
Self-Imitation Learning from Demonstrations
Appendix

George Pshikhachev
JetBrains Research

HSE University
georgii39@gmail.com

Dmitry Ivanov
JetBrains Research

HSE University
diivanov@hse.ru

Vladimir Egorov
JetBrains Research

HSE University
vladimirrim98@gmail.com

Aleksei Shpilman
JetBrains Research

HSE University
alexey@shpilman.com

1 Proofs

1.1 Proof of Lemma 1

Proof. The gradients of the loss functions Llb and Llb
d w.r.t. the parameters φ:

∇φLlb =
2

Zπ
Es,a,R∼π[∆+

π]2∇φQφ(s, a)

∇φLlb
d = 2

1− λ
Z

Es,a,R∼π[∆+
π]2∇φQφ(s, a) + 2

λ

Z
Es,a,R∼πE

[∆+
πE

]2∇φQφ(s, a)

The difference of the gradients∇φLlb
diff = ∇φLlb

d −∇φLlb after rearranging terms can be written as:

∇φLlb
diff = 2

λ

Z
[Es,a,R∼πE

[∆+
πE

]2∇φQφ(s, a)− ZπE

Zπ
Es,a,R∼π[∆+

π]2∇φQφ(s, a)]

If
∣∣∇φLlb

diff

∣∣ > 0, then
∣∣∇φLlb

d

∣∣ > ∣∣∇φLlb
∣∣, i.e. adding demonstrations to the buffer increases the

gradient’s l1-norm. The condition
∣∣∇φLlb

diff

∣∣ > 0 can be written as:

Es,a,R∼πE
[∆+

πE
]2 |∇φQφ(s, a)| − ZπE

Zπ
Es,a,R∼π[∆+

π]2 |∇φQφ(s, a)| > 0

After moving the second term to the right-hand side of the inequality, dividing both sides by ZπE
,

and applying definitions of Zπ and ZπE
, we finally get:

Es,a,R∼πE
[∆+

πE
]2 |∇φQφ(s, a)|

Es,a,R∼πE
∆+
πE

>
Es,a,R∼π[∆+

π]2 |∇φQφ(s, a)|
Es,a,R∼π∆+

π

Presented at Deep RL Workshop, NeurIPS 2021

1.2 Proof of Lemma 2

Proof. From the definition of completely useless demonstrations, it follows that:

ZπE
= Es,a,R∼πE

∆+
πE

= 0

and

Es,a,R∼πE
[∆+

πE
]2 = 0

It follows that both terms of∇φLlb
diff equal 0:

∇φLlb
diff = ∇φLlb

d−∇φLlb = 2
λ

Z
[Es,a,R∼πE

[∆+
πE

]2∇φQφ(s, a)−ZπE

Zπ
Es,a,R∼π[∆+

π]2∇φQφ(s, a)] = 0

Thus, adding completely useless demonstrations to the buffer has no effect on the gradient of the loss
function w.r.t. the parameters:

∇φLlb
d = ∇φLlb

1.3 Proof of Lemma 3

Proof. Using the definition of p, the condition for it to decrease can be written as:

Es,a,R∼πE
∆+
πE

Es,a,R∼π∆+
π

>
Es,a,R∼πE

(∆πE
−Qdiff)

+

Es,a,R∼πnew
(∆πnew

−Qdiff)+

where left-hand side and right-hand side represent p
1−p before and after the update. After rearranging:

Es,a,R∼πnew
(∆πnew

−Qdiff)
+ >

Es,a,R∼πE
(∆πE

−Qdiff)
+

Es,a,R∼πE
∆+
πE

Es,a,R∼π∆+
π

After subtracting Es,a,R∼π∆+
π from both sides of the inequality, this yields:

d(π, πnew) >

(
Es,a,R∼πE

(∆πE
−Qdiff)

+

Es,a,R∼πE
∆+
πE

− 1

)
Es,a,R∼π∆+

π

2 Limitations of the proposed algorithm

In contrast to well-studied algorithms like DQN, PPO, or DDPG, SIL is a relatively novel method that
has not been tested as excessively and that still may exhibit certain engineering issues. One of such
issues is overestimation of the lower-bound value by critic, which can happen for several reasons.
First, stochasticity of policy or environment dynamics can cause high variance of return distribution in
a given state, making critic estimate the highest rather than the expected return. This can be partially
mitigated by using generalized SIL with n-step update [2]. Second, since value approximations for
all states are conditioned on the same vector of parameters φ, updating φ to increase Vφ(s1) can
increase Vφ(s2) as well, even if the latter is already tight. Third, naive initialization of φ can cause
critic to overestimate the lower bounds in some states before the training even begins. While value
overestimation is not specific to SILfD, it is partially alleviated in the original SIL by alternating with
on-policy updates that can decrease overestimated values. In contrast, the issue can be exaggerated in

2

(a) Chain (b) Pommerman

Figure 1: Chain and Pommerman environments

SILfD: if demonstrations contain states that the agent does not reach, the value estimates of these
states may rise uncontrollably.

A distinctive feature of SILfD is prioritization of demonstrations with high returns. While this feature
makes SIL robust to suboptimal demonstrations, it can also backfire if demonstrations contain useful
behaviour that does not reach any reward. For example, consider the task of stacking three cubes by a
robot manipulator. If a demonstration of successfully stacking three cubes is provided, it will be used
by SILfD to recover the demonstrated behaviour. However, if a demonstration of only stacking two
cubes is provided and no reward is achieved, it will be deemed useless and ignored by SILfD.

3 Environments

Here we report some technical details on environments.

3.1 Chain

In Chain Environment, observation space is represented by a square grid. Agent’s state in the
environment is defined by its position on this grid and consists of two components: horizontal and
vertical. Each component is normalized to be in range from −1 to 1. Thus, the initial state in the
environment is [−1,−1], and for all the terminal states the second component is 1. The goal of the
agent is to reach state [1, 1], i. e. the bottom right corner of the grid. Action space is discrete and
specifies two options: going left (0) and going right (1). The total reward for the episode lies within
the range [−60, 100].

All experiments were conducted on CPUs of MacBook Pro 2017 with 8 GB 2133 MHz LPDDR3
RAM. Each algorithm was trained for 500 thousands transitions in the environment, which constitutes
up to 30 minutes of wall-clock time, depending on the algorithm. The exceptions are DQfD, which is
more sample efficient and was trained for 100 thousands transitions, and BC and DT, which do not
require interacting with the environment. For SILfIL, we collect 1000 BC demonstrations to fill the
buffer of SIL.

3.2 DeepMind Control Suite

All experiments were conducted on Intel Core i7 2.5 GHz CPU of MacBook Pro 16 with 16 GB 1600
MHz DDR3 RAM.

In the original Cartpole, a non-zero reward is given every time the pole is positioned vertically and
the cart is located within a certain range. In our modification, the agent does not receive the reward if
the velocities of the pole or the cart exceed a threshold. As a result, it becomes extremely difficult
for the agent to find learning signal randomly. In order to collect demonstrations, we handcraft a
heuristic PID-controller that swings the cart back and forth until the pole reaches a vertical position.
In the locomotive tasks, the reward is originally given each time the robot advances forward. In
our modifications, the agent receives the reward proportional to its velocity, but only if the velocity

3

exceeds a certain threshold. As an expert, we train a PPO agent to move with a target speed that is only
slightly higher than the threshold. Since it is possible to move faster than such expert, demonstrations
of its behaviour are suboptimal for the agent.

For SILfIL, we collect 25 BC demonstrations to fill the buffer of SIL in each DMC environment.
Note that we filter these demonstrations and only select those with non-zero return.

3.2.1 Cartpole

The state space is defined by 5 components: position of the cart, cosine of the pole, sine of the pole
and cart’s and pole’s velocities. Action space is continuous and one-dimensional. Action’s magnitude
specifies the amount of force applied to move a cart and the sign of the action specifies the direction
of the force. In the original implementation of the environment the reward is given whenever the
horizontal position of the cart is within a range of from−0.25 to 0.25 and the pole’s cosine is within a
range from 0.995 to 1. In our modification agent does not receive any reward whenever the pole’s and
cart’s velocities exceed 0.25 and 0.5 respectively. To collect demonstrations in this environment, we
handcrafted a heuristic PID-controller. It receives 13 total reward per episode on average. However,
we filtered demonstrations containing only those episodes where the total reward exceeded 40, and
thus the expert’s performance in demonstrations is approximately 65.

3.2.2 Walker

In the Walker environment, the agent controls the robot that has two actuated legs. The action space
consists of 6 components, where each component represents the force applied to a certain joint of
a single leg. The state space consists of 24 components that represent positions, orientations and
velocities of different parts of the robot. In the original implementation of the environment the reward
is divided into two parts: the first part is the standing reward rs which increases towards 1 when the
vertical position of the agent’s torso gets closer to the value of 1.2; the second part is the moving
reward rm which increases up to 1 as the agent’s horizontal velocity gets closer and exceeds the
threshold of 8. The final reward is calculated using the following equation:

r = rs
(5rm + 1)

6
(1)

In order to collect demonstrations for experiments in Walker, we modify the moving part of the
original reward. To train the agent run with a certain target speed, we set the reward to be 1 if the
velocity of the agent lies inside the interval between 4 and 5 and we decrease the reward as it gets
further from its boundaries. We train agent to maximize this reward using PPO algorithm.

To create sparse version of the environment, we modify the moving reward to be 0 if the agent’s
velocity is below the threshold of 4. In order to encourage the agent to run faster as it exceeds this
threshold, we linearly increase the reward depending on agent’s velocity.

3.2.3 Hopper

In the Hopper environment, the agent controls the robot that has a single leg. The state and action
spaces are represented by the vectors with 15 and 4 components respectively. The reward scheme is
the same as in the Walker Environment, but the target speed for the expert lies in the interval between
1 and 2. In the sparse version of the environment the speed threshold is set to be 1.3.

3.2.4 Cheetah

In the Cheetah environment the agent controls the robot with two legs: back and front. The state
and action spaces are represented by the vectors with 17 and 6 components respectively. The reward
scheme is similar to Hopper’s and Walker’s reward scheme, but the standing reward is absent. The
target speed for the expert lies in the interval between 5 and 6, and the velocity threshold in sparse
version of the environment is set to be 5.

4

3.3 Pommerman

The observation space is composed of a 11x11 grid with 15 one-hot features, 2 feature maps, and an
additional information vector. The one-hot feature represents an element on the map. Specifically,
these features can represent the current player, an ally, an enemy, a passage, a wall, wood, a bomb,
flame, fog, and a power-up. The feature maps contain integers indicating bomb blast strength and
bomb life for each location. Finally, the additional information vector contains the time-step, number
of ammunition, whether the player can kick and blast strength for the current player. The agent has
six actions: do-nothing, up, down, left, right, and lay bomb. We use architecture identical to [1] for
all neural networks.

We use Agent47Agent to gather expert trajectories, which is based on Monte-Carlo Tree Search.1 We
only select winning trajectories from the expert.

All experiments were conducted on one Tesla V100 GPU. Each algorithm was trained for 10 million
transitions in the environment. The exceptions are DQfD, which is more sample efficient and was
trained for 1 million transitions, and BC, which does not require interacting with the environment.

For SILfIL, we collect 400 BC demonstrations to fill the buffer of SIL. These are not filtered.

4 Hyperparameters

Below we describe how hyperparameters were tuned. The selected hyperparameters are reported in
Table 1.

In all environments and for each algorithm, we select hyperparameters using a random search
procedure. Specifically, we select a 100 random hyperparameter configurations, train an algorithm
with each configuration on 2 random seeds, evaluate the trained algorithm for 100 episodes, and
select the configuration with the highest average score over 2 seeds and 100 episodes. We then rerun
each experiment 3 times (DMC, Pommerman) or 5 times (Chain) with the selected hyperparameters,
the results of which are reported in the plots.

In Chain, we select a configuration of hyperparameters that achieves the highest score in solving the
task with one optimal and one completely useless demonstrations provided (1 suboptimal demonstra-
tion on the x-axis of the plot in the main text) and apply these hyperparameters to the other tasks. In
DMC, we select hyperparameters on Half Cheetah environment and apply these hyperparameters in
Walker, Hopper, and Cartpole. Since experiments in Pommerman require more compute, the number
of tested hyperparameter configurations is reduced to 25, and some hyperparameters (batch size,
epochs per update, some GAIL hyperparameters, as well as order, number, and size of hidden layers)
are fixed without tuning as the hyperparameters proposed in [1].

We select hyperparameters for the following algorithms: BC, SILfD, POfD, DQfD / DDPGfD. SILfIL
and IL→ SIL use the same hyperparameters as in SILfD and BC. For Decision Transformers, we
use the hyperparameters reported in the original paper for D4RL (which contains analogues of
environments in DMC). We also simplify the architecture of DT in Chain.

For all algorithms, we select learning rate from {2e−5, 1e−4, 2e−4, 5e−4, 1e−3} and batch size
from {64, 256, 512}. For all algorithms but BC, we select epochs per update from {3, 10, 30}. For
POfD, we also select discriminator batch size from {128, 256, 512}, discriminator epochs per update
from {3, 10}, discriminator learning rate from {1e− 6, 1e− 5, 1e− 4, 5e− 4}, and reward mixing
coefficient λ1 ∈ {0.01, 0.1, 1, 10, 100}. For SILfD, we also select epochs per SIL update from
{5, 10, 20, 40}, SIL loss weightfrom {0.01, 0.1, 1, 10}, SIL value loss weight β from {0.01, 0.1, 1},
SIL batch size from {256, 512}. Online updates in SIL are based on PPO in all environments. For
DQfD and DDPGfD, we also select n-step loss weight from {0.01, 0.1, 1}, l2 regularization weight
from {1e− 5, 1e− 4, 1e− 3}, priority bonus of demonstrations from {0.2, 0.5, 1}, supervised loss
weight from {0.01, 0.1, 1}. We apply dueling [4] and double [3] modifications of DQN in DQfD. We
train DQfD and DDPGfD 5 times as less as other algorithms to utilize their sample efficiency and
prevent overfitting.

1Code: https://github.com/YichenGong/Agent47Agent/tree/master/pommerman

5

References
[1] P. Barde, J. Roy, W. Jeon, J. Pineau, C. Pal, and D. Nowrouzezahrai. Adversarial soft advantage

fitting: Imitation learning without policy optimization. arXiv preprint arXiv:2006.13258, 2020.
[2] Y. Tang. Self-imitation learning via generalized lower bound q-learning. arXiv preprint

arXiv:2006.07442, 2020.
[3] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.
[4] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network

architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

6

Table 1: Hyperparameters for all environments and algorithms. PPO is not a separate baseline, but
POfD and on-policy component of SIL are based on POfD are based on PPO.

Hyperparameter Chain Pommerman DMC

PPO
Batch size 32 256 512
GAE λ 0.95 0.95 0.95
Entropy coefficient 0.01 0.01 0
Transitions between updates 1000 128 1000
Number of workers 1 8 8
Epochs per update 3 3 10
Update clipping parameter 0.2 0.2 0.2
Learning rate 2e-4 2e-4 2e-4
γ 0.99 0.99 0.99

SIL
SIL value loss weight β 0.01 0.1 0.1
Epochs per SIL update 40 10 5
SIL loss weight 10 0.01 1
SIL Batch size 256 512 256
Buffer size 1e5 1e5 1e5

POfD
Learning rate 2e-5 2e-4 2e-4
Mixing coefficient λ1 10 1 0.1
Discriminator learning rate 1e-5 1e-6 1e-4
Discriminator batch size 32 256 512
Discriminator epochs per update 10 10 10

DQfD and DDPGfD
Buffer size 1e5 1e6 1e5
Learning rate 2e-4 5e-4 1e-4
Demos priority bonus εd 0.5 0.2 0.2
Number of steps in n-step loss 10 10 10
N-step loss weight λ1 0.01 1 0.1
Supervised loss weight λ2 0.1 1 -
l2 regularization weight 0.001 0.001 1e-5

BC
Learning rate 1e-3 2e-4 1e-3
Batch size 32 64 512
Number of batches 4096 250 000 12288

DT
Learning rate 1e-3 1e-4 1e-4
Batch size 32 64 64
Number of batches 20000 100000 100000
Number of attention layers 1 3 3
Dropout rate 0 0.1 0.1

7

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Limitations of the proposed algorithm
	Environments
	Chain
	DeepMind Control Suite
	Cartpole
	Walker
	Hopper
	Cheetah

	Pommerman

	Hyperparameters

