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ABSTRACT

Although the optimization induced deep equilibrium models (OptEqs) show the
connection between the neural networks’ structure and the designed hidden opti-
mization problems (problems that the network’s forward procedure tries to solve),
we find that the linear kernels used in their hidden optimization problem hinder
their performance, since linear kernels cannot extract non-linear feature depen-
dencies from the inputs. Inspired by the classical machine learning algorithms,
we use the widely used Gaussian kernels to construct the OptEqs hidden optimiza-
tion problem and then propose our deep equilibrium model named KerDEQ. With
Gaussian kernels, it can extract the input features’ non-linear information more
efficiently compared with the original OptEqs. Furthermore, KerDEQ can be re-
garded as a weight-tied neural network with infinite width and depth, therefore it
shows better performance. Apart from that, our KerDEQ also shows better uncer-
tainty calibration properties and performs more stably under different corruptions,
especially under noise credit to the Gaussian kernel hidden optimization problem
and its induced structure. Furthermore, we also conduct various experiments to
demonstrate the effectiveness and reliability of our KerDEQ.

1 INTRODUCTION

Deep Neural Networks (DNNs) show impressive performance in many real-world tasks on vari-
ous data like graphs (Scarselli et al., 2008), images (Redmon et al., 2016; He et al., 2016), se-
quences (Chowdhary, 2020), and others. However, most neural networks structure are constructed
by experience or searching on the surrogate datasets (Liu et al., 2018; Zoph & Le, 2016). Therefore,
these architectures can hardly be interpretable and such a phenomenon hinders further development.
Apart from the current neural network models, traditional machine learning methods like Dictio-
nary Learning (Tošić & Frossard, 2011; Mairal et al., 2009), Subspace Clustering (You et al., 2016)
and other methods (Liu et al., 2014; Zhang et al., 2018; 2015; Liu & Li, 2016) can design their
whole procedure by designing optimization problems with specific regularizers customized from
their mathematical modeling and requirements. Thus, these models are easily interpreted. However,
the traditional machine learning algorithms’ whole procedures do not consider the hidden properties
of features and labels. Therefore, they usually perform worse on tasks with more data.

To link two types of models, the optimization induced deep equilibrium models (OptEqs) (Xie et al.,
2021) tries to recover the model’s hidden optimization problem to make their model “mathematically
explainable”. As the formulation shows, the output features z̃∗ for input x before the final prediction
is obtained by solving the fixed point equation (Eqn (1)’s left part). Since the fixed point equation is
also the first order stationary condition for problem Eqn (2), z̃∗ is also the optimal solution for the
following optimization problems.

z̃∗ = W̃⊤σ(W̃z̃∗ +Ux+ b), y = W̃cz̃
∗ + bc, (1)

min
z̃

G(z̃;x) = min
z̃

[
1⊤ f(W̃−1⊤z̃)−

〈
Ux+ b,W̃−1⊤z̃

〉
+

1

2
∥W̃−1⊤z̃∥2 − 1

2
∥z̃∥2

]
, (2)

where U,W̃,b,W̃c,bc are learnable parameters. After solving the fixed point equation in the front
of Eqn (1) for input x to get the output feature z∗ ∈ Rd, we can get the prediction y ∈ Rd with a
linear projection. They call the fixed point equation as the OptEqs’ equilibrium equation, which is
the most important part of the equilibrium models and z∗ is the equilibrium state. Since the forward
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propagation of OptEqs as trying to solve the optimization problem defined above, researchers can
also explain the structure of OptEqs by understanding the optimization problem or constructing new
models by designing different problems for various tasks.

In order to improve the performance for OptEqs, the Multi-branch optimization induced deep equi-
librium models (MOptEqs) (Li et al., 2021) construct a new deep equilibrium model by encoding the
multi-scale inductive bias into the original OptEqs model. However, their performance is still not so
good on image classification tasks although they enjoy satisfying “mathematical interpretability”.

We notice that such models’ hidden optimization problem can be divided into two parts: the output
features’ regularizer term and the feature extraction term. The latter is the most important since it
is input-dependent and can influence the pattern extracted from input features. However, the former
works only use the simplest linear kernel to extract features from the original inputs. Since the linear
kernel can only work well when dealing with linear features, the representation power for original
OptEqs is not enough. Motivated by the above statements, in our work, we take a further step by
using the widely used Gaussian kernel to extract features from the inputs, which can effectively
extract non-linear information compared with linear kernels and achieves better results on different
kinds of tasks.

With Gaussian kernels, we propose our new optimization induced model, the optimization induced
equilibrium model with Gaussian kernels (KerDEQ). It can also be regarded as OptEqs with weight-
tied “infinite wide” projections because they are parameterized only by the models’ weight parame-
ter. Since OptEqs can be regarded as a weight-tied “infinite deep” model, our model can be regarded
as a “double-infinite” model with better representation abilities. Therefore, our KerDEQ enjoys
better representative abilities. Apart from the above findings, we also find that our KerDEQ’s simi-
larity between two samples is bounded by a stationary function which is mainly rely on the samples
distance. Thereby, KerDEQ can hardly be overconfident on unseen samples and enjoy better uncer-
tainty calibration ability in our analysis and experiments. In other words, our KerDEQ can hardly
make over-confident predictions on unseen samples and can return more confident predictions on
learned samples. For this reason, our KerDEQ is more reliable compared with the original OptEqs.
We summarize our contributions as follows:

• We first reformulate the OptEqs’ hidden optimization problem with Gaussian kernels. Then
we propose our new DEQ model KerDEQ. Compared with the former OptEqs, our KerDEQ
can still enjoy mathematical interpretability with better performance on real-world datasets.

• We have analyzed the theoretical properties of our KerDEQ and find that our KerDEQ can
be regarded as a weight-tied neural network with both infinite width and depth. Empirical
results also confirm the superiority of our KerDEQ.

• Through the similarity analysis for our KerDEQs’ output for two samples, we can demon-
strate that our KerDEQ can enjoy better uncertainty calibration performance against tra-
ditional OptEqs. We also conducted the out-of-distribution (OOD) uncertainty calibration
experiments. And the empirical results also confirm our results.

2 RELATED WORKS

2.1 IMPLICIT MODELS

Most modern deep learning approaches provide explicit computation graphs for forward propaga-
tions and we call these models “explicit models”. Contrary to these models, recent researchers
proposed some neural architecture with dynamic computation graphs and we call them “implicit
models”. For example, Neural ODEs Chen et al. (2018b) encode their neural architectures by a dif-
ferential system with learnable parameters, then the implicit ODE solvers they used are equivalent
to a continuous ResNet taking infinitesimal steps. Since the whole structure can be interpreted by
differential systems, it leverages the black box of traditional neural networks. Because of the flexi-
bility and the interpretability of implicit models, the design of implicit models draws much attention
these days ((Ghaoui et al., 2019; Gould et al., 2019)). Many kinds of implicit models have been
proposed, including optimization layers (Djolonga & Krause, 2017; Amos & Kolter, 2017), differ-
entiable physics engines (Qiao et al., 2020; de Avila Belbute-Peres et al., 2018), logical structure
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learning (Wang et al., 2019),differential programming (Xie et al., 2019; Scarselli et al., 2008; Chen
et al., 2022; Bai et al., 2020; 2019).

Among the implicit models, OptEqs proposed by Xie et al. (2021) not only achieve superior perfor-
mance against other implicit models but also explicitly explain the relationships between its structure
and a well-defined optimization problem. Its forward propagation is to acquire the fixed points for
Eqn (1), which can also be regarded as an “infinite” layer model. Other DEQ models with multi
branches (Li et al., 2021; Bai et al., 2020) are designed for multi-scale image inputs and show better
performance than other DEQ. However, their performance is not satisfying on some large datasets.

2.2 INFINITE WIDE MODELS AND KERNEL METHODS IN DEEP LEARNING

By using the kernel methods to estimate the single-layer network’s outputs for different samples,
Neal (1996) find that such a network can become a Gaussian process (GP) if parameters are ran-
domly initialized with a large width limit. Furthermore, recent researchers also extend these rela-
tions to neural networks with multiple layers (Lee et al., 2017; de G. Matthews et al., 2018) and
other architectures (Novak et al., 2019; Garriga-Alonso et al., 2019). These works study the neural
networks with parameters that are randomly initialized and fixed throughout the training process ex-
cept for the last classification layer, which is named weakly-trained by Arora et al. (2019). Although
these models are “weakly-trained”, researchers can still obtain some useful conclusions for current
neural networks with such weakly-trained models. For example, the related mean-field theory (Chen
et al., 2018a; Gilboa et al., 2019; Hayou et al., 2019) explains the gradient vanishing and explod-
ing phenomenon during the back-propagation which can also apply to other structures like CNNs,
and RNNs. Meronen et al. (2020) studies the stationary kernels to enhance the neural networks’
uncertainty calibration abilities by designing different activation functions.

Apart from the weakly trained models, Jacot et al. (2019); Arora et al. (2019) propose Neural Tan-
gent Kernel (NTK) and its variants. They have proved that the sample kernel for infinite wide
networks with proper initialization can converge to a static neural tangent kernel if their models are
trained by gradient descent with infinitesimal steps (gradient flow). Then prediction can be made
with NTK. Therefore, the NTK model is a theoretical model with strict constraints and its weights
are not learnable. Although our model can also be regarded as an infinite wide model, we note there
are many differences between ours and the above models. First, our models use the kernel method
calculating on the input features and output features while the above uses the kernel method cal-
culating on samples. Secondly, our model can be assumed as using the “weight-tied infinite wide”
projection parameterized by the learnable parameter which can be updated during training. Thereby,
there are many differences between our KerDEQ with NTKs and NTK-DEQ (Feng & Kolter, 2021)
although there may exist some similar terms in our paper.

3 GAUSSIAN KERNEL INSPIRED OPTEQS

3.1 FORMULATION AND STRUCTURE OF KERDEQ

Before starting our analysis, we need to reformulate the original formulations of OptEqs’ equi-
librium equation Eqn (1) and hidden optimization problem Eqn (2) for convenience. We replace
W̃cW̃

⊤ with Wc, W := W̃⊤, and optimize z := W̃−1⊤z̃. Then the original OptEqs’ optimiza-
tion problem can be reformulated as:

min
z

G(z;x) =min
z

[
1⊤f(z) +

1

2
∥z∥2 − ⟨Ux+ b, z⟩ − 1

2
∥Wz∥2

]
, (3)

and the reformulated equilibrium equation for OptEqs with input x can be obtained by reformulating
Eqn (3)’s first order stationary condition as follows:

z∗ = σ
(
W⊤Wz∗ +Ux+ b

)
, (4)

where U,W, b are learnable parameters and f is the proximal term to constrain the features. Dif-
ferent choice of f can also induce different activation functions σ. If we choose the widely used

ReLU function as the activation function, then f(x) =

{
0, x ≥ 0,

∞, x < 0.
is the positive indicator func-

tion. From problem Eqn (3), OptEqs can be explained as extracting the features by minimizing the

3



Under review as a conference paper at ICLR 2023

similarity term with the input feature Ux+ b through linear kernel while regularizing the equilib-
rium state by the regularizer term 1⊤f(z) + 1

2∥z∥
2. Such an explanation can also extend to other

DEQs (Bai et al., 2019; Winston & Kolter, 2020) only if they constrain the weight parameter for the
equilibrium states to be symmetric. We note that the symmetric constraints won’t influence the final
performance much as many works (Liu et al., 2021; Hu et al., 2019) show.

Thereby, a natural idea is whether we can use other kernel functions like the widely used Gaussian
Kernels to extract the input features for the equilibrium state. Since the Gaussian kernel can naturally
regularize Wz’s norm, we can formulate the OptEqs’ hidden optimization problem with Gaussian
kernels as below:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − 1

2γ
exp−γ∥(Ux+b−Wz)∥2

F , (5)

where γ is the hyperparameter denoting the reciprocal of Gaussian kernels’ variance for scaling.
Then from the KKT condition, we can get the Gaussian Kernel method induced deep equilibrium
model with Gaussian Kernel (KerDEQ) as the following fixed-point equation:

z = σ
[
exp−γ∥(Ux+b−Wz)∥2

F W⊤(−Wz+Ux+ b)
]

(6)

Compared with linear kernels, Gaussian kernels can easily extract the non-linear relations from
the input features and shows more stable and powerful performance in various machine learning
approaches like SVM (Hu et al., 2019; Scholkopf et al., 1997) and others. Therefore, our KerDEQ
is supposed to enjoy more representative abilities than the original OptEqs. In the following parts of
this section, we will analyze the theoretical advantages of our KerDEQ against the vanilla OptEqs.
And we’ll also empirically evaluate the KerDEQ’s performance in the next section.

3.2 TOWARDS OPTEQS WITH INFINITE WIDTH

Since the Gaussian kernel can be regarded as computing the similarities of samples by projecting
them to the infinite-dimensional space, the first advantage of our KerDEQ is that our model can
extract the input features from the infinite-dimension level. After projecting the input features x and
output embedding z to the infinite-dimensional space by the “weight-tied” projection, our KerDEQ
can be regarded calculate the similarity via the linear kernel like OptEqs in the infinite-dimension
space as follows:
Theorem 1. The KerDEQ with Gaussian kernels (Eqn (6)) is the same as dealing with the Opti-
mized induced Equilibrium Models whose hidden optimization problem without the norm of Wz
formulated as follows:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
where ΦW(z) =

[
1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i

i! Φ
(i)
W(z), ...

]
∈ R1×∞ which projects the features to

the infinite-dimensional space. And Φ
(i)
W : Rn → Rini

is the k-tuple permutation with repetitions
formulated as follows:

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)0,

i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)1, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 (7)

where (Wx)j denotes the j-th element of vector Wx. Then the Gaussian kernel can also be re-
garded as calculating linear kernels after the weight-tied infinite wide projection ΦW and ΦU.

From the above analysis, one can see that our KerDEQ uses the linear kernels to extract features
after projecting the input features and output features to the infinite-dimensional space with the
weight-tied infinite wide projection ΦW and ΦU. Compared with OptEqs which do the same oper-
ation in low-dimensional space, features in high-dimensional space are more easily to be extracted.
Therefore, our model can show better performance as the following experiments show.

Apart from the above analysis, we are trying to analyze our the Gaussian kernel’s generalization
bound against the original OptEqs. Let f c

KerDEQ = WcfKerDEQ(x) + bc with Wc and bc are
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weights for classifiers. We have Lη(f
c
KerDEQ) denote the expected margin loss at margin η of our

KerDEQ on the data distribution D defined as follows,

Lη(f
c
KerDEQ) = P(x,y)∼D

[
f c
KerDEQ(x)y ≤ η +max

j ̸=y
f c
KerDEQ(x)j

]
(8)

and L̂η(f
c
KerDEQ) denote the empirical margin loss on the training set. Then we can analyze the

generalization bound for our KerDEQ following Pabbaraju et al. (2021)’s settings.
Theorem 2. For any δ, η > 0, with probability at least 1 − δ over the training set of size M, input
∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1 and with proper choice of γ,

L0(f
c
KerDEQ) ≤ L̂η(f

c
KerDEQ) +O

√
hln(h) [(βmaxµ)µ3B + (2µβmax + 1)(1− βmaxm)µB + (1− βmaxm)2)2]

2 BW

η2(1− βmaxm)4M
+

ln(M
√
M

δ )

M

 ,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +O

√
hln(h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M

 ,

where BW := ∥W⊤W ∥2F + ∥U∥2F + ∥b∥2F + ∥Wc∥2F + ∥bc∥2F , the maximum scaling number is
defined by βmax := max

x∈D
exp−γ∥Ux+b−Wz∥2

F < 1 and m = ∥W⊤W ∥2 which is less than 1.

Remark 1. Assuming ∥W⊤W ∥2 = 0.9 and µ = 0.9, then we can get βmaxµ
1−βmaxm

< 1
1−m and

2µβmax+1
1−βmaxm

≤ 1
1−m only if βmax < 0.83. In the meanwhile, our KerDEQ’s generalization bound is

tighter than the original OptEq.

From the theorem, one can see that our KerDEQ’s generalization bound can be tighter than the
original OptEqs with a proper choice of γ. Therefore, our KerDEQ can show better performance.

3.3 TOWARDS BETTER UNCERTAINTY CALIBRATION ABILITY.

The model’s uncertainty calibration ability trying to evaluate whether the models can not only give
the right predictions but also can return better confident scores on samples. For example, we wish
a model with better uncertain calibration ability can give correct predictions with high confidence
on the learned samples. And on unseen samples, models cannot be over-confident, which means
they cannot return high prediction scores on wrong labels Guo et al. (2017). If a model can achieve
the above statements, it will be more reliable since its high prediction score means that the model’s
prediction is much more likely to be seen and correctly classified. Researchers can analyze such
properties from the view of sample similarities when the weight parameters go to infinite dimension
and obey the spherical distributions as former works (Meronen et al., 2020; de G. Matthews et al.,
2018). With the above distribution, the similarity κ for samples x,y can be defined as follows:

κ(x,y) = E
[
f(x)⊤f(y)

]
=

∫
R
fw(x)⊤fw(y)p(w)dw, (9)

with p(w) is the distribution of weight. Then if κ is dependent on the samples distance, it can be
more reliable Meronen et al. (2020). Since if the samples has been seen in the training set, model can
give the similar outputs to the neighboring samples in the test set. And the output will be different
for the far away samples in the test set like random guess. In this section, we are going to analyze
such properties of our KerDEQ and OptEqs by analyzing sample output similarities. The main
conclusion is summarized as follows.
Theorem 3. Assuming the inputs are bounded by B, the weight W’s ℓ2 are bounded by µ < 1
to ensure the convergence of the equilibrium and U obeys the spherical Gaussian distributions
N (0,E[U2

i ]I). Then we have the following conclusions for the expectation of the similarity for x,y
defined in Eqn (9) is,

κkerdeq(x,y) ≤
µ2D exp−γ(∥U∥2∥x−y∥2

F ) E[U2
i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
, (10)

κopteq(x,y) ≤
E[U2

i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (11)

where D = expγ∥W∥2B and βmax := max
x∈D

exp−γ∥Ux−Wz∥2
F < 1. θ0 = cos−1( ⟨x,y⟩

∥x∥∥y∥ ) is defined

as the angle between the samples.
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From the above results, the traditional OptEqs’ Gram matrix for samples’ outputs only depends on
the samples’ norms and angles. However, if the samples are far away but in the same direction,
the similarity of the samples is still large. Therefore, OptEqs are more likely to be over-confident
on these unseen samples. However, our KerDEQ’s Gram matrix for outputs is also bounded by the
distance of the sample. The similarity for the output features of our KerDEQ is smaller if the samples
are far away, which are more likely to be unseen samples. Furthermore, the output similarity for our
KerDEQ’s output can also be large if the samples are near enough. Therefore, our KerDEQ can
enjoy better uncertainty calibration ability compared with the original OptEqs.

3.4 PATCH SPLITTING IN KERDEQ.
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Figure 1: The sketch map of one layer KerDEQ’s n-th fixed point iteration. x is input and
z(n−1), z(n) are the output of (n− 1)-th, n-th iteration. z̃, x̃ and m̃ are defined in Algorithm 1

.

Since different parts of images have different impacts on the image classification, calculating the
whole similarity using Gaussian kernels for KerDEQ is not enough. Inspired by Trockman & Kolter
(2022), we also split the feature map Ux into patches, and then our optimization problem becomes:

min
z

G(z;x) =1⊤σ̃(z)− 1

2γ

N∑
i=1

exp−γ∥(x̃i−z̃i)Wh∥2
F (12)

Algorithm 1: Calculating one layer KerDEQ.

Require: Wz(i),Ux ∈ Rc×h×w, channel split cs, patch size p,
hidden layer Wh ∈ Rcsp

2×32

Ensure: Get the output z(i+1) of i-th fixed point iteration.

Rearrage Wz(i) → z̃, Ux+ b → x̃ ∈ R
chw
csp2

×(csp
2)

m̃ = diag
(
exp−γ∥(x̃j−z̃j)Wh∥2F

)
(x̃− z̃j)WhW

⊤
h

Rearrage m̃ → m ∈ Rc×h×w

return z(i+1) = σ
(
W⊤m

)

where x̃i ∈ Rcsp
2

is the i-th patch
of Ux+ b while z̃i ∈ Rcsp

2

is
the i-th patch of Wz and Wh ∈
Rcsp

2×chid is a linear layer to project
patches with different size to the con-
stant dimension. cs denotes the chan-
nel splitting number, p denotes the
patch size, and chid denotes the hid-
den dimension number of patches af-
ter linear projection. Then the i-
th fixed point iteration correspond-
ing to KerDEQ’s hidden optimization
problem can be formulated as Alg 1.
Since the original OptEqs use linear kernels, the structure will be the same no matter using the patch
splitting algorithms or not. Therefore, the patch-splitting approach is unique to our KerDEQ.

4 EMPIRICAL RESULTS

4.1 EXPERIMENT SETTINGS

Firstly, we finish the experiments on the widely used image classification datasets. Then we also
compare their performance with the designed experiments for the OOD calibration test. Further-
more, we finish the experiments to show the robustness of our KerDEQ compared with other equi-
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librium models and ResNet (He et al., 2016). The ablation studies on other hyperparameters are also
conducted in this section.

In the experiments, we parallel several KerDEQ with different input scales and we average each
branch’s output after average pooling or nearest up-sampling for branches’ fusion. We use the
Anderson algorithms to obey the forward equilibrium like other implicit models Li et al. (2021);
Xie et al. (2021) and we use the Phantom gradient Geng et al. (2021) for the back-propagation. The
models are trained by SGD with the step learning rate schedule. Our experiments are finished on
PyTorch platform Paszke et al. (2019) with RTX-3090. Details can be found in the Appendix.

4.2 RESULTS FOR IMAGE CLASSIFICATION

Firstly, we finish the experiments on CIFAR-10 and CIFAR-100 which are widely used datasets for
image classification for small images. In the experiment, we parallel 6 branches KerDEQ with the
input scale is 32, 16, 8, 8, 4, 4. The details can be found in the Appendix. As for the comparison,
we also conduct the experiments of the same training procedure for MDEQ, MOptEqs, and ResNet.
The results are listed in Table 1.

Model Size Accuracy
ResNet-18 10M 93.5± 0.2%

MDEQ 10M 94.2± 0.3%
MOptEq 8M 94.6± 0.2%
KerDEQ 5M 94.7± 0.1%
KerDEQ 8M 95.3± 0.2%

(a) CIFAR-10.

Model Size Accuracy
ResNet-18 10M 74.5± 0.2%

MDEQ 10M 74.7± 0.3%
MOptEq 8M 75.6± 0.2%
KerDEQ 5M 76.5± 0.3%
KerDEQ 8M 77.8± 0.2%

(b) CIFAR-100.

Table 1: The Empirical Results for image classification on CIFAR-10 and CIFAR-100.

From the above experiments, one can see that our KerDEQ enjoys clear advantages on the CIFAR
dataset, which demonstrates the powerful generalization ability of other models no matter implicit
models or explicit models.

Model Size Accuracy
ResNet-18 12M 92.3± 0.1%

MDEQ 10M 91.5± 0.2%
MOptEq 10M 92.4± 0.2%
KerDEQ 6M 92.9± 0.2%
KerDEQ 13M 93.2± 0.1%

(b) Empirical Results on ImageNette.

Model Size Accuracy
ResNet-18 11M 80.9%
ResNet-50 23M 81.7%

MDEQ 10M 81.3%
MOptEq 13M 81.5%
KerDEQ 6M 82.2%
KerDEQ 13M 83.9%

(b) Empirical Results on ImageNet-100

Table 2: The Empirical Results for image classification on ImageNette and ImageNet-100.

Apart from the small datasets, we also conduct experiments on the large-scale images listed in
Table 2. From the table, one can see that our KerDEQ can outperform other models with clear
advantages. The results demonstrate the superiority of our KerDEQ against others is consistent on
large-scale inputs.

4.3 OOD UNCERTAINTY CALIBRATION EXPERIMENTS

Models with better uncertainty calibration performance can predict the learned samples correctly
with high confidence which will return low confidence scores on unseen samples. Thereby, we
can design experiments on CIFAR datasets to evaluate the models’ uncertainty calibration abilities
based on other works Meronen et al. (2020) setting. Firstly, we train our KerDEQs and other baseline
models for comparison only using the first five classes of the training set. Therefore, the first five
classes in the test set can be regarded as the learned samples while the last five classes in the test set
are the unseen samples which are also called the out-of-distribution (OOD) samples.

7
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Then we can use the KL-divergence to evaluate the calibration abilities of different models. The
KL-divergence is the widely used metric to evaluate p’s similarities of distribution q defined as:

KL(p, q) =
∑
i

pilogpi − pilogqi. (13)

For the known classes, p = P(y|x) is the one-hot vector of sample x’s label and q is the model’s
prediction score for input x. Since for the unknown classes, we wish the model with better cali-
bration abilities will output almost the same confidence on different classes. Thereby, we choose q
to be the uniform distribution for each class of unseen samples. Then we evaluate the uncertainty
calibration ability of one branch OptEq and our KerDEQ with the above metrics listed in Table 3.

Accuracy Known KL Unknown KL
OptEq 90.56% 0.38 1.51

KerDEQ 92.42% 0.306 1.21

Table 3: Empirical Results on CIFAR-10 with 5 classes training for OOD uncertainty. Lower is the
better.

From the tables, one can see that our model also enjoys better uncertainty calibration abilities than
OptEqs whose hidden optimization problem used the linear kernel as Eqn (3). The results also
confirm the analysis we conduct in Section 3.3.

4.4 ABLATION STUDIES ON CORRUPTED DATASETS

In other kernel-related machine learning approaches Soman et al. (2009); Zhang et al. (2017), Gaus-
sian kernels are usually more robust against various noises and corruptions than the traditional linear
kernel. Therefore, we also compare the robustness of our KerDEQ, MOptEqs, and ResNet on the
CIFAR-10 corruption dataset, which contains 19 common corruptions including image transforma-
tion, image blurring, weather, and digital noises on CIFAR’s test datasets. The results are listed in
Figure 2.

contrast elastic_trans jpeg_comp pixelate brightness fog frost saturate snow defocus_blur gaussian_blur motion_blur zoom_blur gaussian_noise impulse_noise shot_noise spatter speckle_noise
60

65

70

75

80

85

90

95

Sc
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Acc under different corruption
MOptEq
KerDEQ
ResNet

Figure 2: The results for different models under different corruptions.

From the result, one can see that our KerDEQ based on Gaussian Kernels is more robust than other
implicit and explicit models. Especially, our KerDEQ can show better performance against the
structured noise and some image transformation.

4.5 ABLATION STUDIES ON γ

The choice of γ will influence the activation of the output scale of the KerDEQ model. Too small γ
will make the scaling part exp−γ∥Ux+b−Wz∥2

F almost equal to 1, then the model will perform just
the same as the original OptEqs using the linear Kernel. Too large γ will make the scaling term too
small in most cases. Then the norm of the output z may converge around 0 and such a phenomenon
may harm the representative ability. In order to explore the influence of γ, we finish the experiments
on CIFAR-10 and CIFAR-100 with different γ’s choices drawn in Figure 3.

From the figure, one can see that the accuracy will first raise and then decrease with the increase of
the hyperparameter γ. 0.5 is a good choice for both models. Therefore, we choose γ = 0.5 in our
experiments.

8
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Figure 3: The influence of hyperparameter γ for our KerDEQ on CIFAR datasets.

4.6 ABLATION STUDIES ON PATCH SPLITTING

The channel splitting parameter and the patch size of our KerDEQ also will influence the perfor-
mance of our model. If the choices are too large, then the kernel will only focus on the global
information while the kernel may focus on local features if the channel splitting parameter and
patch size are chosen to be too small. Due to this reason, we also conduct experiments trying to find
their influence on the performance shown in Figure 4.
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(a) Influence of the channel splitting parameter.
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(b) Influence of the patch size parameter.

Figure 4: The influence on the patch size and the channel splitting parameter for our KerDEQ on
CIFAR-100 datasets.

From the figure, one can see that the accuracy will first raise and then decrease with the increase of
the channel split and patch size. According to the empirical results, we choose patch size equals to 2
with channel split equals to 8 for CIFAR in the experiments . As for ImageNette and ImageNet-100
we choose patch size equals to 4 and channel split equals to 4.

5 CONCLUSIONS

In this paper, we propose a novel optimization induced deep equilibrium model with Gaussian ker-
nels called KerDEQ. Our KerDEQ can be viewed as a model with weight-tied infinite width and
infinite depth. Furthermore, we also theoretically analyzed our models’ superiority in the model’s
generalization abilities and uncertainty calibration abilities against former OptEqs. Empirical results
also demonstrate the effectiveness of our proposed models.
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A APPENDIX

A.1 PROOFS FOR THEOREM 1

Theorem 4. The KerDEQ with Gaussian kernels (Eqn. 6) is the same as dealing with the Opti-
mized induced Equilibrium Models whose hidden optimization problem without the norm of Wz
formulated as follows:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
where ΦW(z) =

[
1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i

i Φ
(i)
W(z), ...

]
∈ R1×∞ which projects the features to

the infinite-dimensional space. And Φ
(i)
W : Rn → Rini

is the k-tuple permutation with repetitions
formulated as follows:

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 (14)

where (Wx)j denotes the j-th element of vector Wx. Then the Gaussian kernel can also be re-
garded as calculating the input features after the weight-tied infinite wide projection ΦW and ΦU.

Proof. We can formulate the OptEqs’ hidden optimization problem with Gaussian kernels as below:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − 1

2γ
exp−γ∥(Ux+b−Wz)∥2

F , (15)

For exp−γ∥(Ux+b−Wz)∥2
F , we have

exp−γ∥(Ux+b−Wz)∥2
F = exp−γ∥Ux+b∥2

F−γ∥Wz∥2
F+2γ⟨Ux+b,Wz⟩,

= exp−γ∥Ux+b∥2
F exp−γ ∥Wz∥F exp2γ⟨Ux+b,Wz⟩,

letting λ = exp−γ∥Ux+b∥2
F exp−γ∥Wz∥F and we do the Taylor expansion for exp⟨Ux+b,Wz⟩, we

have:

exp−γ∥(Ux+b−Wz)∥2
F = λ

∞∑
i=0

(
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

.

For any i we have from the permutation theory:(
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

= λ
〈
Φ

(i)
U (x+U−1b),Φ

(i)
W(z)

〉
,

where Φ
(i)
W(x) is the i-tuple permutation with the repetition for given (Wx)1, (Wx)2, ..., (Wx)n.

Each element of Φ(i)
W(x) is one possible permutation. Since there are ni tuples, then Φ

(i)
W can project

the input features to ini space as follows,

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 .

Thereby, the hidden optimization problem for our KerDEQ can be reformulate as,

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
Then our conclusion are proved.
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A.2 PROOFS FOR THEOREM 2

Theorem 5. For any δ, η > 0, with probability at least 1 − δ over the training set of size M, input
∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1 and with proper choice of γ,

L0(f
c
KerDEQ) ≤ L̂η(f

c
KerDEQ) +O

√
hln(h) [(βmaxµ)µ3B + (2µβmax + 1)(1− βmaxm)µB + (1− βmax)2)2]

2 BW

η2(1− βmaxm)4M
+ ln(

M
√
M

δ
)M

 ,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +O

√
hln(h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M

 ,

where BW := ∥W⊤W ∥2F + ∥U∥2F + ∥b∥2F + ∥Wc∥2F + ∥bc∥2F , the maximum scaling number is
defined by βmax := max

x∈D
exp−γ∥Ux+b−Wz∥2

F < 1 and m = ∥W⊤W ∥2 which is less than 1.

Before the proof our bounds, we need to introduce a lemma for the perturbation bound for KerDEQs
and reformulated OptEqs from Pabbaraju et al. (2021) as follows.
Lemma 1. Let ∥W∥2 ≤ m and ∥W∥2 ≤ m. Then change in the output of the DEqs z =
σ(Wz+Ux+ b) on perturbation the weights and biases from W,U,b to W,U,b is bounded
as follows:∥∥f(Wz+Ux+ b)− f(Wz+Ux+ b)

∥∥
2
≤

∥∥W −W
∥∥
2
∥Ux+ b∥2 +

∥∥(U−U)x
∥∥
2
+ ∥b− b∥2

(1−m)2

Like Pabbaraju et al. (2021), we also follows the Neyshabur et al. (2017) and we also introduce
another lemma here:
Lemma 2. Let fw be any predictor with parameters w, and let P denote any distribution on
the parameters that is independent of the training data. Then, for any δ, γ > 0, with probailiy
≥ 1 − δ over the training data of size M , for any w, and any random perturbation u such that
P
[
maxx ∥fw+u(x)− fw(x)∥∞ < η

4

]
≥ 1

2 , we have

L0(fw) ≤ L̂ηfw + 4

√
KL(w + u||P ) + ln 6M

δ

M − 1
(16)

Then we can derive the perturbation bound for the reformulated OptEqs and our KerDEQ following
Pabbaraju et al. (2021)’s stes. First, we also incoporate a fully connected layer at the end as we
mentioned in the paper.

f c
kerdeq(x) = Wcfkerdeq(x) + bc, f

c
opteq(x) = Wcfopteq(x) + bc.

Since the entries in the perturbations obeying the distribution os N (0,2 ), we have that all the per-
turbations of weights ∥∆·∥ are bounded by σ

√
2hln(24h) : ω with probability larger than 1/2.

Since the only difference between OptEqs and monDEQ Winston & Kolter (2020) is the weight
parameterization, our reformulate OptEqs is parameterized by Ws = W⊤W while the monDEQ’s
weight parameter is parameterized by a series of weights Wmondeq = I + A + A⊤ + B + B⊤.
Therefore, the pertubation in ∥∆Ws∥ is different from Pabbaraju et al. (2021)’s analysis. We have
that:

∥∆Ws∥2 = ∥∆⊤
WW +W∆⊤

W ∥2 ≤ 2ωµ

Then using the above lemma, we have that for all x with probability at least 1/2.

∥f c

opteq(x)− f c
opteq(x)∥2 ≤ ∥W cfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2µ2ω(B + 1)

(1−m)2
+

2µω(B + 1)

1−m
+ ω

Setting σ = η(1−m2)

4
√

2hln(24h)(2µ3(B+1)+2(1−m)µ+(1−m)2)
will make the above perturbation less than η

4 .

Then we have,

KL(W· +∆W· |P ) ≤ BW

2σ2
=

16hln(24h)(2µ3(B + 1) + 2(1−m)µ(B + 1) + (1−m)2)2

η2(1−m)4
BW

14
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With the same choice of β’s bound like Pabbaraju et al. (2021),

η(1−m)

2(B + 1)
≤ β ≤ η(1−m)

√
M

2(B + 1)
,

we can finally we can get the upper bound as our OptEqs bound as our theorem shows.

The difference between KerDEQ and OptEqs are that KerDEQ’s can be viewed as multiplying
scaler β = exp−γ∥Ux+ b−Wz∥2F with depend on x since z is also depend on x. Setting
βmax=max

x∈Dβ(x)<1
and βmin=min

x∈Dβ(x)>c
. Assuming β changed a little with the respect of the

small perturbations on weights, we have:

z∗(W ,U , ) = σ(−βWsz
(i) + βW (Ux+ b))

∥z∗(W ,U , )∥2 ≤ βmaxµ∥W s −Ws∥2∥Ux+ b∥2
(1− βmaxm)2

+
βmax(∥(WU −WU)x∥2 + ∥Wb−Wb∥2)

1− βmaxm

With the same setting as above OptEqs, we have:

∥(WU−WU)x∥2 = ∥∆WU−W∆Ux∥2 ≤ 2ωµ∥(Wb−Wb)x∥2 = ∥∆W b−W∆bx∥2 ≤ 2ωµ

Then we can obtain that:

∥f c

kerdeq(x)− f c
kereq(x)∥2 ≤ ∥W cfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2βmaxµ
3ω(B + 1)

(1− βmaxm)2
+

2µ2ωβmax(B + 1)

1− βmaxm
+

µω(B + 1)

1− βmaxm
+ ω

=
(βmaxµ) ∗ (2µ2ω(B + 1))

(1− βmaxm)2
+

(2µβmax + 1) ∗ (µω(B + 1))

1− βmaxm
+ ω

With the same setting as above, we have:

KL(W· +∆W· |P ) ≤ BW

2σ2

=
16hln(24h)(2(βmaxµ)µ

3(B + 1) + 2(2µβmax + 1)(1− βmaxm)µ(B + 1) + (1− βmaxm)2)2

η2(1− βmaxm)4
BW

then we can finally we can get the upper bound as our OptEqs bound as our theorem shows.

A.3 PROOFS FOR THEOREM 3

Theorem 6. Assuming the inputs are bounded by B, the weight W’s ℓ2 are bounded by µ < 1
to ensure the convergence of the equilibrium and U obeys the spherical Gaussian distributions
(N (0,E[U2

i ]I)). Then we have the following conclusions for the expectation of the similarity for
x,y defined in Eqn (9) is,

κkerdeq(x,y) ≤
µ2D exp−γ(∥U∥2∥x−y∥2

F ) E[U2
i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
, (17)

κopteq(x,y) ≤
E[U2

i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (18)

where D = expγ∥W∥2B and βmax := max
x∈D

exp−γ∥Ux−Wz∥2
F < 1. θ0 = cos−1( ⟨x,y⟩

∥x∥∥y∥ ) is defined

as the angle between the samples.

Proof. Before the prove, we first introduce the following lemma:

Lemma 3. (Tsuchida et al., 2018) If U obeys the spherical Gaussian distributions of variance E[U2
i ]

and mean 0, then the expectation of the Similarity for the one-layer Nueral Network σ(Ux) is:

κNN (x,y) =
E[U2

i ]∥x∥∥y∥
2π

(sin θ0 + (π − θ0) cos θ0) (19)

where θ0 = cos−1( ⟨x,y⟩
∥x∥∥y∥ ).
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Letting m := ∥Ws∥2 = ∥W⊤W ∥2 < 1 and µ := ∥W ∥2 < 1 as our assumptions demonstrate and
neglecting the bias b for convenience. Then for our reformulated OptEqs, we have:

z∗
x⊤zy ≤ σ(Wszx)

⊤zy + σ(Ux)⊤zy

≤ µ2σ(zx)
⊤zy + σ(Ux)⊤zy

And we have
σ(Ux)⊤zy ≤ σ(Ux)⊤(Wzy) + σ(Ux)⊤σ(Uy)

≤ µ2σ(Ux)⊤zy + σ(Ux)⊤σ(Uy)

Then

σ(Ux)⊤zy ≤ σ(Ux)⊤σ(Uy)

1− µ2

z∗
x⊤zy ≤ σ(Ux)⊤σ(Uy)

(1− µ2)2

Therefore, we can conclude

κopteq(x,y) ≤
E[U2

i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2

For KerDEQ, we set βx = exp−γ∥Ux−Wz∥2
F and βmax := max

x∈D
exp−γ∥Ux−Wz∥2

F < 1

z∗⊤
x zy ≤ βmaxσ(Wszx)

⊤zy + βx∥W ∥2σ(Ux)⊤zy

≤ βmaxµ
2σ(zx)

⊤zy + βxµσ(Ux)⊤zy

Like OptEqs, we obtain the following equations for KerDEQ:

z∗⊤
x zy ≤ µ2βxβyσ(Ux)⊤σ(Uy)

(1− βmaxm)2

Therefore,

κkerdeq(x,y) ≤
µ2βxβyE[U2

i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2

And we have,
βxβy = exp−γ(∥Wzx−Ux∥2

F+∥Wzy−Uy∥2
F )

≤ exp−γ(∥W (zx−zy)−U(x−y)∥2
F )

≤ D exp−γ(∥U∥2∥x−y∥2
F ),

where D = expγ∥W∥2B . Then we have,

κkerdeq(x,y) ≤
µ2D exp−γ(∥U∥2∥x−y∥2

F ) E[U2
i ]∥x∥∥y∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2

A.4 EXPERIMENT SETTINGS

A.4.1 EXPERIMENTS ON CIFAR

For our KerDEQ, we parallel 6 branches with each branch taking the scale of 32, 16, 8, 8, 4, 4 and
using the average fusion method for branches’ fusion. The output channels for 6 branches are all 256
or 320 but the mid-channel number(output channel for weight U and W ) for the six branches are
64, 128, 128, 128, 256, 256 or 80, 160, 160, 160, 320, 320 with patch size 2 and c splitting is 8. And
the inner MLP inner Wh output 64 hidden dimension for each patch. We use the SGD ? optimizer
with momentum and step learning rate schedule for all the models. We also use RandomAug for all
the models for comparison.
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A.4.2 EXPERIMENTS ON IMAGENETTE AND IMAGENET-100

We take the input scale as 256 for all models. For our KerDEQ, we parallel 6 branches with each
branch taking the scale of 64, 32, 16, 16, 8, 8 after two downsampling convolutions and using the
average fusion method for branches’ fusion. The output channels for 6 branches are all 256 or
384 but the mid-channel number(output channel for weight U and W ) for the six branches are
32, 64, 128, 128, 256, 256 or 48, 96, 192, 192, 384, 384 with patch size 4 and c splitting is 4. And the
inner MLP inner Wh output 128 hidden dimension for each patch. We use the SGD optimizer with
momentum and step learning rate schedule for all the models. We also use RandomAug for all the
models for comparison.
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