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Abstract1

Generative models for network time series (also known as dynamic graphs) have2

tremendous potential in fields such as epidemiology, biology and economics, where3

complex graph-based dynamics are core objects of study. Designing flexible and4

scalable generative models is a very challenging task due to the high dimensionality5

of the data, as well as the need to represent temporal dependencies and marginal6

network structure. Here we introduce DAMNETS, a scalable deep generative model7

for network time series. DAMNETS outperforms competing methods on all of our8

measures of sample quality, over real and synthetic data sets.9

1 Introduction10

Temporal networks (also known as dynamic graphs) arise naturally in many fields of study such as the11

spread of disease [1], molecular interaction networks [2], interbank liability networks [3] and online12

social [4] and citation networks [5]. Accurate data-driven generating modelling of these processes13

could have a profound wide-reaching impact, for example in simulating the trajectories of future14

pandemics or financial contagion risk in economic crash scenarios.15

In contrast to generating static networks (i.e., networks that do not evolve over time), generating16

time series of networks has received relatively little attention in the literature. While static networks17

usually include complex dependencies, network time series contain complex dependencies also across18

time. As an example, in a time series of social contact networks, the interest may lie in replicating not19

only the degree distribution but also the clustering behaviour, to capture the interplay between these20

summary statistics over different times of the day. This complexity is further exacerbated due to the21

high dimensional nature of network time series; a dataset with N network time series on n nodes each,22

and of length T each, has size N × T × n2. Building a generative model that faithfully replicates23

both network topology and dependence between graph snapshots is an extremely challenging task.24

Data-driven generative models of other types of sequential data, such as natural language, commonly25

follow an encoder-decoder structure, e.g. Sequence2Sequence [6] and Transformer [7] models. We26

combine ideas from the static network generation and sequence modelling literatures in DAMNETS,27

an efficient and high quality generator for Markovian network time series. We leverage the insight28

that the delta matrix, that is the difference between subsequent adjacency matrices, is very sparse for29

most networks of interest. The key novelty of DAMNETS is that it uses a GNN to encode the current30

state of the network, and an efficient sparse matrix sampler to generate delta matrices conditioned on31

the node embeddings computed by the GNN.32

In this paper, we restrict our attention to time series G0, G1, . . . , GT of simple, undirected, labelled33

graphs on a fixed node set V = {1, . . . , n} with edge set Et ⊆ {(i, j) : i, j ∈ V }. An element of34

the sequence Gt = (V,Et) has a random edge set Et drawn from a a time-dependent probability35

distribution pt(V × V ) over the set of node pairs on V , and emits adjacency matrix A(t).36

The remainder of this paper is structured as follows. Section 2 is a review of related work. Section 337

introduces the DAMNETS algorithmic pipeline. Section 4 details the outputs of numerical experiments38

for representative generative models from the network literature as well as real world networks.39

Section 5 summarises our main findings and proposes future avenues of investigation. The DAMNETS40

code is available at this link.41
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2 Related Work42

2.1 Static Network Generation43

Static graph generation involves learning a probability distribution p(G) over an observed set of net-44

works. Recently, several machine learning approaches have shown good performance on generating45

arbitrary sets of networks, including DeepGMG [8], GraphRNN [9], GRAN [10] and BiGG [11].46

Our paper continues this progression to the network time series setting.47

BiGG. BiGG is a scaleable model for generating static networks that we will introduce briefly here,48

as our approach shares some similarities. Popular frameworks such as GraphRNN, GRAN and BiGG49

all employ the following high-level pattern for sampling the adjacency matrix; they sample each50

row of the adjacency matrix one at at time, using a row-wise auto-regressive model to capture the51

topological structure of the sampled graph and a second auto-regressive model to capture within-row52

edge-level correlations. GraphRNN uses a hierachical RNN structure, GRAN uses a graph neural53

network with a conditional mixture of Bernoulli likelihood and BiGG uses a binary tree type structure,54

which is particularly suited to sparse graphs.55

The major innovation introduced in BiGG is an improvement upon the naive O(n) time complexity56

for sampling a row of the adjacency matrix. Instead of sampling each of the n entries using a57

linear-time autoregressive model (such as a RNN), the authors propose to sample each row using a58

binary tree. Each node u is associated with a random binary tree Tu which is constructed as follows.59

Each tree node k corresponds to an interval of graph nodes [vl, vr]. The process starts from the root60

[1, n] and terminates at leaf nodes [v, v]. At each decision step the model decides whether the tree61

has a left child (lch), with probability p(lch(k)), and right child (rch), with probability p(rch(k)),62

and if so descends further down the tree until it reaches a leaf node. The probability of this tree being63

a particular realisation Tu = τu is thus64

p(τu) =
∏
k∈τu

p(lch(k))p(rch(k)). (1)

The tree τu is then represented as a row vector of length n of an adjacency matrix, with position65

v having entry 1 if τu contains the leaf [v, v], and 0 otherwise. The algorithmic advantage stems66

from setting all entries [vl, vr
2 ] to 0 in row u as soon as at tree node k = [vl, vr] the left child is not67

generated (and similarly if a right child is not generated). Thus for a node u, the corresponding row68

of the adjacency matrix can be sampled in O(|Tu|) decision steps. Since |Nu|, the size of the graph69

neighbourhood of u, equals the number of leaf nodes and log n is the maximum depth of the binary70

tree, the upper bound |Tu| ≤ |Nu| log n follows. Moreover, significantly larger time savings can be71

made in practice if the model decides to not descend further into the tree in the upper levels.72

To include dependence between entries within the row of the adjacency matrix, BiGG augments the73

process to produce state variables that track the decisions made, both above and below in the tree. At74

each tree node k, one always decides first whether to generate the left child conditionally on the state75

of the tree above, which is denoted htop
u (k), with the decision sampled from p(lch(t)|htop

u (k)). If the76

model decides to descend into the left child, the entire left subtree is generated before returning to t77

and making a decision about whether to generate the right child. The left subtree that was generated78

is summarised by a bottom-up state variable, denoted hbot
u (k), and this is used to decide whether to79

sample a right child (rch) for the subtree. The model for Tu therefore becomes80

p(Tu) =
∏
k∈Tu

p(lch(k)|htop
u (k)) p(rch(k)|htop

u (k), hbot
u (lch(k))), (2)

where the exact equations for htop
u and hbot

u are given in Algorithm 2. The child probabilities are81

finally created via two MLPs, denoted MLPx : RF → R for x = L,R, via82

p(lch(k) | htop
u (k)) = Bernoulli(MLPL(h

top
u )(k)), (3)

p(rch(k) | htop
u (k), hbot

u (lch(k))) = Bernoulli(MLPR(h
top
u (k), hbot

u (lch(k))). (4)

2.2 Network Time Series (NTS) Generation83

There are classical models for generating time series of networks designed to capture a specific84

set of NTS characteristics, such as the forest fire process [5], which can produce power-law degree85

distributions and shrinking effective diameter (i.e., the largest shortest path length in the graph). These86

classical models, while very effective at re-creating certain types of behaviour, are not data-driven and87
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require the network to obey a pre-defined set of characteristics to be effective. Approaches attempting88

to generate arbitrary network time series have appeared in the machine learning literature, such as the89

TagGen model [12], which uses a self-attention mechanism to learn from temporal random walks on90

a NTS, from which new NTSs are subsequently generated. Another recent algorithm is DYMOND91

[13], which is a simpler approach that models the arrival times of 3-node motifs, then samples these92

subgraphs to generate the NTS. It is important to note that both DYMOND and TagGen attempt to93

solve a slightly different problem to DAMNETS; they take as input a single time series G0, . . . , GT and94

pre-defined network statistics, and aim to generate an entire time series with these network statistics95

similar to this single realisation. Instead of specifying the network statistics of interest, DAMNETS96

aims to learn a probability distribution p(Gt|Gt−1) such that given an arbitrary graph Gt−1 (not in97

the training set), one can draw many samples for Gt and reason about the future trajectory of the98

network. This requires a different set of evaluation metrics and datasets, see Section 4 for discussion.99

AGE. The approach most similar to our own is the Attention-Based Graph Evolution (AGE) model100

[14]. AGE uses a model very similar to a Transformer [7] (only ommiting the positional encoding101

step), where a self-attention mechanism is applied to the rows of A(t−1) to learn node embeddings,102

and a source target attention module is sequentially applied to generate the rows of A(t). AGE has103

two clear shortcomings; the first one is that it does not explicitly account for graph connectivity,104

which is left to the attention mechanism to deduce. The second is that it does not capture edge-level105

correlations on the sampled rows. To give a simple example of why this is important, suppose we106

were considering a NTS where in every graph snapshot, each node has exactly two neighbours; the107

model should have some mechanism to condition on the edges it has sampled for a node so that it108

can stop once it has generated two edges. Furthermore AGE operates directly between two adjacency109

matrices rather than generating only differences, which does not allow it to utilise sparsity, limiting110

the scaleability of the method. In contrast, DAMNETS explicitly utilises graph connectivity in the111

model pipeline and has the capacity to model edge correlations within rows of the adjacency matrix.112

3 DAMNETS Architecture113

Our goal is to learn a generative model p(·|Gt−1) for the next network in a NTS, given a set of114

training network time series {{G1
t}T1

t=0, . . . , {GN
t }TN

t=0, }. Our model has a Markovian structure and115

hence for generating Gt all relevant information about the past is assumed to be contained in Gt−1.116

For a description of our model we first introduce the delta matrix ∆(t) ∈ {−1, 0, 1}n×n defined as117

∆
(t)
ij = A(t) −A(t−1) =


1 =⇒ add edge (i, j)

0 =⇒ no change in (i, j)

−1 =⇒ remove edge (i, j).

When conditioned on A(t−1), each entry ∆
(t)
ij can only take two values, namely ∆

(t)
ij can only be118

0 or 1 if A(t−1)
ij = 0, and ∆

(t)
ij can only be -1 or 0 if A(t−1)

ij = 1. Learning a generative model119

p(∆(t)|Gt−1) is equivalent to learning p(Gt|Gt−1). Thus, this model only has to learn to produce120

the temporal update, rather than to reproduce the current graph and apply the temporal update.121

As we consider only undirected graphs, we only model the lower triangular part of the delta matrix.122

As our approach is an encoder-decoder framework, we first summarise the previous network Gt−1123

by computing node embeddings using a GNN as an encoder, then combine these with a modified124

version of the very efficient sparse graph sampler BiGG [11] to act as a decoder for the delta matrix.125

3.1 The Encoder126

The first step is to compute node embeddings for Gt−1, using a GNN. We employ a Graph Attention127

Network (GAT) [15], although any GNN layer is applicable. We use GAT (X,A) to represent128

the application of a GAT network to a graph with node feature matrix X and adjacency matrix A.129

and in the absence of other node features we use the identity matrix as node features (which here130

corresponds to a one-hot encoding of the nodes). Node or edge-level features, whenever available,131

can be incorporated into the pipeline. The embedding of Gt−1 is given by132

H(t−1) = GAT (X,A(t−1)), (5)

where X ∈ Rn×p is the node feature matrix, and H(t−1) ∈ Rn×q is the node embedding matrix.133
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3.2 The Decoder134

Starting with the first node according to the given node ordering, conditioning gives

p(∆) = p
(
{∆u}u∈V

)
=

∏
u∈V

p (∆u | {∆w : w < u}) .

We sample each row of ∆ using Algorithm 2, a modified version of the BiGG row sampling algorithm.135

We enhance the procedure, allowing it to distinguish between a tree leaf which would be an edge136

addition and a tree leaf which would be an edge deletion. If the left (resp. right) child at level k is a137

leaf node corresponding to entry ∆
(t)
ij , instead of (3) we sample the leaf node using138

p(lch(k) | h) =
{
Bernoulli(MLP+(h)) if A(t)

ij = 0,

Bernoulli(MLP−(h)) if A(t)
ij = 1,

(6)

where h ∈ Rq is the corresponding state variable. Each application of Algorithm 2 returns an139

embedding, namely gu = hbot
u (root) which depends on every entry in the row. As is done in the140

static setting we apply an auto-regressive model across these row embeddings to capture dependencies141

between rows. The bottom-up embeddings of each tree have no other computational dependencies, so142

can be efficiently pre-computed during training. We chose to use a standard Transformer self-attention143

layer [7] (which we call TFEncoder) with sinusiodal positional embedding for this auto-regressive144

component; this was chosen to provide similar representation power to the baseline model AGE. Self145

attention does not scale to very long sequences however, so for very large graphs with many nodes,146

this could be replaced by either an LSTM or the Fenwick Tree structure proposed in [16].147

3.3 The DAMNETS model architecture148

Figure 1: An overview of our approach to generating Markovian transitions in a network time series.
We learn a generative model of the lower triangular part of the delta matrix given the previous graph
Gt−1. We then draw a sample ∆(t) and add this to A(t−1) to produce a sample Gt.

With the two key components of our model defined, we now explain how these models are combined149

to generate delta matrices given an input graph. As stated in Equation (5), we first compute node150

embeddings H(t−1) ∈ Rn×F , with H
(t−1)
i ∈ RF representing the node embedding computed for151

node i in Gt−1. When generating the row tree Tu for node u, (which corresponds to generating the152

row of the delta matrix for node u), we combine the node embedding from the previous network with153

the row-wise auto-regressive term hrow
u−1 computed by TFEncoder via an MLP154

htop
u (root) = MLPcat(h

row
u−1, H

(t−1)
u ). (7)

where MLPcat : R2F → RF . The full procedure is described in Algorithm 1, with a detailed version155

Algorithm 2 in the SI, and is visualised in Figures 1 and 2. The model is trained via maximum156

likelihood over the entries of the delta matrix using gradient descent. The advantage of this framework157

is twofold; firstly the delta matrix is usually much sparser than the full adjacency matrix, allowing us158

to well utilise sparse sampling methods. This is a very natural assumption: one does not expect most159

of the network to change at each timestep, but rather just a small subset of the edges. The second160

is that differencing a time series makes learning easier. It is very common in traditional time series161

analysis to perform differencing transformations on data, as differencing may alleviate trends in the162

time series.163

4 Experiments164

Evaluating a generative model usually follows the following recipe: fit the generative model on165

the training data, draw samples from the model and then compare the distribution of these samples166
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Figure 2: A visualisation of the generation of the u-th row of the delta matrix ∆(t) using the DAMNETS
model architecture. The nodes shown in red indicate the graph Gt. We use a GAT to compute node
embeddings H(t) for each node in Gt. Nodes shown in blue belong to the binary tree generated for
each row; each tree is generated by combining the node embedding in the previous graph with an
auto-regressive term computed using a Transformer (TF) Encoder across the rows of the delta matrix
to produce hrow

u−1, which is used in Equation (7) to initialise the top-down descent of each tree.

Algorithm 1: Algorithm for generating the the delta matrix ∆(t) using DAMNETS
Input: Input graph Gt−1 = (V,Et−1), node features X
H(t−1) ← GAT (X,A(t−1))
hrow
0 ← ∅

for u← 1 to n do
Let k = {1, . . . , u− 1} be the root of tree Tu.
htop
u (k) = MLPcat(h

row
u−1, H

(t−1)
u ).

gu,Nu ← Recursive(u, k, htop
u (k)) /* Algorithm 2 */

/* Only non-zero indices are returned in Nu */
∆u ← Determine sign of entries using A(t−1) and transform into a vector.
hrow
u ← TFEncoder(gu; g1:u−1)

end
Return ∆(t) with rows ∆u, u = 1, . . . , n.

to some held out test data using some kind of statistical test or metric on the space of probability167

distributions. For static graphs, there exist a number of graph kernels [17] from which a Maximum168

Mean Discrepancy (MMD) [18] type metric can be derived. However these are very computational169

costly (some scaling as O(n4) for a graph with n nodes). It is therefore common to define a set of170

summary statistics over the graphs, such as the degree distribution or clustering coefficient distribution,171

and compare the distributions of these summary statistics computed over the sampled and test graphs.172

We adopt a similar approach applied to the marginal distributions of the network time series. We173

choose to compare six different network statistics, three local and three global (see [19] for a174

background on network statistics). Our three local properties are the degree distribution, clustering175

coefficient distribution and the eigenvalue distribution of the graph Laplacian as introduced in [10].176

For each graph, we compute a histogram of these properties over the nodes in the graph, and use a177

Gaussian kernel with the total-variation metric to compute the MMD. Our three global measures are178

transitivity, assortativity and closeness centrality. Each of these metrics produces one scalar value per179

graph, and we again use a Gaussian kernel with the ℓ2 metric to compute the MMD.180

For each time point t and statistic S(·), we compute MMDt(S(G
test
t ), S(Gsampled

t )), and use as181

final metric the sum MMD(S) =
∑

t MMDt(S(G
test
t ), S(Gsampled

t )). If the marginal distributions182

match exactly, MMD(S) will equal 0, and smaller values indicate better agreement between the183

distributions. We display all MMD scores to three significant figures. Comparing the marginal184
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distributions alone does not suffice as a comparison metric, so we also provide summary plots of185

these network statistics through time to verify that the evolution of these statistics match. In addition,186

we have designed several synthetic-data experiments to verify specific time-series properties observed187

in real-world networks which we would like to capture.188

A difficulty for graph generative model evaluation is that proper comparison of a network time189

series generator requires many realisations of this time series drawn from the same distribution to190

facilitate learning and subsequent comparison. Papers such as TagGen [12] and DYMOND [13]191

utilise datasets that comprise of one realisation of a real world temporal network, and aim to simply192

produce “surrogate” networks that closely resemble that single realisation. We aim to assess whether193

our model is able to generalise to new examples, in the sense that given a new graph Gt−1 drawn from194

the same distribution as the training distribution, we can draw samples from Gt ∼ p(·|Gt−1). We are195

therefore unable to use the same data sets as these papers, and instead design a new experimental196

setup in line with our objective.197

Our general experimental framework is as follows: we are given a set of realisations198

{{G1
t}T1

t=0, . . . , {GN
t }TN

t=0, }. For DAMNETS and AGE, we split this up into a set of training time199

series and test time series, and fit each model on the training set, then evaluate the performance200

on the test set. As DYMOND and TagGen can only learn from one time series at a time and produce201

realisations from that specific time series, we instead train an instance of these models separately202

on each time series in the test set and sample one time series from each trained model. This might203

seem like a large advantage for these models, as they have direct access to the test set. However204

our experimental results show that the aggregated behaviour of these samples does not match the205

underlying distribution well, suggesting these methods are not suitable for learning the true underlying206

process that a given sample was drawn from. Due to the fact that DYMOND and TagGen have to be207

re-trained on every single time series, we provide two sets of results for some datasets, with a smaller208

dataset chosen such that DYMOND and TagGen converge within 24 hours.209

4.1 The Barabási–Albert Model210

The family of Barabási–Albert (B-A) models [20] was designed to capture the so-called scale-211

free property observed in many real world networks through a preferential attachment mechanism.212

Formally a scale-free network is one whose degree distribution follows a power-law; if deg(i)213

represents the degree of node i in a random network model, then the network is scale free if214

P( deg(i) = d) ∝ 1
dγ , for some constant γ ∈ R. Degree distributions with a power-law tail have been215

observed in many real networks of interest, such as hyperlinks on the World-Wide Web or metabolic216

networks, although the ubiquity of power law degree distributions has been disputed [21].217

The B-A model has two integer parameters, the number of nodes n and the number of edges m to be218

added at each iteration. The network is initialised with m initial connected nodes. At each iteration t,219

a new node is added and is connected to m existing nodes, with probability proportional to the current220

degree pu = deg(u)∑
v∈V deg(v) . Here, the standard NetworkX [22] implementation is used. Constructing221

a B-A network in this way yields a network time series of length T = n−m, where each graph Gt is222

the graph after node m+ t has the first edges attached to it. Nodes with a many existing connections223

(known as hubs) will likely accumulate more links; this is the preferential attachment property which,224

in the B-A model, leads to a power-law degree distribution with scale parameter γ = 3.225

For the B-A experiments, we take N = 200 time series with parameters n = 100 and m = 4,226

yielding time series of length T = 96. The results are displayed in Table 1 and Figure 3. We see227

DAMNETS produces samples with orders of magnitude lower MMD than the baseline methods, and is228

the only model to correctly replicate the power law degree distribution.229

Table 1: The MMD on the B-A dataset for each network statistic. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 14.01 61.20 8.78 7.28 4.76 3.19
TagGen 16.33 16.55 2.29 2.06 23.95 0.10
AGE 15.08 25.15 9.45 3.42 6.37 2.36

DAMNETS 8e−3 0.78 0.14 0.01 0.01 5e−6
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Figure 3: Plots for the B-A model. Left: density against time; middle: transitivity against time; right:
the average degree distribution of the final network GT produced by the models. Only DAMNETS
correctly replicates the power law degree distribution.

4.2 Bipartite Concentration230

Figure 4: A sample from the bipartite concentration model with 10 nodes in each partition, with an
initial connection probability of p = 0.2 and a concentration proportion pcon = 0.3. The highest
degree node is shown in red; links concentrate on this node over time.

G0 G1 G2 G3 G4 G5

This dataset is designed to simulate behaviour in rating systems where objects with many links tend231

to accumulate more recommendations [23]. For example in a data set consisting of users and movies,232

movies with many existing recommendations are likely to accumulate more over time. The graph233

G0 is initialised as a random bipartite graph with connection probability p. At each timestep, we234

select the node in the right-hand partition with the most links (ties broken at random) and re-wire a235

proportion pcon of non-adjacent edges to that node.236

For the experiments we set p = 0.5 and pcon = 0.1. For the smaller data set (S), we place 30 nodes237

in each partition (so n = 60) and iterate for T = 10 timesteps. For the larger dataset (L) we place238

250 nodes in each partition (n = 500) and iterate for T = 15 timesteps. To measure the extent to239

which the different generators replicate this bipartite structure, in addition to our standard summaries240

we also compute the mean Spectral Bipartivity (SB) [24] through time, which takes values in [0, 1],241

with 0 indicating the network is not bipartite and 1 indicating the network is fully bipartite. The242

results are displayed in Table 2 and Figure 9. DAMNETS consistently outperforms all the baseline243

models across all summary statistics.

Table 2: The MMD for each network statistic (lower is better) and Spectral Bipartivity (closer to 1 is
better) across the small (S) and large (L) bipartite contraction test datasets.

Model
Deg. Clust. Spec. Trans. Assort. Closeness SB

(S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L)

DYMOND 1.06 − 9.55 − 0.12 − 1.67 − 9e−4 − 0.14 − 0.50 −
TagGen 0.81 − 1.73 − 0.29 − 5e−4 − 0.07 − 2e−4 − 0.56 −
AGE 0.92 2.75 9.46 15.3 0.13 0.25 1.48 3.71 0.72 4.81 0.16 0.36 0.55 0.52

DAMNETS 0.01 4e−3 0.11 3e−3 0.03 5e−4 7e−6 8e−8 1e−4 7e−6 4e−7 1e−7 0.99 0.99244
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Figure 5: Plots for the bipartite contraction model. Left: density against time; middle: transitivity
against time; right: closeness against time. Only DAMNETS shows good performance in all statistics.
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4.3 Community Evolution and Decay245

Figure 6: A sample from the community decay model of length T = 5 on V = {1, . . . , 45}, with 15
nodes in each of the Q = 3 communities, connection probabilities pint = 0.7, pext = 0.005, decay
community D = 3 (coloured red) and decay proportion pdec = 0.2.

G0 G1 G2 G3 G4 G5

Our next network time series benchmark considers a dynamic community structure model. We246

initialise a three-community stochastic block model on n nodes. At each time step, we re-wire a fixed247

proportion fdec of the third community (which we call the decay community), replacing them with a248

random outgoing edge to a node in one of the other communities. A sample from the model is shown249

in Figure 6, and a full description of the model is given in Appendix A.2.250

For the experiments we use inter-community connection probability pint = 0.9, intra-community251

pext = 0.01, decay fraction fdec = 0.2 and iterate for T = 20 timesteps. For the small (S) dataset252

we place 20 nodes in each community (for a total of n = 60 nodes) and for the large (L) dataset we253

place 400 nodes in each community (n = 1200 in total). The non-decay communities should have254

constant density, and the decay community should have density decaying exponentially at rate fdec.255

The results are displayed in Table 3 and Figure 10. DAMNETS is the best performing model overall,256

although AGE also shows strong performance on this dataset.257

Table 3: The MMD for each network statistic across the small (S) and large (L) community decay
test datasets, with a (−) when the model did not converge within 24 hours. A lower MMD is better.

Model
Deg. Clust. Spec. Trans. Assort. Closeness

(S) (L) (S) (L) (S) (L) (S) (L) (S) (L) (S) (L)

DYMOND 1.95 − 3.20 − 0.66 − 0.88 − 1.02 − 0.33 −
TagGen 10.99 − 2.91 − 2.18 − 0.26 − 2.37 − 1.04 −
AGE 0.15 0.17 2.00 2.06 0.43 0.42 0.02 0.03 0.07 0.06 0.01 0.03

DAMNETS 0.19 0.21 1.90 1.91 0.39 0.40 0.01 0.01 0.03 0.04 0.01 0.02

0 5 10 15 20
Time

0.0

0.5

1.0

Third (Decaying)

0 5 10 15 20
Time

0.50

0.75

1.00

First

0 5 10 15 20
Time

0.50

0.75

1.00

Second

Test

DAMNETS

AGE

DYMOND

TagGen

Figure 7: The density of each community through time in the 3-community dataset.

4.4 Correlation Networks258

This data set consists of financial correlation networks built from time series of asset prices from the259

Wharton CRSP database [25]. We consider a set of 49 liquid stocks from the US equity market, for260

which we have available minutely prices data. We construct a graph by assigning each stock to a261

node. We then estimate the correlation matrix of their 5-minute returns each day, and threshold these262

correlations at 1 standard deviation in order to construct the edges (so stocks are connected by an263

edge if they are strongly correlated). The data set spans N = 97 weeks, with each week giving a264

time series of length T = 5.265

One issue with this dataset is that correlations between financial instruments are known to be unstable266

over time (hence different realisations may not drawn from the same distribution). To mitigate this267

we did not split the data chronologically, but have rather drawn the training and test splits randomly268

(which correspond to selecting random weekly time series from the dataset). We repeat this procedure269

over 5 seeds and compute the average MMD. The results are displayed in Table 4 and Figure 11.270

DAMNETS is the only model to show good performance across all statistics.271
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Table 4: The MMD for each network statistic across the correlation test dataset. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 0.16 0.58 0.27 0.17 0.04 0.06
TagGen 0.95 0.56 0.85 4e−3 0.08 0.48
AGE 0.14 1.07 0.31 0.26 0.08 0.10

DAMNETS 0.13 0.21 0.25 0.04 0.02 0.01

4.5 The MIT Reality Mining Dataset272

This is a contact network between students and faculty at the MIT media lab recorded between August273

2004 to May 2005 [26]. Each contact between two different people (recorded via a bluetooth device274

on the subjects’ mobile phones) forms a timestamped edge. We aggregated all daily contacts into275

networks, and evaluate our procedure on generating weekly time series of these contact networks.276

We dropped weeks without observations for all the days, giving a set of 32 weekly time series. We277

used 16 weeks for training, 6 for validation and 10 for testing. As with the correlation dataset,278

we randomly sample weeks to form the train and test set, and repeat the experiment across three279

seeds. The results in Table 5 show that DAMNETS performs best on all statistics except closeness,280

even compared to DYMOND and TagGen which have access to the test data at training. The strong281

performance of DAMNETS is particularly evident across the local summary statistics, which suggests282

DAMNETS is particularly well suited to represent fine-grained local structure.283

Table 5: The MMD for each network statistic across the MIT test dataset. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

DYMOND 1.24 2.21 1.28 0.39 0.18 0.04
TagGen 2.57 2.99 2.42 0.54 0.32 0.48
AGE 2.02 2.75 2.17 0.37 0.38 0.73

DAMNETS 0.41 1.42 0.46 0.34 0.10 0.09

4.6 Ablation Study284

We see that DAMNETS outperforms all the baseline models on each dataset under consideration, in285

particular the AGE model, which is the most similar in that it also follows a Sequence2Sequence286

framework. DAMNETS differs from AGE in two major ways, namely the formulation in terms of the287

delta matrix and the model architecture adapted for sampling this sparse matrix. We provide an288

ablation study in Appendix B where we modify AGE to generate delta matrices, and also a version289

where we add positional encodings. We find that the delta matrix formulation significantly improves290

the performance of AGE, while positional encodings do not change the performance much, with291

neither variant of AGE able to match the performance of DAMNETS. This suggests it is the combination292

of our re-formulation of the problem combined with a model architecture suited to sample sparse delta293

matrices that provides such strong performance. We also provide separate experiments to examine294

the influence of the GNN layer type, GNN depth and type of recurrent module in the decoder.295

5 Discussion and Conclusion296

DAMNETS provides a novel approach to generating network time series, with the ability to have297

fine-grained edge-level conditioning while maintaining scaleability by generating delta matrices298

rather than entire graphs and efficiently utilising the sparsity of these matrices. We have shown299

through extensive experiments that DAMNETS is able to learn a variety of important network models300

that existing methods simply cannot. DAMNETS can learn to generate long time series, re-produce301

power-law degree distributions, bipartite structure and maintains very strong performance on larger302

networks, while none of the baseline models are able to capture all of these properties.303

In future work, the Markovian assumption underlying DAMNETS could be relaxed to incorporate time304

series with long range dependencies, using techniques such as node memory introduced in the TGNN305

model [27]. The model could also be extended to handle graphs of varying size: node deletion could306

be performed by adding a step before the sampling of each row-tree wherein the model makes a307

decision about whether the node should persist to the current timestep. Node additions could be308

handled by allowing optional rows to be appended to the end of the delta matrix (and only sampling309

ones for these rows, as a new node could not have any edge deletions). It would also be interesting310

and fairly straightforward to extend DAMNETS to generate node attributes, along the lines of [28].311
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A Supplementary Information for DAMNETS: A Deep Autoregressive Model419

for Generating Markovian Network Time Series420

A.1 The DAMNETS Row Generation Algorithm421

Algorithm 2: Algorithm for generating the the uth row of the delta matrix
Function Sample_Leaf(u, k, h):

e← (u, k)
if e is Edge Addition then

has_leaf ∼ Bernoulli(MLP+(h))
else

has_leaf ∼ Bernoulli(MLP−(h)) /* Edge deletion */
end
if has_leaf then

return 1⃗, e
else

return 0⃗, ∅
end

End Function
Function Recursive(u, k, htop

u (k)):
if is_leaf(lchu(k)) then

hbot
u (lchu(k)) ,N k,left

u ← Sample_Leaf(u, lchu(k), htop
u (k))

else
has_left ∼ Bernoulli(MLPL(h

top
u (k)))

if has_left then
htop
u (lchu(k))← LSTMCell (htop

u (k), embed(left))
hbot
u (lchu(t)) ,N k,left

u ← Recursive(u, lchu(k), htop
u (lchu(k)))

else
hbot
u (lchu(k)) ,N k,left

u ← 0⃗, ∅
end

end
ĥtop
u (rch(k))← TreeCelltop

(
hbot
u (lchu(k)), h

top
u (lchu(k))

)
if is_leaf(rchu(k)) then

hbot
u (rchu(k)) ,N k,right

u ← Sample_Leaf
(
u, rchu(k), ĥ

top
u (rchu(k))

)
else

has_right ∼ Bernoulli(MLPL(ĥ
top
u (rchu(k))))

if has_right then
htop
u (rch(k))← LSTMCell

(
ĥtop
u (rch(k)), embed(right)

)
hbot
u (rchu(k)) ,N k,right

u ← Recursive(u, rchu(k), htop
u (rchu(k)))

else
hbot
u (rchu(k)) ,N k,right

u ← 0⃗, ∅
end

end
hbot
u (k)← TreeCellbot

(
hbot
u (lchu(k)) , h

bot
u (rchu(k))

)
N k

u ← N k,left
u ∪N k,right

u

return hbot
u (k),N k

u
End Function

422

First we provide details for the DAMNETS row generation algorithm given in Algorithm 2. Here,423

TreeCellbot and TreeCelltop are two TreeLSTM [29] cells, embed(left) and embed(right) are learned424

embeddings for the binary values "left" and "right", and LSTMCell is a standard LSTM [30]. The top425

down cell summarises decisions made above t in the tree, and the bottom up cell summarises lower426

levels of the tree (if they exist), where hbot
u (∅) = 0. Notice that that hbot is computed independently427

of htop.428
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A.2 The Community Decay Model429

The three community decay model is formally defined as follows. The initial network G0 = (V,E0)430

with node set V = {1, . . . , n} is equipped with a surjective community membership function431

C : {1, . . . , n} → {1, . . . , Q} that encodes which of the Q communities a given node i belongs to (a432

node can only belong to one community). Here we assume that the community memberships are433

known. The initial graph G0 is then fully described by the interior (within community) and exterior434

(across communities) edge probabilities pij := P((i, j) ∈ E0), given by435

pij =

{
pint if C(i) = C(j)

pext if C(i) ̸= C(j).
(8)

A network time series G1, . . . , GT is then constructed as follows; we fix a community D ∈436

{1, . . . , Q} as the decay community. We define the set of internal edges for community D as437

438

Dint
t := {(i, j) ∈ Et| C(i) = C(j) = D}. (9)

At each iteration t, (i.e time step), a fixed proportion fdec of the internal edges Dint
t are replaced439

with external edges. This is achieved by selecting a random internal edge (i, j) and removing it from440

the edge set Et, then selecting a node u uniformly from {i, j}. We then select a random endpoint441

k uniformly from {v ∈ V | C(v) ̸= D, (u, v) /∈ Et}, the set of nodes not in community D and not442

connected to u, and finally add the edge (u, k) to the edge set Et. We repeat this procedure T times443

to generate our network time series.444

The model can be interpreted as starting with a network with Q densely connected communities,445

decaying in time to have only Q − 1 clear communities; the decay community D will appear as446

noise around those left unperturbed. A sample from the model can be seen in Figure 6; for ease of447

visualisation, each initial community has only 15 nodes.448

A.3 Graph Attention Networks449

For the encoder step in DAMNETS we compute node embeddings for Gt−1, using a GNN. We employ450

a Graph Attention Network (GAT) [15], although any GNN layer is applicable. Given node features451

X1, . . . , Xn, Xi ∈ RF , a GAT layer produces a new set of node features hi ∈ RF ′
according to452

hi = σ

∑
j∈Ni

αijWXj

 , (10)

where W ∈ RF ′×F is a learnable weight matrix, σ(·) is a non-linear function applied element-wise,453

and αij ∈ R are normalised attention coefficients computed as454

eij = a(WXi||WXj), (11)

αij =
exp(eij)∑

k∈Ni
exp(eik)

, (12)

where || represents the concatenation operation, and a(·) is a single layer MLP with the LeakyReLU455

activation function. These layers are stacked to produce a GAT network. GAT layers can also employ456

multi-head attention [7]. We write GAT (X,A) to represent the application of a GAT network to a457

graph with node feature matrix X and adjacency matrix A.458

A.4 Further Related Work459

Network Time Series Forecasting. A distinct but related area of study is network time series460

forecasting, where the goal is to predict node attributes or links in a graph at a future time point.461

Classical approaches include the GNAR model [31] which assumes a simple linear model based on462

lagged network attributes. Many approaches have appeared in the deep learning literature, such as the463

Graph AR model [32] and Variational Graph Recurrent Neural networks [28]. Markov models have464

been considered in this literature before, in particular the Graph Edit Network model [33], which465

uses a GNN encoder to predict a list of insertions and deletions for both nodes and edges at the next466

timestep, which can be viewed as an estimate of the delta matrix at the next time step. It remains to467

note that forecasting focuses on the next time (points) and does not produce a whole time series of468

networks which resembles the observed time series.469
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B Ablation Studies470

B.1 The Delta Parameterisation471

In many of our experiments, DAMNETS outperforms the AGE model [14]. One may conjecture that it is472

the use of the delta matrix which is the main driver of this difference in performance. To assess this473

hypothesis we perform the following ablation study: we re-formulate the AGE model to generate delta474

matrices instead of entire adjacency matrices. Recall that AGE is a transformer model as described475

in [7], but without the positional encodings. The transformer is trained via maximum likelihood to476

generate rows of the adjacency matrix A(t+1) from the rows of the previous adjacency A(t) using the477

standard Sequence2Sequence framework.478

We instead re-formulate AGE to generate delta matrices, which we call AGE-D. To ensure valid delta479

matrices, we propose to train a transformer to generate |∆(t)| row-wise from the rows of A(t), then480

construct A(t+1) as481

A(t+1) =
{
A(t) +

∣∣∣∆(t)
∣∣∣} mod 2.

Note that this always produces a valid adjacency matrix. We also include a variant with positional482

encodings on both the input and output rows, which we title AGE-DPE. We compare the performance483

of AGE and the two proposed variants on the BA and the Bipartite Contraction (L) datasets, as there484

was a particularly large gap in performance between DAMNETS and AGE on these datasets. We also485

include the MMD for DAMNETS again for ease of reference. The results are displayed in Tables 6 and486

7.487

Table 6: The MMD for each network statistic on the BA dataset. Lower is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

AGE 15.08 25.15 9.45 3.42 6.37 2.36
AGE-D 0.76 2.45 0.69 0.51 4.52 2e−3

AGE-DPE 0.76 2.37 0.71 0.49 4.31 2e−3

DAMNETS 8e−3 0.78 0.14 0.01 0.01 5e−6

Table 7: The first block shows the MMD for each network statistic on the Bipartite Contraction (L)
dataset, for which lower is better. The last column shows the spectral bipartivity, for which a value
closer to 1 is better.

Model Degree Clustering Spectral Transitivity Assortativity Closeness SB

AGE 2.75 15.3 0.25 3.71 4.81 0.36 0.52
AGE-D 0.15 6.14 0.15 0.04 0.02 1e−2 0.85

AGE-DPE 0.13 6.07 0.17 0.03 0.02 1e−2 0.87
DAMNETS 4e−3 3e−3 5e−4 8e−8 7e−6 1e−7 0.99

We see that re-formulating AGE to generate delta matrices significantly improves the performance488

of the method on these datasets, whilst adding the positional encodings provided little to no gain in489

performance. We also note that while AGE-D performs better than AGE, it still does not match the490

performance of DAMNETS on these datasets, indicating that it is the combination of our formulation of491

the problem and specific choice of architecture that leads to such strong performance.492

B.2 GNN Layer Type493

Here we study the impact on the performance of DAMNETS when using different types of GNN layers494

in the encoder. The three layers we consider are GAT [15] used in the main text, GCN [34] and495

GraphSAGE [35] with mean aggregation. We repeat the BA experiment from the main text using a496

single GNN layer of each type, and report the MMD statistic for each variation in Table 8. We see497

that DAMNETS is not particularly sensitive to the choice of GNN layer.498

499

B.3 GNN Depth500
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Table 8: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different GNN encoder layers. In each case we use a single layer GNN. Lower is better. We see
that DAMNETS is not particularly sensitive to the choice of GNN.

Model Degree Clustering Spectral Transitivity Assortativity Closeness

GAT 8e−3 0.78 0.14 0.01 0.01 5e−6

GCN 8e−3 0.81 0.17 0.02 0.01 7e−6

GraphSAGE 7e−3 0.80 0.16 0.01 0.02 7e−6

We repeat the BA experiment from the main text varying the depth of the GNN. We use GAT [15]501

layers for the encoder with a depth of 1, 2 and 4 layers respectively. The results are displayed in502

Table 9. We see that performance slightly degrades with deeper networks, although the difference is503

not substantial.504

Table 9: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different different numbers of GAT layers. Lower is better. We see that the performance is
similar across GNN depths, with shallower networks performing slightly better.

Number of Layers Degree Clustering Spectral Transitivity Assortativity Closeness

1 8e−3 0.78 0.14 0.01 0.01 5e−6

2 9e−3 0.77 0.15 0.02 0.01 7e−6

4 0.04 0.91 0.22 0.01 0.06 4e−3

It is important to keep in mind that the GNN embeddings are just one component of the model505

pipeline, with the downstream task being generating samples at the next timestep. Therefore intuition506

that applies in other applications of GNNs such as deeper networks being better (up to the point of507

oversmoothing) may not apply here. In particular DAMNETS has no information other than the present508

state of the graph Gt. We hypothesise that if the GNN embeddings computed at time Gt are similar509

to those computed at some other time Gt+k (which may occur in a deeper network that oversmoothes510

the node features), then the model may become "confused" and sample the wrong type of transition,511

hence shallower networks perform better.512

B.4 Choice of Encoder513

In Section 3.2 we mentioned that the self-attention layer in the decoder could be replaced with other514

recurrent modules. Here we study the performance of DAMNETS when using an LSTM instead of515

self-attention (which as before we call TFEncoder. Again we repeat the BA experiment, using a516

3-layer LSTM or TFEncoder, the results of which are displayed in Table 10.

Table 10: The MMD for each network statistic on the BA dataset for samples generated by DAMNETS
using different decoder layers. Lower is better. We used three layers for both the TFEncoder and
LSTM. We see that the performance only degrades mildly when moving from the self attention layer
through to the LSTM.

Layer Type Degree Clustering Spectral Transitivity Assortativity Closeness

TFEncoder 8e−3 0.78 0.14 0.01 0.01 5e−6

LSTM 9e−3 0.91 0.20 0.02 0.03 4e−5

517

We see a slight degradation in performance when moving from self-attention to LSTM. This is to518

be expected - the self attention layer can directly attend over all the tokens (here node-embeddings)519

in it’s receptive field, whereas the LSTM only models dependencies via the hidden state. LSTM520

layers use significantly less memory however, so for large graphs with many nodes this may be521

advantageous. Another alternative is the Fenwick Tree structure introduced in [11].522
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C Experimental Details523

C.1 Model Specification and Training Details524

For the experiments in this paper we used a hidden size of F = 256 for all experiments, as this was525

the default hidden size used in BiGG [16]. We used a single layer GAT [15] for all experiments.526

The rationale for this is as follows: GNNs are known to suffer from an oversmoothing problem527

[36], whereby node embeddings all become similar when using many stacked GNN layers. This528

would be particularly problematic in our case, as the model would not be able to distinguish between529

different states in the Markov chain and would likely perform very poorly. We therefore chose to use530

a very simple model with one GNN layer. It is possible this could be improved upon. All the LSTM531

networks in the BiGG decoder used 2-layers.532

We used the Adam [37] optimiser for all experiments, with learning rate 0.001 and weight decay533

parameter 0.0005. We have not made an effort to optimise these parameters. We used early stopping534

based on the log-likelihood of the validation set, which was comprised of 30% of the training data,535

chosen randomly. We used a batch size of 32 graphs (using gradient accumulation for the larger536

graphs to keep this consistent) and clipped gradients at a norm of 5. We found that training to 0537

training loss was very harmful for out of sample performance, and that early stopping is necessary for538

good performance. All numerical results are averaged over five seeds.539

We implemented the GAT using Torch Geometric [38], and used PyTorch [39] for the other deep540

learning functionality. We used Networkx [22] for processing the network data. We modified the541

original BiGG implementation to combine this with the encoder, which can be found at this link.542

C.2 Baseline Model Information543

We used the publically released versions of DYMOND and TagGen. Both of these had fatal errors in544

their implementation, which we have fixed and released as a part of our source code. There is no545

available code for AGE, so we implemented this using standard PyTorch Transformer modules. We546

used all the default hyperparameters given in the respective papers. For training AGE we also used547

early stopping with the same validation log-likelihood criterion, batch size and optimiser settings. As548

AGE is a Transformer model, we experimented with many "tricks" that are commonly used to train549

Transformers, such as warmup learning rates as described in [7], but found they did not improve the550

performance of the model.551

C.3 Hardware and Running Time552

All the experiments in this paper were carried out on a single Nvidia GeForce RTX 3090 GPU with553

an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. For the smaller experiments we capped the554

run time of DAMNETS and AGE at one hour, and 24 hours for the larger datasets (although in all cases555

both these models early stopped before the cap). DYMOND is also fast to run despite needing to be556

re-trained on each NTS due to its simplicity. TagGen required 24 hours to complete its experimental557

run on all datasets.558

D Further Experimental Plots559
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Figure 8: The first five plots show the mean and standard deviation of the network statistics computed
through time for the B-A dataset. We see that DAMNETS produces samples that are very similar to
the test set across all metrics, whereas the baseline methods fail to do so. The final plot shows the
average degree distribution of the final network GT produced by the models. Only DAMNETS correctly
replicates the power law degree distribution.

0 2 4 6 8

0.250

0.275

0.300

0.325

Density

0 2 4 6 8

0.0

0.1

0.2

0.3

Clustering

0 2 4 6 8
Time

0.0

0.1

0.2

0.3

Transitivity

0 2 4 6 8
Time

−0.3

−0.2

−0.1

0.0

Assortativity

0 2 4 6 8
Time

0.500

0.525

0.550

0.575

0.600

Closeness

Test

DAMNETS

AGE

DYMOND

TagGen

Figure 9: The network statistics computed through time for the bipartite contraction model. We see
that DAMNETS shows excellect performance on all statistics, whereas the other models are not able to
learn the dynamics.
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Figure 10: Statistics computed through time on the test set for the three-community decay model.
First two rows: The average networks statistics computed across time. Final row: the density of each
community through time. We see that both AGE and DAMNETS both show strong performance on this
model, while DYMOND performs poorly.
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Figure 11: The average network statistics computed through time for the test correlation networks.
We see DAMNETS closely tracks the test distribution on all statistics other than density.
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