
Sauron U-Net: Simple automated redundancy
elimination in medical image segmentation

via filter pruning (Appendices)

Anonymous Author(s)
Affiliation
Address
email

Appendix A. Normalization strategies1

2 40 80 120 160 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Di
ce

 c
oe

ff.

Rats dataset

Baseline (nnUNet)
Normalize feature maps (Sauron)
Normalize distances (as δprune)
No normalization

2 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

Di
ce

 c
oe

ff.

ACDC dataset

2 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

Di
ce

 c
oe

ff.

KiTS dataset

Figure S1: Validation Dice coefficients of baseline nnUNet, Sauron, and two other approaches to
normalize δopt.

We studied the impact on performance of different strategies to normalize δopt. For this, we compared2

Sauron’s normalization strategy (orange, Fig. S1), the baseline nnUNet (blue), and when not normal-3

izing δopt (red). Additionally, we normalized δopt as in δprune (green), i.e., instead of normalizing4

feature maps, the computed distances are divided by their maximum value, layer-wise (see Section5

3.2).6

Figure S1 shows that Sauron’s normalization of the feature maps provided the closest optimization7

stability and performance to the baseline nnUNet.8

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Appendix B. nnUNet diagram9

e
n
c
_
b
lo

c
k
_
1

e
n
c
_
b
lo

c
k
_
2

e
n
c
_
b
lo

c
k
_
3

e
n
c
_
b
lo

c
k
_
4

e
n
c
_
b
lo

c
k
_
5

e
n
c
_
b
lo

c
k
_
6

e
n
c
_
b
lo

c
k
_
7

e
n
c
_
b
lo

c
k
_
8

e
n
c
_
b
lo

c
k
_
9

e
n
c
_
b
lo

c
k
_
1

0

d
e
c
_
b
lo

c
k
_
1

d
e
c
_
b
lo

c
k
_
2

d
e
c
_
b
lo

c
k
_
3

d
e
c
_
b
lo

c
k
_
4

d
e
c
_
b
lo

c
k
_
5

d
e
c
_
b
lo

c
k
_
6

d
e
c
_
b
lo

c
k
_
7

d
e
c
_
b
lo

c
k
_
8

la
s
t_

3

32 32

64 64

128 128

256 256

480 480

256 256

128 128

64 64

32 32 c

Convolution

Convolution

Normalization

Leaky ReLU

Concatenation Transposed

 convolution

Output filters Classes

tr
a
n

s
_
1

tr
a
n

s
_
2

tr
a
n

s
_
4

tr
a
n

s
_
3

la
s
t_

2

c

la
s
t_

1

c

Figure S2: Diagram of an archetypal nnUNet with five levels.

nnUNet is a self-configurable U-Net optimized with extensive data augmentation, deep supervision,10

and polynomial learning rate decay. In our experiments, the configuration of its architecture and11

optimization settings depended on the dataset, as in the original publication [6]. The architectural12

components that depended on the dataset were the following:13

• Number of levels: Number of block pairs in the encoder with different feature map sizes.14

The number of levels in Fig. S2 is five. After each even block in the decoder (except15

in dec_block_2), nnUNet computes predictions at different resolutions, enabling deep16

supervision (green blocks in Fig. S2).17

• Number of filters: Number of filters of the first two blocks in the encoder. The number18

of filters in every level doubles with respect to the previous level, unless it exceeds 480—19

maximum number of filters.20

• Normalization: We employed either Batch normalization [3] or Instance normalization [9].21

• Dimensions: Whether we used 3D or 2D convolutions.22

2

Appendix C. Configuration based on the dataset23

nnUNet architecture, its optimization, dataset preprocessing, and data augmentation strategy varied24

across datasets. Such disparity in configuration aimed to tailor each model and training settings25

to resemble as much as possible to previous studies that reported state-of-the-art performance26

[4, 1, 5, 2, 10]. Tables 1, 2, and 3 list the configuration employed for each dataset. This configuration27

can also be seen in our publicly-available code.28

C.1. Preprocessing29

Rats dataset was not preprocessed. ACDC and KiTS datasets were resampled to their median voxel30

resolution (Tables 2 and 3 report the final voxel resolution in mm.). In KiTS dataset, images from31

patients 15, 23, 37, 68, 125, 133 were discarded due to their faulty ground-truth segmentation.32

Intensity values were clipped to [−79, 304] and normalized by subtracting 101 and dividing by 76.9.33

Finally, images smaller than the patch size 160× 160× 80 were padded.34

C.2. Data augmentation35

During training, images from Rats, ACDC, and KiTS datasets were augmented via TorchIO [8].36

Images were randomly scaled and rotated with certain probability p. Their intensity values were37

altered via random gamma correction. Then, they were randomly flipped, and they were transformed38

via random elastic deformation. Particularly in ACDC dataset, 2D slices from the 3D volumes were39

cropped or padded to 320× 320 voxels.40

C.3. Architecture41

The number of levels of the nnUNet models trained on Rats and KiTS datasets were five whereas in42

ACDC was seven. nnUNet was optimized on Rats, ACDC, and KiTS datasets with 32, 48, and 2443

number of initial filters (enc_block_1, Appendix B.), respectively. The nnUNet models optimized44

on Rats and ACDC datasets were 2D whereas the model for KiTS dataset was 3D. Finally, the45

normalization layer utilized in Rats and KiTS datasets was Instance Normalization [9] whereas in46

ACDC was Batch Normalization [3].47

C.4. Optimization48

All models were optimized with Adam [7] with a starting learning rate of 10−3, weight decay of49

10−5, and polynomial learning rate decay: (1 − (e/epochs))0.9. nnUNet was optimized for 20050

epochs in Rats dataset and 500 epochs in ACDC and KiTS datasets. The batch size in Rats, ACDC,51

and KiTS datasets was four, ten, and two, respectively.52

Table 1: Rats dataset configuration summary

Preprocessing Data augmentation Architecture Optimization

— Scale [0.9, 1.1], p = 0.5 Five levels 200 Epochs
Rotation [−10, 10], p = 0.5 32 Init. filters Batch size: 4
Gamma correction [−0.3, 0.3], p = 0.5 2D
Flip axis p = 0.5 Instance Norm.

Table 2: ACDC dataset configuration summary

Preprocessing Data augmentation Architecture Optimization

Resample (1.25, 125, 1) Scale [0.85, 1.25], p = 0.2 Seven levels 500 Epochs
Rotation [−180, 180], p = 0.2 48 Init. filters Batch size: 10
Elastic deformation p = 0.3 2D
Gamma correction [−0.3, 0.5], p = 0.3 Batch Norm.
Flip axis p = 0.5
CropOrPad (320, 320)

3

Table 3: KiTS dataset configuration summary

Preprocessing Data augmentation Architecture Optimization

Discard samples Scale [0.85, 1.25], p = 0.2 Five levels 500 Epochs
Resample (1.62, 1.62, 3.22) Rotation [−180, 180], p = 0.2 24 Init. filters Batch size: 2
Clip intensities (-79, 304) Elastic deformation p = 0.3 3D
Norm. (data− 101)/76.9 Gamma correction [−0.3, 0.5], p = 0.3 Instance Norm.
Pad (160× 160× 80) Flip axis p = 0.5

4

Appendix D. Increase/decrease in clusterability metrics53

Table 4 lists the relative increase/decrease in the three clusterability measures (dip-test value, distances54

δopt, and average number of neighbors) for each convolutional layer. The increase/decrease is55

computed as the ratio between p1 and p2, where p1 is the average value during the first third of the56

optimization, and p2 is the average value in the last third of the training. An increase in clusterability57

is indicated by 1) an increase in dip-test, 2) a decrease in δopt, and 3) an increase in the average58

number of neighbors.59

Table 4: Name of the convolutional layer (see Section Appendix B.), number of output filters, and
relative increase/decrease in three clusterability measures. Gray: layers with 256 or more feature
maps.

Conv. Layer Filters Dip-test Distances δopt Avg. neighbors

enc_conv_1 32 -46.0% 2.1% -74.3%
enc_conv_2 32 -13.5% 5.4% -91.5%
enc_conv_3 64 -15.0% 2.4% -97.9%
enc_conv_4 64 -4.2% -13.7% -99.8%
enc_conv_5 128 -5.0% -7.4% -93.6%
enc_conv_6 128 3.3% -9.4% -97.5%
enc_conv_7 256 688.0% -22.0% 75.1%
enc_conv_8 256 168.5% -29.3% 118.5%
enc_conv_9 480 -32.4% -53.4% 128.9%
enc_conv_10 480 118.1% -51.1% 161.4%
dec_trans_1 256 226.7% -29.7% 30.7%
dec_conv_1 256 212.7% -42.4% 63.8%
dec_conv_2 256 121.9% -8.3% 70.3%
dec_trans_2 128 18.0% -55.0% 30.3%
dec_conv_3 128 89.0% 3.4% 3.4%
dec_conv_4 128 -15.2% 13.7% 192.5%
dec_trans_3 64 214.6% -40.8% 1872.5%
dec_conv_5 64 -7.4% 0.0% 49.1%
dec_conv_6 64 22.9% -3.1% 312.9%
dec_trans_4 32 130.8% -47.1% 2769.6%
dec_conv_7 32 -9.2% 5.5% 0%
dec_conv_8 32 7.6% 9.0% -97.4%

5

Appendix E. Feature maps in the second-to-last convolutional layer of the60

baseline (unpruned) nnUNet models61

Image + Ground truth Feature map 1 Feature map 2 Feature map 3 Feature map 4 Feature map 5

Feature map 6 Feature map 7 Feature map 8 Feature map 9 Feature map 10 Feature map 11

Feature map 12 Feature map 13 Feature map 14 Feature map 15 Feature map 16 Feature map 17

Feature map 18 Feature map 19 Feature map 20 Feature map 21 Feature map 22 Feature map 23

Feature map 24 Feature map 25 Feature map 26 Feature map 27 Feature map 28 Feature map 29

Feature map 30 Feature map 31 Feature map 32

Figure S3: Rats dataset.

6

Image + Ground truth Feature map 1 Feature map 2 Feature map 3 Feature map 4 Feature map 5 Feature map 6

Feature map 7 Feature map 8 Feature map 9 Feature map 10 Feature map 11 Feature map 12 Feature map 13

Feature map 14 Feature map 15 Feature map 16 Feature map 17 Feature map 18 Feature map 19 Feature map 20

Feature map 21 Feature map 22 Feature map 23 Feature map 24 Feature map 25 Feature map 26 Feature map 27

Feature map 28 Feature map 29 Feature map 30 Feature map 31 Feature map 32 Feature map 33 Feature map 34

Feature map 35 Feature map 36 Feature map 37 Feature map 38 Feature map 39 Feature map 40 Feature map 41

Feature map 42 Feature map 43 Feature map 44 Feature map 45 Feature map 46 Feature map 47 Feature map 48

Figure S4: ACDC dataset.

7

Image + Ground truth Feature map 1 Feature map 2 Feature map 3 Feature map 4

Feature map 5 Feature map 6 Feature map 7 Feature map 8 Feature map 9

Feature map 10 Feature map 11 Feature map 12 Feature map 13 Feature map 14

Feature map 15 Feature map 16 Feature map 17 Feature map 18 Feature map 19

Feature map 20 Feature map 21 Feature map 22 Feature map 23 Feature map 24

Figure S5: KiTS dataset.

8

References62

[1] Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann63

Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep64

learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is65

the problem solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.66

[2] Nicholas Heller, Fabian Isensee, Klaus H Maier-Hein, Xiaoshuai Hou, Chunmei Xie, Fengyi Li,67

Yang Nan, Guangrui Mu, Zhiyong Lin, Miofei Han, et al. The state of the art in kidney and68

kidney tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge.69

Medical image analysis, 67:101821, 2021.70

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training71

by reducing internal covariate shift. In International conference on machine learning, pages72

448–456. PMLR, 2015.73

[4] Fabian Isensee, Paul F Jaeger, Peter M Full, Ivo Wolf, Sandy Engelhardt, and Klaus H Maier-74

Hein. Automatic cardiac disease assessment on cine-mri via time-series segmentation and75

domain specific features. In International workshop on statistical atlases and computational76

models of the heart, pages 120–129. Springer, 2017.77

[5] Fabian Isensee, Paul F Jäger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. Au-78

tomated design of deep learning methods for biomedical image segmentation. arXiv preprint79

arXiv:1904.08128, 2019.80

[6] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net:81

a self-configuring method for deep learning-based biomedical image segmentation. Nature82

methods, 18(2):203–211, 2021.83

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint84

arXiv:1412.6980, 2014.85

[8] Fernando Pérez-García, Rachel Sparks, and Sébastien Ourselin. Torchio: a python library for86

efficient loading, preprocessing, augmentation and patch-based sampling of medical images87

in deep learning. Computer Methods and Programs in Biomedicine, page 106236, 2021.88

ISSN 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2021.106236. URL https://www.89

sciencedirect.com/science/article/pii/S0169260721003102.90

[9] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing91

ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.92

[10] Juan Miguel Valverde, Artem Shatillo, Riccardo De Feo, Olli Gröhn, Alejandra Sierra, and93

Jussi Tohka. Ratlesnetv2: a fully convolutional network for rodent brain lesion segmentation.94

Frontiers in neuroscience, 14:1333, 2020.95

9

https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102
https://www.sciencedirect.com/science/article/pii/S0169260721003102

	Normalization strategies
	nnUNet diagram
	Configuration based on the dataset
	Increase/decrease in clusterability metrics
	Feature maps in the second-to-last convolutional layer of the baseline (unpruned) nnUNet models

