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Algorithm 1 Calibration-Free Model Purification (CMP)

1: Input: Poisoned model fp
ω

2: Output: Purified student model fs
ε

3: Notation: X: synthetic dataset, X̃ → X: sampled batch, B: augmentation, sp: teacher’s soft
label, Fmm: mismatch filter, Fsk: skew filter

4: Generate synthetic dataset X using Eq. (4)
5: for each training epoch do

6: Sample mini-batch X̃ → X
7: Apply augmentations: B(X̃) = {ai(x̃i) | x̃i ↑ X̃}
8: Compute soft labels: sp(B(x̃)) = softmax(fp

ω (B(x̃)))
9: Apply mismatch filtering Fmm as in Eq. (5) and skew filtering Fsk as in Eq. (6)

10: Update fs
ε by minimizing the total loss in Eq. (7)

11: end for

12: return fs
ε

A THRESHOLD SELECTION

We provide full details of the performance of ANP Wu & Wang (2021) and CLP Zheng et al. (2022a)
with respect to the chosen thresholds. We sweep over 20 values for both methods, and report the
clean accuracy (ACC) and attack success rate (ASR) for the four baseline attacks in Fig. 3 and Fig. 4.
We employ two strategies as reported in Table 2, where we choose a fixed threshold for all attacks,
or a per-attack oracle threshold. For the fixed threshold, we select a value that achieves best ACC
with ASR reasonably close to 1/C, and for the oracle threshold, we choose values that achieves ASR
closest to 1/C.

B IMPLEMENTATION DETAILS

config value

optimizer SGD
base learning rate 0.1
momentum 0.9
weight decay 1e-4
batch size 256
lr step size 30
lr gamma 0.1
training epoch 90
augmentation RandomResizedCrop

config value

optimizer AdamW
base learning rate 1e-3
weight decay 1e-2
batch size 128
learning rate schedule cosine decay
training epoch 300
augmentation RandomResizedCrop

Table 9: Training configurations for ResNet (left) and KD (right).

Attack settings We train a ResNet-18 He et al. (2016) with the official training recipe as in Table 9
(Left). For backdoor attacks badnets Gu et al. (2019), blend Chen et al. (2017), and refool Liu et al.
(2020), we poison 10% of the dataset, and 2% for wanet Nguyen & Tran (2021). This is because a
high poison rate would degrade the clean accuracy substantially. For badnets Gu et al. (2019), we use
a 20↓ 20 resolution white square placed on the right-bottom corner. We use a 0.2 mixing ratio for
blend Chen et al. (2017).

Defense settings We follow model inversion Yin et al. (2020) and knowledge distillation Hinton
et al. (2015) settings commonly used in the knowledge distillation based dataset distillation works Yin
et al. (2023); Yin & Shen (2024); Sun et al. (2024). Note that we do not tune these hyperparameters,
and simply use them off-the-shelf to demonstrate that our method is robust and does not require
extensive hyperparameter tuning. The full details are provided in Table 9 (Right).
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Figure 3: Performance of CLP Zheng et al. (2022a) against four baseline attacks. We plot ACC and
ASR with respect to different threshold values, along with the chosen fixed and oracle threshold.

Figure 4: Performance of ANP Wu & Wang (2021) against four baseline attacks. We plot ACC and
ASR with respect to different threshold values, along with the chosen fixed and oracle threshold.
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C TYPES OF BACKDOOR ATTACKS

In this section, we provide a comprehensive overview of backdoor attack taxonomies and justify our
experimental setup that uses four representative attack methods: BadNets Gu et al. (2019), Blend Chen
et al. (2017), Refool Liu et al. (2020), and WaNet Nguyen & Tran (2021). These methods were
carefully selected to cover the full spectrum of backdoor attack types, ensuring that our evaluation of
the CMP defense method is thorough and generalizable.

C.1 ATTACK TAXONOMY

Backdoor attacks can be categorized along several dimensions, with the most significant being the
trigger type and its relationship to the input data. Based on these characteristics, we classify backdoor
attacks into two primary categories: static and dynamic attacks.

C.2 STATIC ATTACKS

Static attacks use triggers that remain consistent across all poisoned inputs. These can be further
subdivided based on the trigger’s spatial characteristics:

Local Trigger Attacks Representative method: BadNets Gu et al. (2019)

Local trigger attacks embed a small, spatially concentrated pattern (such as a patch or symbol) at a
fixed position in the input image. Key characteristics include:

• Fixed position, typically in a corner or less salient region of the image
• Consistent pattern across all poisoned samples
• Relatively easy to implement but also easier to detect
• Direct modification of pixel values in a localized region

BadNets exemplifies this approach by inserting a small, fixed pattern (e.g., a square pattern) at
a consistent location. This attack is highly effective but leaves a distinctive signature that more
sophisticated defenses can identify.

Global Trigger Attacks Representative method: Blend Chen et al. (2017)

Global trigger attacks distribute the trigger pattern across the entire input, affecting all or most of the
image area. Key characteristics include:

• Pattern spans the entire input space rather than a localized region
• Often implemented through blending or transparency effects
• More subtle visual appearance compared to local triggers
• May be less disruptive to semantic content

The Blend attack achieves this by superimposing a pattern across the entire image with controlled
transparency, making it less visually obvious than patch-based attacks while maintaining high attack
success rates.

Multiple Trigger Attacks Representative method: Refool Liu et al. (2020)

Multiple trigger attacks employ several different triggers that all map to the same target label. Key
characteristics include:

• Uses multiple distinct trigger patterns
• All triggers direct classification to the same target
• Increases attack robustness against defenses that may only identify some triggers
• Often leverages naturally occurring visual elements
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Refool specifically uses reflection patterns as triggers, embedding multiple types of reflection effects
that appear natural to human observers but strongly influence model predictions. This makes the
attack both stealthy and robust against many defense mechanisms.

C.3 DYNAMIC ATTACKS

Representative method: WaNet Nguyen & Tran (2021)

Unlike static attacks, dynamic attacks use input-dependent triggers that adapt to the specific content
of each image. Key characteristics include:

• Trigger transformation depends on the input image content
• No fixed pattern that repeats across poisoned samples
• Often implemented through subtle warping or transformations
• Significantly harder to detect through statistical analysis

WaNet implements this approach through imperceptible image warping, where the warping function
creates a trigger that is uniquely applied to each image. This makes the attack particularly challenging
to defend against, as traditional methods that search for consistent patterns across poisoned inputs
fail to identify the dynamic nature of the trigger.

C.4 JUSTIFICATION FOR SELECTED ATTACK METHODS

Our evaluation utilizes these four attack methods (BadNets, Blend, Refool, and WaNet) because they:

1. Span the trigger design space: From simple local patterns (BadNets) to sophisticated
input-adaptive transformations (WaNet)

2. Represent varying levels of detectability: From more obvious modifications to nearly
imperceptible changes

3. Exercise different attack mechanisms: Direct pixel manipulation, global blending, natural-
istic artifacts, and geometric transformations

4. Challenge different aspects of defense systems: Some attacks may be neutralized by
specific defense components while being resistant to others

By evaluating CMP against this diverse set of attack methods, we ensure that our defense is robust
against the full spectrum of backdoor attacks, rather than being optimized for a particular attack
subtype. This comprehensive evaluation approach provides stronger evidence for the universality of
our defense method to both known and potentially unknown backdoor attack variants.
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