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ABSTRACT

The classical Perceptron algorithm of Rosenblatt can be used to find a linear
threshold function to correctly classify n linearly separable data points, assum-
ing the classes are separated by some margin γ > 0. A foundational result is that
Perceptron converges after O(1/γ2) iterations. There have been several recent
works that managed to improve this rate by a quadratic factor, to O(

√
log n/γ),

with more sophisticated algorithms. In this paper, we unify these existing results
under one framework by showing that they can all be described through the lens of
solving min-max problems using modern acceleration techniques, mainly through
optimistic online learning. We then show that the proposed framework also leads
to improved results for a series of problems beyond the standard Perceptron set-
ting. Specifically, a) for the margin maximization problem, we improve the state-
of-the-art result from O(log t/t2) to O(1/t2), where t is the number of iterations;
b) we provide the first result on identifying the implicit bias property of the classi-
cal Nesterov’s accelerated gradient descent (NAG) algorithm, and show NAG can
maximize the margin with an O(1/t2) rate; c) for the classical p-norm Perceptron

problem, we provide an algorithm with O(
√

(p− 1) log n/γ) convergence rate,

while existing algorithms suffer the O((p− 1)/γ2) convergence rate.

1 INTRODUCTION

In this paper, we revisit the problem of learning a linear classifier, which is one of the most im-
portant and fundamental tasks of machine learning (Bishop, 2007). In this problem, we are given
a set S of n training examples, and the goal is to find a linear classifier that correctly separates
S as fast as possible. The most well-known algorithm is Perceptron (Rosenblatt, 1958), which
can converge to a perfect (mistake-free) classifier after Ω(1/γ2) number of iterations, provided the
data is linearly separable with some margin γ > 0 (Novikoff, 1962). Over subsequent decades,
many variants of Perceptron have been developed (Aizerman, 1964; Littlestone, 1988; Wendemuth,
1995; Freund & Schapire, 1999; Cesa-Bianchi et al., 2005, to name a few). However, somewhat
surprisingly, there has been little progress in substantially improving the fundamental Perceptron
iteration bound presented by Novikoff (1962). It is only recently that a number of researchers have
discovered accelerated variants of the Perceptron with a faster Ω(

√
log n/γ) iteration complexity,

although with a slower per-iteration cost. These works model the problem in different ways, e.g.,
as a non-smooth optimization problem or an empirical risk minimization task, and they have es-
tablished faster rates using sophisticated optimization tools. Soheili & Pena (2012) put forward the
smooth Perceptron, framing the objective as a non-smooth strongly-concave maximization and then
applying Nestrov’s excessive gap technique (NEG, Nesterov, 2005). Yu et al. (2014) proposed the
accelerated Perceptron by furnishing a convex-concave objective that can be solved via the mirror-
prox method (Nemirovski, 2004). Ji et al. (2021) put forward a third interpretation, obtaining the
accelerated rate by minimizing the empirical risk under exponential loss with a momentum-based
normalized gradient descent algorithm.

Following this line of research, in this paper, we present a unified analysis framework that reveals
the exact relationship among these methods that share the same order of convergence rate. Moreover,
we show that the proposed framework also leads to improved results for various problems beyond
the standard Perceptron setting. Specifically, we consider a general zero-sum game that involves
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two players (Abernethy et al., 2018): a main player that chooses the classifier, and an auxiliary
player that picks a distribution over data. The two players compete with each other by performing
no-regret online learning algorithms (Hazan, 2016; Orabona, 2019), and the goal is to find the equi-
librium of some convex-concave function. We show that, under this dynamic, all of the existing
accelerated Perceptrons can find their equivalent forms. In particular, these perceptrons can be de-
scribed as a dynamic where two players solving the game via performing optimistic online learning
strategies (Rakhlin & Sridharan, 2013), which is one of the most important classes of algorithms
in online learning. Note that implementing online learning algorithms (even optimistic strategies)
to solve zero-sum games has already been extensively explored (e.g., Rakhlin & Sridharan, 2013;
Daskalakis et al., 2018; Wang & Abernethy, 2018; Daskalakis & Panageas, 2019). However, we
emphasize that our main novelty lies in showing that all of the existing accelerated Perceptrons, de-
veloped with advanced algorithms from different areas, can be perfectly described under this unified
framework. It greatly simplifies the analysis of accelerated Perceptrons, as their convergence rates
can now be easily obtained by plugging-in off-the-shelf regret bounds of optimistic online learn-
ing algorithms. Moreover, the unified framework reveals a close connection between the smooth
Perceptron and the accelerated Perceptron of Ji et al. (2021):

Theorem 1 (informal). Smooth Perceptron and the accelerated Perceptron of Ji et al. (2021) can be
described as a dynamic where the two players employ the optimistic-follow-the-regularized-leader
(OFTRL) algorithm to play. The main difference is that the smooth Perceptron outputs the weighted
average of the main player’s historical decisions, while the accelerated Perceptron of Ji et al. (2021)
outputs the weighted sum.

Beyond providing a deeper understanding of accelerated Perceptrons, our framework also provides
improved new results for several other important areas:

• Implicit bias analysis. The seminal work of Soudry et al. (2018) shows that, for linearly
separable data, minimizing the empirical risk with the vanilla gradient descent (GD) gives
a classifier which not only has zero training error (thus can be used for linear separation),
but also maximizes the margin. This phenomenon characterizes the implicit bias of GD, as
it implicitly prefers the (ℓ2-)maximal margin classifier among all classifiers with a positive
margin, and analysing the implicit bias has become an important tool for understanding why
classical optimization methods generalize well for supervised machine learning problems.
Soudry et al. (2018) show that GD can maximize the margin in anO(1/ log t) rate, and this

is later improved toO(1/
√
t) (Nacson et al., 2019) and thenO(1/t) (Ji & Telgarsky, 2021).

The state-of-the-art algorithm is proposed by Ji et al. (2021), who show that their proposed
momentum-based GD has an O(log t/t2) margin-maximization rate. In this paper, we
make two contributions toward this direction:

1. We show that, under our analysis framework, we can easily improve the margin maxi-
mization rate of the algorithm of Ji et al. (2021) from O(log t/t2) to O(1/t2);

2. Although previous work has analyzed the implicit bias of GD and momentum-based
GD, it is still unclear how the classical Nesterov’s accelerated gradient descent (NAG,
Nesterov, 1988) will affect the implicit bias. In this paper, through our framework, we
show that NAG with appropriately chosen parameters also enjoys an O(1/t2) margin-
maximization rate. To our knowledge, it is the first time the implicit bias property of
NAG is proved.

• p-norm Perceptron. Traditional work on Perceptrons typically assumes the feature vectors
lie in an ℓ2-ball. A more generalized setting is considered in Gentile (2000), who assumes
the feature vectors lie inside an ℓp-ball, with p ∈ [2,∞). Their proposed algorithm requires

O(p/γ2) number of iterations to find a zero-error classifier. In this paper, we develop a new
Perceptron algorithm for this problem under our framework based on optimistic strategies,
showing that it enjoys an accelerated O(

√
p log n/γ) rate.

2 RELATED WORK

This section briefly reviews the related work on Perceptron algorithms, implicit-bias analysis, and
game theory. The background knowledge on (optimistic) online learning is presented in the Prelim-
inaries (Section 3).
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Accelerated Perceptrons and p-norm Perceptron The study of Perceptron algorithms has an ex-
tensive history dating back to the mid-twentieth century (Rosenblatt, 1958; Novikoff, 1962). How-
ever, it is only recently that progress on improving the fundamental Ω(1/γ2) iteration bound of
the vanilla Perceptron in the standard setting has been made. Specifically, the smooth Perceptron
proposed by Soheili & Pena (2012) achieves an Ω(

√
log n/γ) rate by maximizing an auxiliary non-

smooth strongly-concave function with NEG (Nesterov, 2005). The same accelerated rate is later
obtained by two other work (Yu et al., 2014; Ji et al., 2021). The former considers a bi-linear sad-
dle point problem and employs the mirror-prox method (Nemirovski, 2004). The latter applies
momentum-based GD to minimize the empirical risk with exponential loss. In this paper, we show
that these algorithms can be unitedly analysed under our framework.

Apart from the above accelerated Perceptrons, there exists another class of algorithms which en-
joy an O(poly(n) log(1/γ)) convergence rate (Dunagan & Vempala, 2004; Peña & Soheili, 2016;
Dadush et al., 2020). These methods typically call (accelerated) Perceptrons as a subroutine, and
then apply the re-scaling technique to adjust the decision periodically. Although the dependence
on γ becomes better, the polynomial dependence on n of these methods makes them computation-
ally inefficient for large-scale data sets. In this paper, we focus on accelerated Perceptrons with
O(
√
log n/γ) rate, and leave explaining the re-scaling type algorithms as future work.

The p-norm Perceptron problem (Gentile & Littlestone, 1999) is a natural extension of the classical
Perceptron setting, which assumes the p-norm of the feature vectors are bounded, where 2 ≤ p <∞.
Gentile (2001) shows that a mirror-descent-style update guarantees an O(p/γ2) convergence rate.
By contrast, our proposed algorithm achieves a tighter O(

√
p log n/γ) convergence rate.

Implicit-bias analysis In many real-world applications, directly minimizing the empirical risk
(without any regularization) by first-order methods can provide a model which, not only enjoys
low training error, but also generalizes well (Soudry et al., 2018). This is usually considered as
the implicit bias introduced by the optimization methods (Soudry et al., 2018). Explaining this phe-
nomenon is a crucial step towards understanding the generalization ability of commonly-used op-
timization methods. For linear separable data, Soudry et al. (2018) proves that, when minimizing
the empirical risk with exponential loss, the vanilla GD can maximize the margin in an O(1/ log t)
rate. This result implies the implicit bias of GD towards the ℓ2-maximal margin classifier. Later,
Nacson et al. (2019) show that GD with a function-value-dependant decreasing step-size enjoys an

O(1/
√
t) margin-maximization rate. Ji & Telgarsky (2021) improve this result to O(1/t) by em-

ploying a faster-decreasing step size. Ji et al. (2021) design a momentum-based GD that maximizes
the margin with an O(log t/t2) rate. However, it remained unclear whether this rate could be further
improved and how to analyze the margin maximization ability of other classical optimization meth-
ods such as NAG. In this paper, we provide positive answers to both questions. Fianlly, we note that
(Ramdas & Pena, 2016) prove a varint of the Perceptron algorithm named normalized perceptron

can also converge to a maximum margin classifer in an O(1/
√
t) convergence rate.

Games and no-regret dynamics Our framework is motivated by the line of research that links
optimization methods for convex optimization to equilibrium computation with no-regret dynam-
ics. The seminal work of Rakhlin & Sridharan (2013) recovers the classical mirror-prox method
(Nemirovski, 2004) with Optimistic online mirror descent. Abernethy & Wang (2017) show that
the well-known Frank-Wolfe algorithm can be seen as applying (optimistic) online algorithms to
compute the equilibrium of a special zero-sum game called Fenchel game, which is constructed via
the Fenchel duality of the objective function. Later, researchers demonstrate that other classical
optimization methods for smooth optimization, such as Heavy-ball and NAG, can also be described
similarly (Abernethy et al., 2018; Wang & Abernethy, 2018; Wang et al., 2021). We highlight the
differences between this work and the previous ones: 1) Our analysis does not involve the Fenchel
game or Fenchel duality; instead, we directly work on the (regularized) min-max game designed
for linear classification. 2) Most of the previous work mainly focus on understanding optimization
algorithms for smooth optimization, and it was unclear how to understand algorithm such as NEG
under the game framework. 3) Although both Abernethy et al. (2018) and our work analyze NAG,
the goals are significantly different: Abernethy et al. (2018) focus on the optimization problem itself,
while we consider how minimizing the empirical risk would affect the margin. 4) To our knowledge,
the link between the implicit-bias problems and no-regret dynamics is also new.
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3 PRELIMINARIES

Notation. We use lower case bold face letters x,y to denote vectors, lower case letters a, b to
denote scalars, and upper case letters A,B to denote matrices. For a vector x ∈ R

d, we use xi to
denote the i-th component of x. For a matrix A ∈ R

n×d, let A(i,:) be its i-th row, A(:,j) the j-th
column, and A(i,j) the i-th element of the j-th column. We use ‖ · ‖ to denote a general norm, ‖ · ‖∗
its dual norm, and ‖ · ‖p the ℓp-norm. For a positive integer n, we denote the set {1, . . . , n} as [n],
and the n-dimensional simplex as ∆n. Let E : ∆n 7→ R be the negative entropy function, defined
as E(p) =

∑n
i=1 pi log pi, ∀p ∈ ∆n. For some strongly convex function R(w) : W 7→ R, define

the Bregman divergence between any two points w,w′ ∈ W as:

DR(w,w
′) = R(w)−R(w′)− (w −w′)⊤∇R(w′).

Online convex optimization (OCO) Here we review a general weighted OCO framework, pro-
posed by Abernethy et al. (2018). In each round t = 1, . . . , T of this paradigm, a learner first
chooses a decision zt from a convex set Z ⊆ R

d, then observes a loss function ft(·) : Z → R as
well as a weight αt > 0, and finally updates the decision. The performance of the learner is mea-

sured by the weighted regret, which is defined as RT =
∑T

t=1 αtft(zt)−minz∈Z
∑T

t=1 αtft(z).

Perhaps the most natural method for OCO is follow-the-leader (FTL), which simply picks the em-

pirically best decision at each round: zt = argminz∈Z
∑t−1

i=1 αifi(z). However, FTL is unsta-
ble, and one can easily find counter-examples where FTL suffers linear regret (Shalev-Shwartz,
2011). A classical way to address this limitation is by adding a regularizer to the objective:

zt = argminz∈Z η
∑t−1

i=1 αifi(z) + DR(z, z0), where η > 0 is the step size, and z0 is the ini-
tial decision. This method is called follow-the-regularized-leader (Hazan, 2016), and it can achieve
a sub-linear regret bound with appropriately chosen η. Moreover, tighter bounds are also possible
in favored cases with more advanced techniques. In this paper, we consider FTRL equipped with
optimistic strategies (i.e., Optimistic FTRL, Rakhlin & Sridharan, 2013; Orabona, 2019), given by

OFTRL[R, z0, ψt, η,Z] : zt = argminz∈Z η
[∑t−1

i=1 αifi(z) + αtψt(z)
]
+DR(z, z0),

where an additional function ψt is added, which is an approximation of the next loss ft. A tighter
regret bound can be achieved when ψt is close enough to ft. Next, we introduce two special cases
of OFTRL:

OFTL[ψt,Z] : zt = argmin
z∈Z

t−1∑

j=1

αjfj(z) + αtψt(z)

FTRL+[R, z0, η,Z] : zt = argmin
z∈Z

η ·
t∑

j=1

αjfj(z) +DR(z, z0).

The first one is Optimistic FTL, where the regularizer is set to be zero. The second algorithm is
FTRL+, which uses ft as the optimistic function ψt. Finally, we note that, apart from FTL-type
algorithms, there also exists optimistic methods that are developed based on mirror descent, such
as optimistic online mirror decent (OMD, Rakhlin & Sridharan, 2013). Due to page limitation, the
details of OMD and the regret bounds of these OCO algorithms are postponed to the Appendix A.

No-regret dynamics for zero-sum game Finally, we introduce the framework for using no-regret
online algorithms to solve a zero-sum game. Consider the following general two-player game:

max
w∈W

min
p∈Q

g(w,p), (1)

where g(w,p) is a concave-convex function, and W and Q are convex sets. The no-regret frame-
work for solving (1) is presented in Protocol 1. In each round t of this procedure, the w-player first
picks a decision wt ∈ W . Then, the p-player observes its loss ℓt(·) = g(wt, ·) as well as a weight
αt. After that, the p-player picks the decision pt, and passes it to the w-player. As a consequence,
the w-player observes its loss ht(·) = −g(·,pt) and weight αt. Note that both ℓt and ht are convex.
Denote the weighted regret bounds of the two players as Rw and Rp, respectively. Then, we have
the following classical conclusion. The proof is shown in Appendix B.

Theorem 2. Define m(w) = minp∈Q g(w,p), and w the weighted average of {wt}Tt=1. Then we

have that ∀w ∈ W , m(w)−m(wT ) ≤ (
∑T

t=1 αt)
−1 (Rp +Rw) .
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Protocol 1 No-regret dynamics with weighted OCO

1: Input: {αt}Tt=1,w0,p0.
2: Input: OL

w
, OL

p
. // The online algorithms for choosing w and p.

3: for t = 1, . . . , T do
4: wt ← OL

w
;

5: OL
p ← αt, ℓt(·); // Define ℓt(·) = g(wt, ·)

6: pt ← OL
p

;
7: OL

w ← αt, ht(·); // Define ht(·) = −g(·,pt)
8: end for
9: Output: wT = 1∑

T
t=1 αt

∑T
t=1 αtwt.

4 UNDERSTANDING EXISTING ACCELERATED PERCEPTRONS

In this section, we first introduce our main topic, i.e., the binary linear classification problem, and
then present the three accelerated Perceptrons and their equivalent forms under Protocol 1. For
clarity, we use vt to denote the classifier updates in the original algorithms, and wt the corresponding
updates in the equivalent forms under Protocol 1.

4.1 BINARY LINEAR CLASSIFICATION AND PERCEPTRON

We focus on the binary linear classification problem, which dates back to the pioneering work of

Rosenblatt (1958). Let S = {x(i), y(i)}ni=1 be a linear-separable set of n training examples, where

x(i) ∈ R
d is the feature vector of the i-th example, and y(i) ∈ {−1, 1} is the corresponding label.

The goal is to efficiently find a linear classifier w ∈ R
d that correctly separates all data points. More

formally, let A = [y(1)x(1), . . . , y(n)x(n)]⊤ be the matrix that contains all of the data. Then we
would like to find a w ∈ R

d such that

min
i∈[n]

A(i,:)w > 0. (2)

This goal can be reformulated as a min-max optimization problem:

max
w∈Rd

min
i∈[n]

A(i,:)w = max
w∈Rd

min
p∈∆n

p⊤Aw, (3)

where, at the RHS of (3), mini∈[n]A(i,:)w is rewritten as minp∈∆n p⊤Aw. The two expressions are
equivalent since the optimal distribution p ∈ ∆n will always put all weight on one training example
(i.e., one row) in A. For any w ∈ R

d, let γ(w) = minp∈∆n p⊤Aw be the margin of w, and we
introduce the following standard assumption.

Assumption 1. We assume that feature vectors are bounded, i.e., ‖x(i)‖2 ≤ 1 for all i ∈ [n], and
that there exists a w∗ ∈ R

d, such that ‖w∗‖2 = 1 and γ(w∗) = γ > 0.

4.2 SMOOTH PERCEPTRON

In order to solve (3), the vanilla Perceptron repeatedly moves the direction of the classifier to that
of examples on which it performs badly. However, this greedy policy only yields a sub-optimal
convergence rate. To address this problem, Soheili & Pena (2012) propose the Smooth Perceptron,
and the pseudo-code is summarized in the first box in Algorithm 1. The key idea is to find a classifier
v ∈ R

d that maximizes the following ℓ2-regularized function:

ψ(v) = − 1
2‖v‖22 +minq∈∆n q⊤Av, (4)

which is non-smooth strongly-concave with respect to v. Under Assumption 1, Soheili & Pena
(2012) show that the maximum value of ψ(v) is maxv∈Rd ψ(v) = γ2/2, and a classifier v ∈
R

d satisfies (2) when ψ(v) ≥ 0. In order to solve (4), Soheili & Pena (2012) apply the classical
Nesterov’s excessive gap technique (Nesterov, 2005) for strongly concave functions. This algorithm
introduces a smoothed approximation of (4), which is parameterized by some constant µ > 0, and
defined as

ψµ(v) = − 1
2‖v‖22 +minq∈∆n

[
q⊤Av + µDE

(
q, 1

n

)]
, (5)
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Algorithm 1 Smooth Perceptron (Soheili & Pena, 2012)

Initialization : θ0 = 2
3 , µ0 = 4, v0 = A⊤

1
n

Initialization : q0 = qµ0
(v0), where qµ(v) = argminq∈∆n q⊤Av + µDE

(
q, 1

n

)
.

for t = 1, . . . , T − 1 do
vt = (1− θt−1)(vt−1 + θt−1Aqt−1) + θ2t−1Aqµt−1

(vt−1)
µt = (1− θt−1)µt−1

qt = (1− θt−1)qt−1 + θt−1qµt
(vt)

θt =
2

t+3
end for
Output: vT−1

OL
w = OFTL

[
ht−1(·),Rd

]
⇔ wt = argmin

w∈Rd

t−1∑

j=1

αjhj(w) + αtht−1(w)

OL
p = FTRL+

[
E(·), 1

n
,
1

4
,∆n

]
⇔ pt = argmin

p∈∆n

1
4

∑t
s=1 αsℓs(p) +DE

(
p, 1

n

)

Output: wT

which bounds the function in (4) from below, i.e., ∀v ∈ R
d, µ > 0, ψµ(v) ≤ ψ(v) + µ log n.

Then, the algorithm performs a sophisticated update rule such that the excessive gap condition holds
∀t ≥ 1: γ2/2 ≤ ‖Avt‖2/2 ≤ ψµ(vt). We refer to Soheili & Pena (2012) for more details.

Soheili & Pena (2012) show that the smooth Perceptron can output a positive-margin classifier after
Ω(
√
log n/γ) iterations. However, the analysis is quite involved, which heavily relies on the com-

plicated relationship between ψ(vt), ψµ(vt) and ‖Avt||2. In the following, we provide a no-regret
explanation of this algorithm and then show that the convergence rate can be easily obtained under
our framework. Specifically, we define the objective function in Protocol 1 as

g(w,p) = p⊤Aw − 1
2‖w‖22, (6)

and provide the equivalent expression in the second box of Algorithm 1. More specifically, we have
the following proposition. The proof is given in Appendix C.1.

Proposition 1. Let αt = t. Then the two interpretations of the smooth Perceptron in Algorithm 1

are the same, in the sense that vT−1 = wT , and qT−1 =
∑T

t=1 αtpt∑
T
t=1 αt

.

Proposition 1 shows that, under Protocol 1, the smooth Perceptron can be seen as optimizing (6)
by implementing two online learning algorithms: in each round t, the w-player applies OFTL with
ψt = ht−1, a decision which the p-player subsequently observes and responds with FTRL+. More-
over, we obtain theoretical guarantees for the smooth Perceptron based on Theorem 2, matching the
convergence rate provided by Soheili & Pena (2012).

Theorem 3. Let αt = t. Under Protocol 1, the regret of the two players of Algorithm 1 is bounded

by Rw ≤ 2
∑T

t=1 ‖pt − pt−1‖21 and Rp ≤ 4 log n − 2
∑T

t=1 ‖pt − pt−1‖21. Moreover, wT has

non-negative margin when T = Ω(
√
logn
γ

).

4.3 ACCELERATED PERCEPTRON VIA ERM

Since binary linear classification is a (and perhaps the most fundamental) supervised machine learn-
ing problem, it can be naturally solved via empirical risk minimization (ERM). This idea is adopted
by Ji et al. (2021), who consider the following ERM problem:

min
v∈Rd

R(v) = 1
n

∑n
i=1 ℓ(−y(i)v⊤x(i)), (7)

where ℓ(z) = exp(z) is the exponential loss. To minimize (7), Ji et al. (2021) propose the a normal-
ized momentum-based gradient descent (NMGD) algorithm, and show that NMGD can converge to
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Algorithm 2 Accelerated Perceptron of Ji et al. (2021)

Input: q0 = 1
n
,v0 = 0,g0 = 0.

for t = 1, . . . , T do
Set θt−1 = t

2(t+1) , βt =
t

t+1

vt = vt−1 − θt−1(gt−1 −A⊤qt−1)
for i = 1, . . . , n do

qt,i =
exp(−y(i)

v
⊤

t x
(i))∑

n
j=1 exp(−y(j)v⊤

t x(j))

end for
gt = βt(gt−1 −A⊤qt)

end for
Output: vT

OL
w = OFTL

[
ht−1(·),Rd

]
⇔ wt = argmin

w∈Rd

t−1∑

j=1

αjhj(w) + αtht−1(w)

OL
p = FTRL+

[
E(·), 1

n
, 14 ,∆

n
]
⇔ pt = argmin

p∈∆n

1

4

t∑

s=1

αsℓs(p) +DE

(
p,

1

n

)

Output: wT

a classifier with a positive margin after O(1/γ2) iterations. Based on the property of the normalized
gradient, they also provide primal-dual form of the algorithm (presented in the first-box of Algo-
rithm 2), which can be considered as applying Nesterov’s accelerated gradient descent in the dual
space (Ji et al., 2021) .

For the accelerated Perceptron of Ji et al. (2021), we set g(w,p) = p⊤Aw− 1
2‖w‖22 and provide its

equivalent form at the second box in Algorithm 2. Specifically, we have the following proposition.

Proposition 2. Let αt = t. Then the two interpretations of the accelerated Perceptron in Algorithm

2 are the same, in the sense that qT = pT and vT = 1
4

∑T
t=1 αtwt =

1
4

(∑T
t=1 αt

)
·wT .

Remark Note that in Ji et al. (2021), the parameter θt−1 is set to be 1. We observe that this
causes a mismatch between the weights and w′

ts in the output (when θt−1 = 1, vT will become∑T
t=1 αt+1wt instead of

∑T
t=1 αtwt). Our no-regret analysis suggests that θt−1 should be con-

figured as t
2(t+1) , and later we will show that this procedure helps eliminate the log t factor in the

convergence rate.

The proposition above reveals that the smooth Perceptron and the accelerated Perceptron of Ji et al.
(2021) are closely related. The main difference is that the accelerated Perceptron of Ji et al. (2021)
outputs the weighted sum of all wt’s, instead of the weighted average. The rationale behind this
phenomenon is that, instead of the margin, Ji et al. (2021) use the normalized margin to measure
the performance of the algorithm, defined as γ(v) = minp∈∆n p⊤Av/‖v‖2. They not only prove

γ(vT ) > 0 (which directly implies γ(vT ) > 0), but also show γ(vT ) = Ω(γ − log T
γT 2 ). This

guarantee is more powerful than the previous results, as it implies that the normalized margin can be
maximized in an O(log t/t2) rate. When t approaches∞, the direction of vT will converge to that
of the maximal margin classifier. We show that a better margin-maximization rate can be directly
obtained under our framework with the parameter setting in Algorithm 2.

Theorem 4. Let αt = t. Under Protocol 1, the regret of the two players of Algorithm 2 is bounded

by Rw ≤ 2
∑T

t=1 ‖pt − pt−1‖21 and Rp ≤ 4 log n − 2
∑T

t=1 ‖pt − pt−1‖21. Moreover, wT has a

non-negative margin when T = Ω(
√
log n/γ) and γ(vT ) = Ω(γ − 8 logn

γT (T+1) ).
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Algorithm 3 NAG

Input: v0 = 0, s0 = 0.
for t = 1, . . . , T do

ut = st−1 +
1

2(t−1)vt−1

vt = vt−1 − ηt∇R(ut)
st = st−1 +

1
2(t+1)vt

end for
Output: sT

OL
p = OFTRL

[
E(·), 1

n
, 14 , ℓt−1(·),∆n

]
⇔ pt = argmin

p∈∆n

1

4

[
t−1∑

s=1

αsℓs(p) + αtℓt−1(p)

]

+DE

(
p, 1

n

)

OL
w = FTRL+[0, 0, 1,Rd]⇔ wt = argmin

w∈Rd

t∑

j=1

αjhj(w)

Output: w̃T =
∑T

t=1 αt

4 wT .

4.4 ACCELERATED PERCEPTRON OF YU ET AL. (2014)

Finally, Yu et al. (2014) considers applying the mirror-prox algorithm to solve the max-min opti-
mization problem:

max
‖w‖2≤1

min
p∈∆n

p⊤Aw, (8)

As discovered by Rakhlin & Sridharan (2013), mirror-prox can be recovered by their optimistic
online mirror descent (OMD) with an appropriately chosen optimistic term. Here, we show that, by
simply manipulating the notation, the algorithm of Yu et al. (2014) can be recovered as two-players
applying OMD to solve (8). Due to page limitation, the algorithmic details and their analysis are
postponed to Appendix C.5, which we summarize as follows (formalized in Theorems 8 and 9):

Theorem 5 (informal). Let g(w,p) = p⊤Aw. The Perceptron of Yu et al. (2014) can be described
under Protocol 1, where both players apply OMD endowed with the appropriate parameters. More-

over, under Assumption 1, wT has a non-negative margin when T = Ω
(√

logn
γ

)
.

5 BEYOND PERCEPTRONS

In This section, we show that our framework benefits a wide range of other problems.

5.1 MARGIN MAXIMIZATION BY NESTEROV’S ACCELERATED GRADIENT DESCENT

One major task for the implicit bias study is to explain why commonly-used first-order optimization
methods generalize well. For linearly separable data, previous work proves that GD and momentum-
based GD prefers the ℓ2-maximal margin classifier by showing that they can maximize the margin.
In this part, we show that the well-known Nesterov’s accelerated gradient descent (NAG), with ap-
propriately chosen parameters, can maximize the margin in anO(1/γ2) rate. Specifically, following
previous work, we consider maximize the margin by solving the ERM problem in (7) and apply Nes-
terov’s accelerated gradient descent (NAG) to minimize the objective function. The details of the
algorithm are summarized in the first box of Algorithm 3, and its equivalent form under Protocol 1
is presented in the second box of Algorithm 3. For the NAG algorithm, we set the objective function
as g(w,p) = p⊤Aw − 1

2‖w‖22, and have the following conclusion.

Theorem 6. Let ηt =
t

R(ut)
and αt = t. Then, the two expressions in Algorithm 3 are equivalent,

in the sense that sT = w̃T . Moreover,
min

p∈∆n
p

⊤AsT

‖sT ‖2
≥ γ − 8 logn+2

T (T+1)γ .

8
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Algorithm 4 Accelerated algorithm for the p-norm perceptron

OL
w = OFTRL

[
1

2(q−1)‖ · ‖2q, 0, ηw, ht−1(·),Rd
]
⇔

wt = argmin
w∈Rd

ηw
t−1∑

j=1

αjhj(w) + αtht−1(w) +D 1
2(q−1)

‖·‖2
q
(w,0)

OL
p = FTRL+

[
E,

1

n
, ηp,∆n

]
⇔ pt = argmin

p∈∆n

ηp
t∑

s=1

αsℓs(p) +DE

(
p,

1

n

)

Output: wT = 1
T

∑T
s=1 ws.

Remark Theorem 6 indicates that NAG can also maximize the margin in an O(1/T 2) rate. Note
that, in Algorithm 3, the p-player plays first and the w-player second, while, in Algorithm 2, it
is the other way around. This difference makes sense as Algorithm 3 can be considered as apply-
ing Nesterov’s acceleration in the dual space (Ji et al., 2021), while Algorithm 3 uses Nesterov’s
acceleration in the primal space.

5.2 ACCELERATED p-NORM PERCEPTRON

In this section, we focus on the p-norm Perceptron problem, introduced by Gentile (2000). Com-
pared to the classical perceptron problem, p-norm Perceptron introduces the following assumption,
which is more general than Assumption 1.

Assumption 2. For the p-norm Perceptron problem, we assume: ∀i ∈ [n], ‖x(i)‖p ≤ 1, where

p ∈ [2,∞). Moreover, assume there exists a w∗ ∈ R
d, such that ‖w∗‖q ≤ 1 and min

p∈∆n
p⊤Aw∗ ≥ γ.

Here, ‖ · ‖q is the dual norm of ‖ · ‖p; i.e., 1
p
+ 1

q
= 1 and q ∈ (1, 2].

Under Assumption 2, Gentile (2000) proposes a mirror-descent style algorithm that achieves an
Ω((1 − p)/γ2) convergence rate. In the following, we provide a new algorithm with a better rate.
Specifically, under Protocol 1, we define the objective function as g(w,p) = p⊤Aw, and introduce
Algorithm 4, wherein the w-player uses OFTRL with regularizer 1

2(q−1)‖ · ‖2q , which is 1-strongly

convex w.r.t. the q-norm (Orabona, 2019). On the other hand, the q-player employs the FTRL+

algorithm. We have the following result.

Theorem 7. Let αt = 1, ηp = 1/ηw, and ηw =
√

1
2(q−1) logn

. Then the output wT of Algorithm 4

has a non-negative margin when T = Ω
(√

2(p− 1) log n/γ
)

.

6 CONCLUSION

In this paper, we provide a unified analysis for the existing accelerated Perceptrons, and obtain im-
proved results for a series of problems. In the future, we will explore how to extend our framework to
other closely related areas, such as semi-definite programming (Garber & Hazan, 2011) and gener-
alized margin maximization (Sun et al., 2022). Another interesting direction is to consider whether
other more advanced online learning algorithms (Orabona & Pál, 2016; Cutkosky & Orabona, 2018;
Jun et al., 2017; Zhang et al., 2018; Wang et al., 2020; Zhao et al., 2020) is useful for perceptron and
the implicit bias analysis based on our framework.
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Protocol 2 A set of useful algorithms for the weighted OCO

for t = 1, . . . , T do

OFTRL[R, z0, η, ψt,Z] : zt = argmin
z∈Z

η




t−1∑

j=1

αjfj(z) + αtψt(z)


+DR(z, z0)

OMD[R, ẑ0, η, ψt,Z] : zt = argmin
z∈Z

η 〈αt∇ψt(zt−1), z〉+DR(z, ẑt−1)

ẑt = argmin
z∈Z

η 〈αt∇ft(zt), z〉+DR(z, ẑt−1)

OFTL[ψt,Z] : zt = argmin
z∈Z

t−1∑

j=1

αjfj(z) + αtψt(z)

FTRL+[R, z0, η,Z] : zt = argmin
z∈Z

η ·
t∑

j=1

αjfj(z) +DR(z, z0)

end for

A REGRET BOUNDS ON OCO ALGORITHMS

Lemma 1 (Lemma 13 of Wang et al. (2021)). Let z̃t = argminz∈Z
∑t−1

s=1 αsfs(zs). Assume ft and
ψt are λ-strongly convex w.r.t. some norm ‖ · ‖. Then, for the OFTL[ψt,Z] algorithm, the regret is
bounded by

∀z ∈ Z,
T∑

t=1

αtft(zt)−
T∑

t=1

αtft(z) ≤
T∑

t=1

αt(ft(zt)− ft(z̃t+1))− αt(ψt(zt)− ψt(z̃t+1))

− 1

2

T∑

t=1

λαt‖zt − z̃t+1‖2.

(9)

Lemma 2 (Lemma 13 of Wang et al. (2021)). For FTRL+[R, z0, η,Z] algorithm, suppose R is β-
strongly convex w.r.t some norm ‖ ·‖ and each ft(·) is λ-strongly convex w.r.t. the same norm, where
λ may be 0. Then

∀z ∈ Z,
T∑

t=1

αtft(zt)−
T∑

t=1

αtft(z) ≤
R(z)−R(z0)

η
−

T∑

t=1

(
λ
∑t−1

s=1 αs

2
+

β

2η

)
‖zt − zt−1‖2.

(10)

Lemma 3 (Theorem 7.35 of Orabona (2019)). For the OFTRL[R, z0, η, ψt,Z] algorithm, assume
R is 1-strongly convex w.r.t. some norm ‖ · ‖. Then the regret is bounded by

∀z ∈ Z,
T∑

t=1

αtft(zt)−
T∑

t=1

αtft(z) ≤
R(z)−R(z0)

η
+

T∑

t=1

[‖αt∇ft(zt)− αt∇ψt(zt)‖2∗
2/η

.

]

(11)

Lemma 4 (Lemma 1 of Rakhlin & Sridharan (2013)). For the OMD[R, ẑ0, η, ψt,Z] algorithm, sup-
pose R is 1-strongly convex w.r.t. some norm ‖ · ‖. Then the regret is bounded by

∀z ∈ Z,
T∑

t=1

αtft(zt)−
T∑

t=1

αtft(z) ≤
DR(z, ẑ0)

η
+

T∑

t=1

‖αt∇ft(zt)− αt∇ψt(ẑt−1)‖∗‖zt − ẑt‖

− 1

2η

T∑

t=1

(
‖zt − ẑt‖2 + ‖zt − ẑt−1‖2

)
.

(12)
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B PROOF OF THEOREM 2

The proof is motivated by Abernethy et al. (2018). Let R
w

and R
p

denote the average regret of the
players. On one hand, we have

1
∑T

t=1 αt

T∑

t=1

αtg(wt,pt) =
1

∑T
t=1 αt

T∑

t=1

−αtht(wt)

= − min
w′∈W

1
∑T

t=1 αt

T∑

t=1

αtht(w
′)−Rw

= max
w′∈W

1
∑T

t=1 αt

T∑

t=1

αtg(w
′,pt)−R

w

≥ 1
∑T

t=1 αt

T∑

t=1

αtg(w,pt)−R
w

≥ g(w,pT )−R
w

≥ min
p∈Q

g(w,p)−Rw
.

where w ∈ W is an arbitrary point. On the other hand, we have

1
∑T

t=1 αt

T∑

t=1

αtg(wt,pt) =
1

∑T
t=1 αt

T∑

t=1

αtℓt(pt)

= min
p∈Q

1
∑T

t=1 αt

T∑

t=1

αtℓt(p) +R
p

= min
p∈Q

1
∑T

t=1 αt

T∑

t=1

αtg(wt,p) +R
p

≤ min
p∈Q

g(wT ,p) +R
p
.

C PROOF OF SECTION 4

In this section, we provide the detailed proofs of Section 4.

C.1 PROOF OF PROPOSITION 1

Recall the update rule of w and p in Algorithm 1:

wt = argmin
w∈Rd

t−1∑

j=1

αjhj(w) + αtht−1(w)

= argmin
w∈Rd

t−1∑

j=1

−αjp
⊤
j Aw − αtp

⊤
t−1Aw +

∑t
s=1 αs

2
‖w‖22

= argmin
w∈Rd

t−1∑

j=1

−αjp
⊤
j Aw − αtp

⊤
t−1Aw +

t(t+ 1)

4
‖w‖22,

and

pt = argmin
p∈∆n

1

4

t∑

s=1

αsℓs(p) +DE

(
p,

1

n

)
= argmin

p∈∆n

t∑

s=1

αsp
⊤Aws + 4DE

(
p,

1

n

)
, (13)
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Note that here we drop the ‖ws‖2/2 of ℓs in (13), as it is constant with respect to p. We start from

the initialization: first, from the fact that p0 = 1
n

, we obtain

w1 = w1 = argmin
w∈Rd

h0(w) = argmin
w∈Rd

−p⊤
0 Aw +

1

2
‖w‖22 =

A⊤1

n
= v0.

Additionally,

p1 = argmin
p∈∆n

ℓ1(p) + 4DE

(
p,

1

n

)

= argmin
p∈∆n

p⊤Aw1 + 4DE

(
p,

1

n

)

= argmin
p∈∆n

p⊤Av0 + 4DE

(
p,

1

n

)
= qµ0

(v0) = q0.

Next, we focus on vt and its connection to wt. We have

vt =(1− θt−1)(vt−1 + θt−1A
⊤qt−1) + θ2t−1A

⊤qµt−1
(vt−1)

=(1− θt−1)vt−1 + θt−1A
⊤ ((1− θt−1)qt−1 + θt−1qµt−1

(vt−1)
)
.

(14)

Define r0 = v0, and rt = (1− θt−1)A
⊤qt−1 + θt−1A

⊤qµt−1
(vt−1) for t ≥ 1. We will show that

vt =

∑t
s=0 αs+1rs∑t
s=0 αs+1

for all t ≥ 0 by induction. First, by definition, we have v0 = r0 = α1r0
α1

. Next, assume

vt−1 =

∑t−1
s=0 αs+1rs∑t−1
s=0 αs+1

.

Then

vt = (1− θt−1)vt−1 + θt−1rt

=
t

t+ 2
vt−1 +

2

t+ 2
rt

=
t

t+ 2

1
∑t−1

s=0 αs+1

t−1∑

s=0

αs+1rs +
2

(t+ 2)(t+ 1)
(t+ 1)rt

=
t

t+ 2

2

(t+ 1)t

t−1∑

s=0

αs+1rs +
2

(t+ 2)(t+ 1)
αt+1rt

=
2

(t+ 1)(t+ 2)

t∑

s=0

αs+1rs =

∑t
s=0 αs+1rs∑t
s=0 αs+1

.

(15)

Following a similar procedure, we obtain

qt =

∑t
s=0 αs+1qµs

(vs)∑t
s=0 αs+1

.

Thus, for t ≥ 1, we have

rt = (1− θt−1)A
⊤qt−1 + θt−1A

⊤qµt−1
(vt−1)

=
t

t+ 2

2

t(t+ 1)
A⊤

(
t−1∑

s=0

αs+1qµs
(vs)

)
+

2

(t+ 2)(t+ 1)
(t+ 1)A⊤qµt−1

(vt−1)

=
2

(t+ 1)(t+ 2)
A⊤

(
t−1∑

s=0

αs+1qµs
(vs) + αt+1qµt−1

(vt−1)

)

=argmin
r∈Rd

−
(

t−1∑

s=0

αs+1qµs
(vs) + αt+1qµt−1

(vt−1)

)⊤

Ar+
(t+ 1)(t+ 2)

4
‖r‖22.

(16)
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Finally, note that

µt = 4

t∏

i=1

i

i+ 2
= 4

1

1 + 2
· . . . t

t+ 2
= 4

2

(t+ 1)(t+ 2)
=

4
∑t

s=0 αs+1

,

so

qµt
(vt) = argmin

q∈∆n

q⊤A

(∑t
s=0 αs+1rs∑t
s=0 αs+1

)
+

4
∑t

s=0 αs+1

DE

(
q,

1

n

)

= argmin
q∈∆n

q⊤A

(
t∑

s=0

αs+1rs

)
+ 4DE

(
q,

1

n

)
.

(17)

To summarize, for t = 1, we have r0 = v0 = w1, and qµ0
(v0) = p1. For t ≥ 2, we know that

rt−1 = argmax
r∈Rd

−
(

t−2∑

s=0

αs+1qµs
(vs) + αtqµt−2

(vt−2)

)⊤

Ar+
t(t+ 1)

4
‖r‖22, (18)

and

qµt−1
(vt−1) = argmin

q∈∆n

q⊤A

(
t−1∑

s=0

αs+1rs

)
+ 4DE

(
q,

1

n

)
.

The proof is finished by replacing qµt−1
(vt−1) as pt, rt−1 as wt, and noticing that

vT−1 =
1

∑T−1
s=0 αs+1

T−1∑

s=0

αs+1rs =
1

∑T
s=1 αs

T∑

s=1

αsws = wT .

and

qT−1 =
1

∑T−1
s=0 αs+1

T−1∑

s=0

αs+1qµs
(vs) =

1
∑T

s=1 αs

T∑

s=1

αsps

C.2 PROOF OF THEOREM 3

Let w̃t = argminw∈Rd

∑t−1
s=1 αshs(w). Note that ht(·) is 1-strongly convex w.r.t ‖ · ‖2. Thus, for

the w-player, based on Lemma 1, we have

T∑

t=1

αtht(wt)− αtht(w) ≤
T∑

t=1

αt (ht(wt)− ht(w̃t+1))− αt (ht−1(wt)− ht−1(w̃t+1))

=

T∑

t=1

αt

(
−p⊤

t Awt +
1

2
‖wt‖22 + p⊤

t Aw̃t+1 −
1

2
‖w̃t+1‖22

)

− αt

(
−p⊤

t−1Awt +
1

2
‖wt‖22 + p⊤

t−1Aw̃t+1 −
1

2
‖w̃t+1‖22

)

=
T∑

t=1

αt (pt − pt−1)
⊤
A(w̃t+1 −wt).

(19)

Next, according to the definition of wt and w̃t+1, we have

wt =
1

∑t
s=1 αs

A⊤
(

t−1∑

s=1

αsps + αtpt−1

)
,

and

w̃t+1 =
1

∑t
s=1 αs

A⊤
(

t−1∑

s=1

αsps + αtpt

)
.
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Combining the two equations above with (19), we have that for any w ∈ R
d,

T∑

t=1

αtht(wt)− αtht(w) ≤
T∑

t=1

α2
t∑t

s=1 αs

‖A⊤(pt − pt−1)‖22

=

T∑

t=1

α2
t∑t

s=1 αs

∥∥∥∥∥

n∑

i=1

y(i)[pt − pt−1]ix
(i)

∥∥∥∥∥

2

2

(2)

≤
T∑

t=1

α2
t∑t

s=1 αs

(
n∑

i=1

|pt − pt−1|i‖x(i)‖2
)2

(3)

≤
T∑

t=1

α2
t∑t

s=1 αs

‖pt − pt−1‖21

=
T∑

t=1

2t2

t(t+ 1)
‖pt − pt−1‖21

(4)

≤ 2
T∑

t=1

‖pt − pt−1‖21,

(20)

where inequality (2) is based on the triangle inequality, inequality (3) is derived from Assumption
1, and inequality (4) is because t

t+1 ≤ 1.

On the other hand, for the p-player, note that the the regularizer is 1-strongly convex w.r.t. the ‖ · ‖1.
Thus, according to Lemma 2 (with λ = 0, β = 1), we have

T∑

t=1

αtℓt(pt)−
T∑

t=1

αtℓt(p) ≤ 4log n− 2

T∑

t=1

‖pt − pt−1‖21. (21)

for any p ∈ ∆n. Finally, we focus on the iteration complexity. First, define ŵ∗ = γw∗, where w∗

is the maximum margin classifier defined in Assumption 1. Then we have

m(ŵ∗) = min
p∈∆n

{p⊤Aŵ∗} − 1

2
‖ŵ∗‖22 = γ2 − γ2

2
=
γ2

2
.

Thus, combining (20), (21), and Theorem 2, we have

m(ŵ∗)−m(wT ) ≤ R
p
+R

w ≤ 8 log n

T (T + 1)
≤ 8 log n

T 2
, (22)

and thus

min
p∈∆n

p⊤AwT ≥ m(wT )

≥ m(ŵ∗)− 8 log n

T 2

=
γ2

2
− 8 log n

T 2
,

(23)

where the first inequality follows because − 1
2‖wT ‖22 ≤ 0. Hence, it can be seen that wT will have

a non-negative margin when T ≥ 4
√
logn
γ

.

C.3 PROOF OF PROPOSITION 2

We start from the original expression in Ji et al. (2021). For gt, we have

gt = βt
(
(−A⊤qt) + gt−1

)

=
t

t+ 1

(
(−A)⊤qt +

t− 1

t
gt−2 +

t− 1

t
(−A)⊤qt−1

)

= · · ·

=
1

t+ 1
(−A)⊤

(
t∑

s=1

sqs

)
.

(24)
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Thus, we also have

gt−1 =
1

t
(−A)⊤

(
t−1∑

s=1

sqs

)
.

Next, we focus on vt. Note that vt = vt−1 − θt−1(gt−1 −A⊤qt−1), where

−
(
gt−1 −A⊤qt−1

)
=

1

t
A⊤

(
t−1∑

s=1

sqs + tqt−1

)
=

2(t+ 1)

2t(t+ 1)
A⊤

(
t−1∑

s=1

sqs + tqt−1

)

=
t+ 1

2
rt,

(25)

where we define

rt =
2

t(t+ 1)
A⊤

(
t−1∑

s=1

sqs + tqt−1

)
=

1
∑t

s=1 αs

A⊤
(

t−1∑

s=1

sqs + tqt−1

)

= argmin
r∈Rd

−
(

t−1∑

s=1

sqs + tqt−1

)⊤

Ar+

∑t
s=1 αs

2
‖r‖22

= argmin
r∈Rd

t−1∑

s=1

αs

(
−q⊤

s Ar+
1

2
‖r‖22

)
+ αt

(
−q⊤

t−1Ar+
1

2
‖r‖22

)

(26)

As for the qt variables, observe that

qt,i =
exp(−y(i)v⊤

t x
(i))∑n

j=1 exp(−y(j)v⊤
t x

(j))

=
exp(−y(i)v⊤

t−1x
(j)) exp( t

2(t+1) (gt−1 −A⊤qt−1)
⊤y(i)x(i))

∑n
j=1 exp(−y(j)v⊤

t−1x
(j)) exp( t

2(t+1) (gt−1 −A⊤qt−1)⊤y(j)x(j))

=

exp(−y(i)
v
⊤

t−1x
(j))∑

n
k=1 exp(−y(k)v⊤

t−1x
(k))

exp( t
2(t+1) (gt−1 −A⊤qt−1)

⊤y(i)x(i))

∑n
j=1

exp(−y(j)v⊤
t−1x

(j))∑
n
k=1 exp(−y(k)v⊤

t−1x
(k))

exp( t
2(t+1) (gt−1 −A⊤qt−1)⊤y(j)x(j))

=
qt−1,i exp(

t
2(t+1) (gt−1 −A⊤qt−1)

⊤y(i)x(i))
∑n

j=1 qt−1,j exp(
t

2(t+1) (gt−1 −A⊤qt−1)⊤y(j)x(j))

=
qt−1,i exp(−αt

4 r⊤t y
(i)x(i))∑n

j=1 qt−1,j exp(−αt

4 r⊤t y
(j)x(j))

=
q0,i exp(−

∑t
s=1

αs

4 r⊤s y
(i)x(i))

∑n
j=1 q0,j exp(−

∑t
s=1

αs

4 r⊤s y
(j)x(j))

.

(27)

Based on the relationship between the multiplicative weights algorithm and FTRL with the entropy
regularizer, we have

qt = argmin
q∈∆n

t∑

s=1

αs

4
q⊤Ars +DE(q,q0). (28)

Next, note that r1 = A⊤q0 = A⊤
1

n
= w1, from the proof of Proposition 1. Combining this with

the fact that q0 = 1
n
= p0, we can recursively conclude that rt = wt and qt = pt. Finally, since

v0 = 0, we have that

vT = vT−1 + θT−1
T + 1

2
rT = vT−1 +

T

2(T + 1)

T + 1

2
rT = vT−1 +

1

4
αT rT =

1

4

T∑

t=1

αtrt

C.4 PROOF OF THEOREM 4

For the first two parts of Theorem 4, note that the expressions in Algorithms 1 and and 2 are exactly
the same. In the following, we focus on the normalized margin analysis. First, recall that the
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normalized margin is defined as:

γ(w) =

min
p∈∆n

p⊤Aw

‖w‖2
,

and for the the maximal margin classifier w∗ we have γ(w∗) = γ. Next, we compute γ(vT ) under
our framework. Note that

wT =
4vT∑T
t=1 αt

=
8vT

T (T + 1)
.

Moreover, from the proof of Theorem 3, we know that m(w)−m(wT ) ≤ 8 logn
T (T+1) for any w ∈ R

d.

Thus, we have

min
p∈∆n

p⊤A
8vT

T (T + 1)
− 1

2

∥∥∥∥
8vT

T (T + 1)

∥∥∥∥
2

2

= min
p∈∆n

p⊤AwT −
1

2
‖wT ‖22

= m(wT )

≥ m
(

8

T (T + 1)
‖vT ‖2w∗

)
− 8 log n

T (T + 1)

=
8

T (T + 1)
‖vT ‖2γ −

64

2(T (T + 1))2
‖vT ‖22 −

8 log n

T (T + 1)

Rearranging and multiplying both sides by
T (T+1)
8‖vT ‖2

, we obtain

min
p

p⊤AvT

‖vT ‖2
≥ γ − log n

‖vT ‖2
The proof is finished by the following lower bound on ‖vT ‖2.

Lemma 5. We have

‖vT ‖2 ≥
T (T + 1)γ

8
.

Proof. Note that ‖w∗‖ = 1, so
v
⊤

T w
∗

‖vT ‖2
≤ 1. Then, based on our derivation of wt in the proof of

Theorem 3, we can conclude that

‖vT ‖2 ≥ v⊤
T w

∗ =
1

4

T∑

t=1

αtw
⊤
t w

∗

=
1

4

T∑

t=1

αt

[
1

∑t
s=1 αs

(
t−1∑

s=1

αsps + αtpt

)]⊤
Aw∗

≥ 1

4

T∑

t=1

αt min
p∈∆n

p⊤Aw∗

=
T (T + 1)γ

8
.

(29)

C.5 DETAILS OF SECTION 4.4

The Perceptron proposed by Yu et al. (2014), named mirror-prox algorithm for feasibility Problems
(MPFP) procedure (Yu et al., 2014), is summarized in Algorithm 5. Yu et al. (2014) consider a
general objective g : W × P → R, for spaces P ⊂ R

n and W ⊂ R
d, and defines F (w,p) =

[−∇wg(w,p);∇pg(w,p)] ∈ R
d+n where [x;y] denotes the concatenation of vectors x and y.

Associated to P (and analogously forW), Yu et al. (2014) make use of the following quantities:
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Algorithm 5 MPFP of Yu et al. (2014)

Input: {γt}Tt=1,v1 = r∗

for t = 1, . . . , T do
ut = ProxR

vt
(γtF (vt))

vt+1 = ProxR
vt
(γtF (ut))

zt =
1∑

t
s=1 γs

∑t
s=1 γsus

end for
Output: zT

ψt(w) = − p̂⊤
t−1Aw

φt(p) = p⊤Aŵt−1

OL
w = OMD

[
1

2
‖ · ‖22,0,

1√
log n

, ψt,Bd
]
⇔ wt = argmin

w∈Bd

1√
log n

〈∇ψt(wt−1),w〉

+D 1
2‖·‖2

2
(w, ŵt−1)

ŵt = argmin
w∈Bd

1√
log n

〈∇ht(wt),w〉

+D 1
2‖·‖2

2
(w, ŵt−1)

OL
p = OMD

[
E,

1

n
,
√

log n, φt,∆
n

]
⇔ pt = argmin

p∈∆n

√
log n 〈∇φt(pt−1),p〉

+DE(p, p̂t−1)

p̂t = argmin
p∈∆n

√
log n 〈∇ℓt(pt−1),p〉

+DE(p, p̂t−1)

• A constant αp > 0 and function Rp : P → R that is 1-strongly convex w.r.t. some norm
‖ · ‖P on P;

• Minimizer r∗p = argminp∈P Rp(p).

• Bregman divergence Dp(p,q) = DRp
(p,q);

• Diameter Ωp = maxp∈P Dp(p, r
∗
p).

From these, we can define the function R : Rd+n 7→ R and its minimizer

R(w,p) = αwRw(w) + αpRp(p) and r∗ = argmin
x∈Rd+n

R(x) = [r∗w; r∗p]

Lastly, the algorithm relies on the following Prox map: for function f : Z → R and point v ∈ Z on

a general space Z ⊂ R
m, define the mapping Proxf

v : Z → Z by

Proxf
v(z) = argmin

u∈Z

{
u⊤z+Df (u,v)

}

In this work, we consider MPFP under the bilinear objective g(w,p) = p⊤Aw, where the rows of
A are assumed to be normalized w.r.t. ‖ · ‖2. We further give the following specifications:

• Spaces P = ∆n andW = Bd = {w ∈ R
d : ‖w‖2 ≤ 1}.

• Norms ‖ · ‖P = ‖ · ‖1 and ‖ · ‖W = ‖ · ‖2.

• Regularizers Rp = E, where E denotes the entropy regularizer (i.e., negative Shannon

entropy), and Rw = 1
2‖ · ‖22.

• Contants αp = 1√
Ωp(
√

Ωp+
√
Ωw)

and αw =

√
Ωp√

Ωp+
√
Ωw

.
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• Constant weights γt =
1√

Ωp+
√
Ωw

for each t ∈ [T ].

Endowed with these parameters, the procedure becomes the MPLFP algorithm of Yu et al. (2014),
and we can conclude the following connection.

Theorem 8. Let αt = 1. Then the MPLFP algorithm is equivalent to the game dynamics given by

Algorithm 5, in the sense that ut = [wt;pt], vt+1 = [ŵt; p̂t], and zt =
[
1
t

∑t
s=1 ws;

1
t

∑t
s=1 ps

]
.

Proof. We begin by noting that

Ωw = max
w∈Bd

Dw(w, r∗w) = max
w∈Bd

1

2
‖w‖22 =

1

2

Ωp = max
p∈∆n

Dp(p, r
∗
p) = max

p∈∆n
KL

(
p||1

n

)
= log n

where KL denotes the Kullback–Leibler divergence, so that we can derive parameters

γt =
1√

log n+ 1√
2

and αp =
1

√
log n

(√
log n+ 1√

2

) and αw =

√
log n√

log n+ 1√
2

Next, note that F (w,p) =
[
−p⊤A;Aw

]
. For convenience, we will write the MPFP iterates as

ut = [xt;yt] and vt+1 = [x̂t; ŷt]

Section 10 of Yu et al. (2014) shows that

ProxR
[x̂;ŷ](x,y) =

[
ProxRw

x̂

(
x

αw

)
;Prox

Rp

ŷ

(
y

αp

)]

Using the iterate definitions, we can then obtain

[xt;yt] = ut

= ProxR
vt
(γtF (vt))

= ProxR
[x̂t−1;ŷt−1]

(−γtŷ⊤
t−1A, γtAx̂t−1)

=

[
ProxRw

x̂t−1

(−γtŷ⊤
t−1A

αw

)
;Prox

Rp

ŷt−1

(
γtAx̂t−1

αp

)]

=

[
ProxRw

x̂t−1

(
− 1√

log n
ŷ⊤
t−1A

)
;Prox

Rp

ŷt−1

(√
log nAx̂t−1

)]

and

[x̂t; ŷt] = vt+1

= ProxR
vt
(γtF (ut))

= ProxR
[x̂t−1;ŷt−1]

(−γty⊤
t A, γtAxt)

=

[
ProxRw

x̂t−1

(−γty⊤
t A

αw

)
;Prox

Rp

ŷt−1

(
γtAxt

αp

)]

=

[
ProxRw

x̂t−1

(
− 1√

log n
y⊤
t A

)
;Prox

Rp

ŷt−1

(√
log nAxt

)]

Using the definition of the Prox function then yields

xt = argmin
w∈Bd

{
− 1√

log n
ŷ⊤
t−1Aw +Dw(w, x̂t−1)

}

x̂t = argmin
w∈Bd

{
− 1√

log n
y⊤
t Aw +Dw(w, x̂t−1)

}

yt = argmin
p∈∆n

{√
log np⊤Ax̂t−1 +Dp(p, ŷt−1)

}

ŷt = argmin
p∈∆n

{√
log np⊤Axt +Dp(p, ŷt−1)

}
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From the fact that

[x̂0; ŷ0] = v1 = [r∗w; r∗p] =

[
0;

1

n

]
= [ŵ0; p̂0]

and plugging in the appropriate parameters into the OMD updates, we can recursively conclude that
[ŵt; p̂t] = [x̂t; ŷt] = vt+1 and [wt;pt] = [xt;yt] = ut for each t ∈ [T ]. As a result, we also have
that

zt =
1

∑t
s=1 γs

t∑

s=1

γsus

=

[
1

∑t
s=1 γs

t∑

s=1

γsxs;
1

∑t
s=1 γs

t∑

s=1

γsys

]

=

[
1

t

t∑

s=1

ws;
1

t

t∑

s=1

ps

]

Proposition 3. Let αt = 1. Then the total regret of both players under the dynamics of Algorithm 5
is bounded by

Rp +Rw = O(
√

log n)

Before we prove this result, we need to state a technical tool that we will make use of.

Lemma 6. For any p ∈ R
n and w ∈ R

d, we have that

‖p⊤A‖2 ≤ ‖p‖1 and ‖Aw‖∞ ≤ ‖w‖2

Proof. For the first inequality, let p̃ = p

‖p‖1
. Then,

‖p⊤A‖2 = ‖p‖1‖p̃⊤A‖2 = ‖p‖1

∥∥∥∥∥

n∑

i=1

p̃iA(i,:)

∥∥∥∥∥
2

≤ ‖p‖1
n∑

i=1

|p̃i|‖A(i,:)‖2 = ‖p‖1

For the second inequality, we have that

‖Aw‖∞ = max
i∈[n]

∣∣∣A⊤
(i,:)w

∣∣∣ ≤ ‖w‖2 max
i∈[n]
‖A(i,:)‖2 = ‖w‖2

Proof of Proposition 3. Let us first note that, from the proof of Theorem 8, we know that

Ωw = max
w∈Bd

Dw(w, ŵ0) =
1

2
and Ωp = max

p∈∆n
Dp(p, p̂0) = log n

Then, using Lemmas 4 and 6, we can bound the regret of the w-player as follows:

Rw ≤
√
log n

2
+

T∑

t=1

[
‖(pt − p̂t−1)

⊤A‖2‖wt − ŵt‖2 −
√
log n

2

(
‖wt − ŵt‖22 + ‖wt − ŵt−1‖22

)]

≤
√
log n

2
+

T∑

t=1

[
‖pt − p̂t−1‖1‖wt − ŵt‖2 −

√
log n

2

(
‖wt − ŵt‖22 + ‖wt − ŵt−1‖22

)]

Similarly, for the p-player we obtain

Rp ≤
√
log n+

T∑

t=1

[
‖A(wt − ŵt−1)‖∞‖pt − p̂t‖1 −

1

2
√
log n

(
‖pt − p̂t‖21 + ‖pt − p̂t−1‖21

)]

≤
√
log n+

T∑

t=1

[
‖wt − ŵt−1‖2‖pt − p̂t‖1 −

1

2
√
log n

(
‖pt − p̂t‖21 + ‖pt − p̂t−1‖21

)]
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Adding both bounds then yields

Rw +Rp ≤
√
log n

2
+
√
log n

− 1

2

T∑

t=1

[
1√
log n

‖pt − p̂t−1‖21 +
√
log n‖wt − ŵt‖22 − 2‖pt − p̂t−1‖1‖wt − ŵt‖2

+
√

log n‖wt − ŵt−1‖22 +
1√
log n

‖pt − p̂t‖21 − 2‖wt − ŵt−1‖2‖pt − p̂t‖1
]

=

√
log n

2
+
√
log n

− 1

2

T∑

t=1

[(
(log n)−

1
4 ‖pt − p̂t−1‖1 − (log n)

1
4 ‖wt − ŵt‖2

)2

(
(log n)

1
4 ‖wt − ŵt−1‖2 − (log n)−

1
4 ‖pt − p̂t‖1

)2 ]

≤
√
log n

2
+
√
log n

A nice property of the MPLFP algorithm is that it provides a linear separator when the data is
linearly separable and an approximate certificate of infeasibility when it is not. Such a certificate is
a vector p̂ ∈ ∆n satisfying p̂⊤A = 0; the duality of the two problems can be observed via Gordan’s
Theorem. We call p̂ ∈ ∆n an ǫ-certificate of infeasibility if ‖p̂A‖2 ≤ ǫ. Next, we recover the
convergence analysis of MPLFP, from Yu et al. (2014), using the tools of no-regret learning.

Theorem 9. Let αt = 1. Then under Assumption 1, 1
T

∑T
t=1 wt has a non-negative margin when

T = Ω
(√

logn
γ

)
. On the other hand, if maxw∈Bd

γ(w) < 0, then 1
T

∑T
t=1 pt is an ǫ-certificate of

infeasibility when T = Ω
(√

logn
ǫ

)
.

Proof. Note that in this setting, we have thatm(w) = γ(w) for each w ∈ Bd, and 1
T

∑T
t=1 wt ∈ Bd.

Then, under Assumption 1, we have that w∗ ∈ Bd, so Theorem 2 and Proposition 3 yield

γ

(
1

T

T∑

t=1

wt

)
= m

(
1

T

T∑

t=1

wt

)
≥ m(w∗)− Rw +Rp

T
= γ(w∗)− Rw +Rp

T
≥ γ − 3

√
log n

2T

That is, the margin is non-negative provided that T ≥ 3
√
logn
2γ .

To show the second conclusion, let us begin by noting that with a slight modification to the proof
of Theorem 2, we can obtain

max
w∈Bd

g

(
w,

1

T

T∑

t=1

pt

)
≤ min

p∈∆n
g

(
1

T

T∑

t=1

wt,p

)
+ R̄w + R̄p = m

(
1

T

T∑

t=1

wt

)
+ R̄w + R̄p

Our assumption now is that maxw∈Bd
m(w) = maxw∈Bd

γ(w) < 0, so that∥∥∥∥∥∥

(
1

T

T∑

t=1

pt

)⊤

A

∥∥∥∥∥∥
2

= max
w∈Bd

(
1

T

T∑

t=1

pt

)⊤

Aw Cauchy-Schwarz

= max
w∈Bd

g

(
w,

1

T

T∑

t=1

pt

)

< R̄w + R̄p

≤ 3
√
log n

2T

Hence, 1
T

∑T
t=1 pt is an ǫ-certificate of infeasibility provided that T ≥ 3

√
logn
2ǫ .
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D PROOF OF SECTION 5

D.1 PROOF OF THEOREM 6

First, based on the property of the objective function from Ji et al. (2021), we have

−A⊤qt =
∇R(ut)

R(ut)
,

where

qt,i =
exp

(
−y(i)u⊤

t x
(i)
)

∑n
j=1 exp

(
−y(j)u⊤

t x
(j)
) . (30)

Then, using the fact that v0 = 0, we obtain

vt = vt−1 + tA⊤qt =

T∑

t=1

αtA
⊤qt =

(
t∑

i=1

αi

)
· rt,

where we define r0 = 0 and rt =
1∑

t
i=1 αi

∑t
i=1 αiA

⊤qi for t ≥ 1. Then, we can rewrite

st = st−1 +
1

2(t+ 1)
vt =

t∑

i=1

1

2(i+ 1)
vi =

t∑

i=1

1

2i(i+ 1)
ivi =

1

4

t∑

i=1

1
∑i

j=1 αj

ivi =
1

4

t∑

i=1

αiri.

where we used the initialization s0 = 0. Moreover,

ut = st−1 +
1

2(t− 1)
vt−1 =

1

4

t−1∑

i=1

αiri +
1

2(t− 1)
vt−1 =

1

4

t−1∑

i=1

αiri +
1

4
αtrt−1. (31)

Combining (30) and (31), we have

qt = argmin
q∈∆n

q⊤Aut +DE

(
q,

1

n

)

= argmin
q∈∆n

1

4

(
t−1∑

i=1

αiq
⊤Ari + αtq

⊤Art−1

)
+DE

(
q,

1

n

)
.

Additionally,

rt =
1

∑t
i=1 αi

t∑

i=1

αiA
⊤qi = argmin

r∈Rd

t∑

i=1

αiq
⊤
i Ar+

∑t
i=1 αi

2
‖r‖22

= argmin
r∈Rd

t∑

i=1

αi

(
q⊤
i Ar+

1

2
‖r‖22

)
.

(32)

Note that since r0 = w0 and we can drop the 1
2‖ · ‖22 terms from the minimization in the p-player’s

update (since it doesn’t depend on p), we get that qt = pt and rt = wt. Finally, we can conclude
that

sT =
1

4

T∑

t=1

αtrt =

∑T
t=1 αt

4

1
∑T

t=1 αt

T∑

t=1

αtwt =

∑T
t=1 αt

4
wT = w̃T

Next, we turn to the regret. For the p-player, it uses OFTRL, so, based on Lemma 3, we obtain

T∑

t=1

αtℓt(pt)−
T∑

t=1

αtℓt(p)

≤ 4

(
E(p)− E

(
1

n

))
+

T∑

t=1

t2‖Awt −Awt−1‖2∞
8

≤ 4 log n+

T∑

t=1

t2
[
maxi∈[n]

∣∣y(i)(wt −wt−1)
⊤x(i)

∣∣] [maxi∈[n]

∣∣y(i)(wt −wt−1)
⊤x(i)

∣∣]

8

≤ 4log n+

T∑

t=1

t2‖wt −wt−1‖22
8

.

(33)
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On the other hand, the w-player applies FTRL+, and note that ht(w) is 1-strongly convex. Thus,
the regret is bounded by

T∑

t=1

αtht(wt)−
T∑

t=1

αtht(w) ≤ −
T∑

t=1

t(t− 1)

4
‖wt −wt−1‖22. (34)

Finally, we focus on the margin. Combining (33), and (34), we have

R
w
+R

p
=

2

T (T + 1)

(
4 log n+

T∑

t=1

(
t2

8
− t(t− 1)

4

)
‖wt −wt−1‖22

)
≤ 8 log n+ 2

T (T + 1)
,

where we used the fact that ‖w1‖22 = ‖A⊤q1‖22 ≤ 1, and t2

8 ≤
t(t−1)

4 for t ≥ 2. Based on Theorem
2, we have

min
p∈∆n

p⊤AwT −
1

2
‖wT ‖22 = m(wT ) ≥ −

8 log n+ 2

T (T + 1)
+ max

w∈Rd
m(w). (35)

Next, note that w = 8
T (T+1)w̃T . So

8

T (T + 1)
min
p∈∆n

p⊤Aw̃T −
64

2(T (T + 1))2
‖w̃T ‖22

≥ − 8 log n+ 2

T (T + 1)
+ max

w∈Rd
m(w)

≥ − 8 log n+ 2

T (T + 1)
+m

(
8‖w̃T ‖2
T (T + 1)

w∗
)

= − 8 log n+ 2

T (T + 1)
+

8‖w̃T ‖2
T (T + 1)

min
p∈∆n

p⊤Aw∗ − 64‖w̃T ‖22
2(T (T + 1))2

‖w∗‖22

= − 8 log n+ 2

T (T + 1)
+

8‖w̃T ‖2γ
T (T + 1)

− 64‖w̃T ‖22
2(T (T + 1))2

,

(36)

which implies that

min
p∈∆n

p⊤Aw̃T

‖w̃T ‖2
≥ −8 log n+ 2

8‖w̃T ‖2
+ γ. (37)

Finally, note that we always have
w̃

⊤

T w
∗

‖w̃T ‖2
≤ 1, so

‖w̃T ‖2 ≥
∑T

t=1 αt

4
w⊤

Tw
∗

=

∑T
t=1 αt

4

(
1

∑T
t=1 αt

T∑

t=1

αtpt

)⊤

Aw∗ ≥ T (T + 1)γ

8
.

(38)

Thus, we have

min
p∈∆n

p⊤AsT

‖sT ‖2
=

min
p∈∆n

p⊤Aw̃T

‖w̃T ‖2
≥ γ − 8 log n+ 2

T (T + 1)γ
.
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D.2 PROOF OF THEOREM 7

Recall that αt = 1, for all t ∈ [T ], and that the regularizer 1
2(q−1)‖ · ‖2q is 1-strongly convex w.r.t.

‖ · ‖q . Then, for the w-player, based on Lemma 3, we have ∀w ∈ R
d, ‖w‖q ≤ 1,

T∑

t=1

ht(wt)− ht(w) ≤ 1

2(q − 1)ηw
+

T∑

t=1

‖A⊤(pt − pt−1)‖2p
2/ηw

=
1

2(q − 1)ηw
+

T∑

t=1

‖∑n
i=1 y

(i)[pt − pt−1]ix
(i)‖2p

2/ηw

≤ 1

2(q − 1)ηw
+

T∑

t=1

(∑n
i=1 |pt − pt−1|i‖x(i)‖p

)2

2/ηw

≤ 1

2(q − 1)ηw
+

T∑

t=1

‖pt − pt−1‖21
2/ηw

(39)

On the other hand, for the p-player, applying Lemma 2, we get

T∑

t=1

ℓt(pt)− ℓt(p) ≤
log n

ηp
−

T∑

t=1

1

2ηp
‖pt − pt−1‖21. (40)

Thus, with ηp = 1/ηw, ηw =
√

1
2(q−1) logn

, we get

m(wT ) ≥ γ −

√
2 logn
(q−1)

T
= γ −

√
2(p− 1) log n

T
, (41)

where the equality is based on the relationship between p and q. Hence, we obtain a positive margin

when T >

√
2(p−1) logn

γ
. On the other hand, let α ∈ (0, 1), and if we would like to obtain

γ −
√
2(p− 1) log n

T
≥ (1− α)γ,

we have T ≥
√

2(p−1) logn

αγ
.
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