoretical results in Section E.

B Potential Negative Social Impact of Our Work

Our approach has the potential to bring about various social consequences by allowing individuals to
modify model predictions through adjustments to training samples. These effects can involve the
risks of attacking established models or exacerbating biases and ethical concerns.
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C More Experimental Datails

C.1 More details on datasets and models being explained

Specifically, for MNIST, we perform classification on digits 1 and 5, with each class consisting of
around 6, 000 images. For CIFAR-10, we conduct classification between the airplane and automobile
classes, each class containing 5, 000 images. For the toxicity dataset, we select a subset of 6, 000
sentences each for both toxic and non-toxic labels. Regarding the AGnews dataset, we focus
exclusively on the world and sports categories with each class containing 6, 000 text sequences.

The CNNs we use for vision datasets comprise 3 layers and approximately 95, 000 parameters.
They are trained with SGD optimizer with learning rates 0.3/0.2 with T = 30/60 epochs for
MNIST/CIFAR-10 respectively. Their averaged test accuracies over 50 trials are 97.93%/92.40% on
test sets of size 2, 000 for MNIST/CIFAR-10.

For text datasets, We employ three-layer convolutional neural networks. The model architecture
is as follows: input texts are initially transformed into token embeddings with a dimension of 48
and a vocabulary size of 30, 522. This is followed by three convolutional layers, each consisting
of 50 kernels of size 5. A global max pooling layer and a fully connected layer are then applied.
The total number of parameters in the model is 1, 602, 257, with more than 90% of the parameters
residing in the word embedding layer. The models are trained with Adam optimizer [61] with default
learning rates 0.001 using T = 10 epochs. They have average 80.44%/92.78% test accuracy on
Toxicity/Agnews datasets respectively.

Due to the large number of parameters in the target model (over 1.6 million), we do not implement
the generalized representer with surrogate derivative global importance and neural tangent kernel
since it is impractical to store all feature maps of training samples. Also, we apply the influence
function only on the last layer [6] since the computation of the inverse Hessian matrix is too costly.

C.2 Computation of Global Importances

We use the three methods mentioned in Section 4, which are surrogate derivative, target derivative,
and tracking representers.

Surrogate derivative: We first transform Eqn.(4) to the primal form: let fK(x) = h✓sug,�(x)i be
a kernel machine that has finite-dimensional feature maps and is parameterized by ✓sug. Eqn.(4) can
then be transformed to:

✓
⇤

sug = argmin
✓sug2Rp

1

n

nX

i=1

L(h✓sug,�(xi)i, f(xi)) +
�

2
k✓sugk

2
. (17)

We then follow Yeh et al. [7] to take the target model parameters as initialization and use the line-
search gradient descent algorithm to solve Eqn.(17). When the kernel function is chosen as a neural
tangent kernel, we have an extra bias term: fK(x) =

P
n

i=1h@✓f✓(xi), ✓sug � ✓i+ f✓(x), where ✓ is
the parameters of the target function f✓. The optimization problem then becomes

✓
⇤

sug = argmin
✓sug2Rp

1

n

nX

i=1

L (h✓sug � ✓, @✓f✓(xi)i+ f✓(xi), f✓(xi)) +
�

2
k✓sugk

2
. (18)

We set the regularization parameter � = 2⇥ 10�2 in our experiments. Then we compute the global
imortance with Eqn.(6), i.e.

↵i =
@L

�
h✓

⇤

sug � ✓, @✓f✓(xi)i+ f✓(xi), f✓(xi)
�

@h✓sug � ✓, @✓f✓(xi)i
.

Target derivative: We directly adopt Eqn.(7) that computes derivatives of the loss function with
respect to the target function predictions.

Tracking representers: In our experiment, we use the following relaxation for further speed up:

↵
⇤

i
= �

X

t2[T ] : i2B(t)

⌘
(t)

|B(t)|

@L(f (t�1)(xi), yi)

@f (t�1)(xi)
, (19)
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where we assume the target model is trained with (stochastic) gradient descent, f (t)(xi) denotes the
target model at tth iteration during training, and B

(t) and ⌘
(t) are the corresponding mini-batch and

learning rate. Similar to the intuition of replacing the surrogate derivative with to target derivative,
we track the target model’s training trajectory directly instead of solving Eqn.(4) with kernel gradient
descent.

C.3 Computation of Kernel functions

For last layer embeddings and neural tangent kernels, we directly use Eqn.(11) and Eqn.(15) to
compute feature maps. For influence function kernels, we use public implementation for Pytorch 5. It
uses stochastic estimation [62] to speed up the computation of the inversed hessian vector product
and sets the damping factor to 0.01.

C.4 Computation of TracInCP [6]

For TracInCP, we compute over 7 evenly spaced checkpoints, including the initial parameter ✓(0) and
the final parameter ✓(T ).

C.5 Hardware usage

For all of our experiments, we use 4 NVIDIA A6000 GPUs each with 40GB of memory and 96 CPU
cores. To run the experiment on the vision datasets in Section 6, we retrain the model over

11 (number of methods) ⇥ 2 (for AUC-DEL+ and AUC-DEL�) ⇥
50 (number of random seeds) ⇥ 10 (number of test samples per model) = 11, 000 times .

We train 5 models simultaneously on a single GPU for speed up. It takes around 4 days to run the
experiment in Section 6.

C.6 Supplementary Experimental Results

Apart from the numerical results in terms of AUC-DEL�, we also provide deletion curves showing
changes in model predictions for different numbers of training samples being removed in Figure 1, 2,
3 and 4.

(a) Exp I: comparing global impor-
tances.

(b) Exp II: comparing kernels (c) Exp III: Comparing generalized
representers.

Figure 1: Deletion curves for the MNIST dataset. Larger DEL� is better since it indicates a method
finds more negative impact training samples.

C.7 Licence of Datasets

For the image classification datasets, MNIST [59] has GNU general public license v3.0. The CIFAR-
10 dataset is under MIT License. The Toxicity dataset has license cc0-1.0 The AGnews dataset has
licensed non-commercial use.

5https://github.com/nimarb/pytorch_influence_functions
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(a) Exp I: comparing global impor-
tances.

(b) Exp II: comparing kernels (c) Exp III: Comparing generalized
representers.

Figure 2: Deletion curves for the CIFAR-10 dataset. Larger DEL� is better since it indicates a
method finds more negative impact training samples.

(a) Exp I: comparing global impor-
tances.

(b) Exp II: comparing kernels (c) Exp III: Comparing generalized
representers.

Figure 3: Deletion curves for the Toxicity dataset. Larger DEL� is better since it indicates a method
finds more negative impact training samples.

(a) Exp I: comparing global impor-
tances.

(b) Exp II: comparing kernels (c) Exp III: Comparing generalized
representers.

Figure 4: Deletion curves for the AGnews dataset. Larger DEL� is better since it indicates a method
finds more negative impact training samples.
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D Extension to Explain Vector Output Target Functions

In the main paper, we assume that the target function has a scalar output for notational convenience.
However, most modern machine models have multi-dimensional outputs as is common for multi-class
classification problems. In this section, we show that generalized representers can be extended to
vector output by utilizing kernels for vector-valued functions.

Definitions: Given a target function f : Rd
7! Rc, a dataset D := {(xi, yi)}ni=1 with each training

sample (xi, yi) 2 Rd
⇥ Y , and a Mercer kernel K : Rd

⇥ Rd
7! Rc⇥c, the generalized representer

has the following form:

�(f, (xi, yi) ! x) = ↵>

i
K(xi,x) 2 Rc

, 8i 2 [n], (20)

where the global importance ↵ 2 Rn⇥c is a matrix with ↵ij the importance of the ith training sample
to the j

th prediction, and ↵i 2 Rc⇥1 is the i
th row of the matrix.

D.1 Vector-valued Global Importance

We discuss the extension of the three methods in Section 4, which are surrogate derivative, target
derviative, and tracking representers, for vector-valued target functions.

Surrogate derivative: The surrogate derivative in Eqn.(6) for vector-valued target functions is:

↵sur
ij

= �
1

n�

@L(f̂K(xi), f(xi))

@f̂K(xi)j
, 8i 2 [n] and 8j 2 [c], (21)

where f̂K : Rp
7! Rc is the minimizer of Eqn.(4), and f̂K(xi)j is its j

th output. Eqn.(6) can be
obtained by taking derivative of Eqn.(4) with respect to ↵ij .

Target derivative: The target derivative can be represented as

↵tar
ij

= �
1

n�

@L(f(xi), yi)

@f(xi)j
, 8i 2 [n] and 8j 2 [c], (22)

where f(xi)j denotes jth output of the target function evaluated on xi.

Tracking representers: The formulation of the tracking representers for vector-valued target
functions is as below:

↵tra
ij

= �

X

t2[T ] : i2B(t)

⌘
(t)

|B(t)|

@L(f (t�1)
K

(xi), f(xi))

@f
(t�1)
K

(xi)j
8i 2 [n] and 8j 2 [c], (23)

where B
(t) and ⌘

(t) denote the minibatch and the learning rate used to solve Eqn.(4), and f̂
(t�1)
K

is
the function at the (t� 1)th time step andf̂ (t�1)

K
(xi)j denotes its jth output of f̂ (t�1)

K
(xi).

D.2 Kernels for Vector-valued Target Functions

In this section, we provide formulas for kernels mentioned in Section 5 for vector-valued target
functions.

Penultimate-layer embeddings: Let the target model f be f(x) = �⇥1(x)
>
⇥2, where �⇥1 :

Rd
7! R` maps inputs to the penultimate layer, and ⇥2 2 R`⇥c is the last layer weight matrix. The

kernel function is defined as

KLL(x, z) = h�⇥1(x),�⇥1(z)i · Ic 2 Rc⇥c
, 8x, z 2 Rd

, (24)

where Ic is the c⇥ c identity matrix. Since the kernel outputs the same value for all entries on the
diagonal, we can consider the target function f(x) = [f1(x), · · · , fc(x)] as c distinct scalar output
functions and compute generalized representers for each of these functions.
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Neural tangent kernel: When the target function has multi-dimensional outputs, the neural tangent
kernel, K : Rd

⇥ Rd
7! Rc⇥c, is defined by

KNTK,✓(x, z) =

✓
@f✓(x)

@✓

◆✓
@f✓(z)

@✓

◆>

, (25)

where @f✓

@✓
2 Rc⇥p is the Jacobian matrix consisting of derivative of the function f✓ with respect to

its parameter ✓.

Influence function kernel: let @f✓

@✓
2 Rc⇥p is the Jacobian matrix defined above, the influence

function kernel can be defined as

KInf,✓(x, z) =
@f✓(x)>

@✓
H

�1
✓

@f✓(z)

@✓
. (26)

The influence function then can be written as

�Inf(f✓, (xi, yi) ! x) = �
@L(f✓(xi), yi)

@✓
H

�1
✓

@f✓(x)

@✓
(27)

= �

✓
@L(f✓(xi), yi)

@f✓(xi)

◆>

| {z }
global importance

KInf,✓(xi,x)| {z }
local importance

. (28)
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E Proof of Theoretical Results

In this section, we prove our theoretical results.

E.1 Proof of Theorem 7

Proof. We first prove that if explanation �(·) satisfies the continuity, self-explanation, symmetric
zero, symmetric cycle, and irreducibility axioms for any training samples D containing n training
samples (xi, yi) 2 Rd

⇥ R for all i 2 [n], we have
�(f,xi ! xj) = ↵iK(xi,xj) , 8i, j 2 [n],

for some ↵ 2 Rn and some continuous positive-definite kernel K : Rd
⇥ Rd

7! R.

Definitions: We first split the training data {(xi, yi)}ni=1 into two parts: (1) {xi, yi}
m

i=1 such that
�(f,xi ! xi) 6= 0, and (2) {xi, yi}

n

i=m+1 such that �(f,xi ! xi) = 0.

We then construct an undirected graph where the points are all training data points {xi}
m

i=1 such that
�(f,xi ! xi) 6= 0. An edge exists between xi and xj if �(f,xi ! xj) 6= 0 and �(f,xj ! xi) 6= 0.
Now, assume that the graph exists t connected components, and we choose a training point as the
reference point in each connected component. Thus, if xi,xj are connected in the graph, they have
the same reference point.

For a training point xi, we can assume that the reference point in the connected component that xi

belongs in is xr, we can find a path p from xi to xr so that p0 = i, pk = r, and �(f,xpj ! xpj+1) 6=
0 for all j 2 [0, k � 1]. Define

↵
0

i
=

8
><

>:

1 , if xi is the reference point.
�(f,xp1!xi)
�(f,xi!xp1 )

· ... ·
�(f,xr!xpk�1

)

�(f,xpk�1
!xr)

, if xi is in a connected component with reference point xr.

0 , if i 2 {m+ 1, · · · , n}

By symmetric cycle axiom, ↵0

i
is well defined and independent of how p is chosen since if two distinct

paths connect xi to xr, ↵0

i
by calculating through both paths will be equal by the symmetric cycle

axiom. Formally, define ↵
0

i
(p) =

�(f,xp1!xi)
�(f,xi!xp1 )

· ... ·
�(f,xr!xpk�1

)

�(f,xpk�1
!xr)

, we have

↵
0

i
(p)

↵
0

i
(q)

=
�(f,xp1 ! xp0)

�(f,xp0 ! xp1)
·...·

�(f,xpk ! xpk�1)

�(f,xpk�1 ! xpk)
·
�(f,xq0 ! xq1)

�(f,xq1 ! xq0)
·...·

�(f,xqk�1 ! xqk)

�(f,xqk ! xqk�1)
= 1,

by the symmetric cycle axiom since pk = qk and p0 = q0. Furthermore, we know that ↵0

i
6= 0 for all

i, since all terms are non-zero by definition of connected component.

We then define

K
0(xi,xj) =

8
>><

>>:

�(f,xi ! xj)/↵0

i
, for i 2 [m] and j 2 [n]/{i}.

|�(f,xi ! xj)/↵0

i
| , for i = j 2 [m].

�(f,xj ! xi)/↵0

j
, for i 2 {m+ 1, · · · , n} and j 2 [m].

0 , for i, j 2 {m+ 1, · · · , n}.

Prove that K 0 is a symmetric function. We first consider the case where both i and j belong to
[m].

If xi and xj are in the same connected component, by definition the reference point xr will be the
same for xi and xj . If �(f,xi ! xj) = 0, by symmetric-zero axiom �(f,xj ! xi) = 0, and
thus K

0(xi,xj) = K
0(xj ,xj) = 0. If �(f,xi ! xj) 6= 0 and �(f,xj ! xi) 6= 0, without loss

of generality, assume the path from xi to xr is p and the path from xj to xr is q, where path p has
length k1 and path q has length k2.
K

0(xi,xj)

K 0(xj ,xi)
=

�(f,xi ! xj)/↵0

i

�(f,xj ! xi)/↵0

j

=
�(f,xi ! xj) · �(f,xj ! xq1)...�(f,xqk2

! xr) · �(f,xr ! xpk1
)...�(f,xp1 ! xi)

�(f,xj ! xi) · �(f,xi ! xp1)...�(f,xpk1
! xr) · �(f,xr ! xqk2

)...�(f,xq1 ! xj)

= 1,
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where the last equality is implied by the symmetric cycle axiom. Next, if xi and xj are not in the same
connected component, there is no edge between xi and xj . It implies that either �(f,xi ! xj) = 0
or �(f,xj ! xi) = 0 by the definition of the graph. However, due to the symmetric zero axiom, we
should have �(f,xi ! xj) = �(f,xj ! xi) = 0. Thus we have K

0(xi,xj) = K
0(xj ,xj) = 0.

If i and j are not in the same connected component, it implies that at least one K
0(xi,xj)

and K
0(xj ,xj) should be zero by definition of the connected component. However, it implies

K
0(xi,xj) = K

0(xj ,xj) = 0 due to the symmetric zero axiom. Finally, if at least one of i, j is not
in [m], we have K

0(xi,xj) = K
0(xj ,xj) by the definition of K 0.

Lastly, we consider the case either i or j belongs to {m + 1, · · · , n}. If i 2 {m + 1, · · · , n} and
j 2 [m], we have

K
0(xi,xj) = �(f,xj ! xi)/↵

0

j
= K

0(xj ,xi)

Similarly, the results hold for the case when j 2 {m+ 1, · · · , n} and i 2 [m]. If we have both i, j

belong to {m+ 1, · · · , n}, we have K
0(xi,xj) = K

0(xj ,xi) = 0

Therefore, K 0(xi,xj) = K
0(xj ,xi) for any two training points xi,xj (if i = j this also trivially

holds).

Prove K
0 is a continuous positive-definite kernel: Now, we have �(f,xi ! xj) = ↵

0

i
K

0(xi,xj)
for any two arbitrary training points xi,xj for some symmetric kernel function K

0 satisfying
K

0(xi,xi) � 0 for all training samples xi.

Next, since the explanation further satisfies the continuity and irreducibility axioms for all kinds of
training points, the kernel should be a continuous positive definite kernel by Mercer’s theorem [63].

Prove the other direction: Assume that some K : Rd
⇥ Rd

7! R is some continuous positive-
definite kernel function and the explanation can be expressed as

�(f,xi ! xj) = ↵iK(xi,xj) , 8i, j 2 [n].

Below we prove that it satisfies the continuity, self-explanation, symmetric zero, symmetric cycle,
and irreducibility axioms.

First, it satisfies the continuity axiom since the kernel is continuous. Second, if �(f,xi ! xi) = 0 for
some training point xi, we have ↵iK(xi,xi) = 0. This implies that either ↵i = 0 or K(xi,x) = 0
for all x 2 Rd since it is a positive-definite kernel. Therefore, it satisfies the self-explanation axiom.

Third, we prove that it satisfies the symmetric zero axiom. Since we have �(f,xi ! xi) 6= 0, it
implies ↵i 6= 0. Therefore if we have �(f,xi ! xj) = 0 for some xj , it implies K(xi,xj) = 0.
Since the kernel is symmetric, it also implies �(f,xj ! xi) = ↵jK(xj ,xi) = 0.

Next, we prove that it satisfies the symmetric zero axiom.
kY

i=1

�(f,xti ! xti+1) =
kY

i=1

↵tiK(xti ,xti+1)

=
kY

i=1

↵ti+1K(xti+1 ,xti)

=
kY

i=1

�(f,xti+1 ! xti),

where we use the fact that K is a symmetric kernel in the third equation.

Finally, by Mercer theorem, it satisfies the irreducibility axiom.

E.2 Proof of Proposition 8

Proof. We solve the following reparameterized objective as in Eqn.(5).

↵̂ = argmin
↵2Rn

8
<

:
1

n

nX

i=1

L

0

@
nX

j=1

↵jK(xi,xj), f(xi)

1

A+
�

2
↵
>K↵

9
=

; .
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By the first-order optimality condition, we have

@

@↵

0

@ 1

n

nX

i=1

L

0

@
nX

j=1

↵jK(xi,xj), f(xi)

1

A+
�

2
↵
>K↵

1

A
���
↵=↵̂

= 0

By the chain rule, we have

1

n

nX

i=1

L
0

0

@
nX

j=1

↵̂jK(xi,xj), f(xi)

1

AKei + �K↵̂ = 0,

where ei 2 Rn⇥1 denotes the i
th unit vector and L

0

⇣P
n

j=1 ↵̂jK(xi,xj), f(xi)
⌘
2 R is the partial

derivative of L with respect to its first input. Then we arrange the equation:

K

0

@ 1

n

nX

i=1

L
0

0

@
nX

j=1

↵̂jK(xi,xj), f(xi)

1

A ei + �↵̂

1

A = 0

Therefore, we must have 1
n

P
n

i=1 L
0

⇣P
n

j=1 ↵̂jK(xi,xj), f(xi)
⌘
ei + �↵̂ 2 null(K). It implies

that

↵̂ 2

8
<

:
�1

n�

nX

i=1

L
0

0

@
nX

j=1

↵̂jK(xi,xj), f(xi)

1

A ei + null(K)

9
=

; .

We note that
P

n

j=1 ↵̂jK(xi,xj) = (Kei)>↵̂ = e
>

i
(K↵̂) is a constant for all alphas in the above

solution set. Therefore, we have
↵̂ 2 {↵

⇤ + null(K)} ,

where ↵
⇤

i
= �

1
n�

@L(f̂K(xi),f(xi))

@f̂K(xi)
for all i 2 [n].

E.3 Proof of Proposition 9

Proof. Let v 2 null(K). We consider the norm of fv =
P

n

i=1 viK(xi, ·):

kfvk
2
H

= hfv, fvi = h

nX

i=1

viK(xi, ·),
nX

i=1

viK(·, xi)i ( kernels are symmetric to its inputs)

=
nX

i=1

vihK(xi, ·),
nX

i=1

viK(·, xi)i

= v
>Kv

= 0 (Kv = 0),

which implies that fv(x) = 0 for all x 2 Rd.

E.4 Proof of Corollary 12

By plugging the kernel function KLL(x, z) = h�⇥1(x),�⇥1(z)i, 8x, z 2 Rd to Proposition 8, we
have

f̂K(·) =
nX

i=1

↵
⇤
KLL(xi, ·), with ↵

⇤

i
= �

1

n�

@L(f̂K(xi), f(xi))

@f̂K(xi)
.
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