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1 def GetCPDAG(Undirected graph U , DSep):
2 for every unshielded A—C—B ∈ U do
3 if C /∈ DSep(A,B) then
4 Orient A→ C ← B;
5 end
6 CPDAG G ← ApplyMeekRules(U);
7 return G;

1 def PCTest(Undirected graph U(V,E)):
2 s← 0;
3 while ∃(A—B) ∈ E s.t. |Ne(A) \ {B}| ≥ s do
4 for S ⊆ Ne(A) \ {B} s.t. |S| = s do
5 if A ⊥⊥ B|S then
6 U .removeEdge(A—B);
7 yield (A ⊥⊥ B|S);
8 break;
9 end

10 s← s+ 1;
11 end

1 Completely connected undirected graph U(V,E);
2 ∀A,B ∈ V, DSep(A,B)← null;
3 for (A ⊥⊥ B|S) ∈ PCTest(U) do
4 DSep(A,B)← S;
5 end
6 CPDAG G ← GetCPDAG(U , DSep);

Output: G,DSep

Figure 12: The PC algorithm (Spirtes et al., 2000,
Sec. 5.4.2).

Rule 1

Rule 2

Rule 3

Rule 4

Figure 13: Meek’s orientation rules.

Appendix A. Additional details on the PC algorithm

Definition 26 (CPDAG (Maathuis and Colombo, 2015, Pg. 5)) A set of DAGs that entail the
same set of CIs form an MEC. This MEC can be uniquely represented using a CPDAG. A CPDAG
is a graph with the same skeleton as each DAG in the MEC and contains both directed (→) and
undirected (—) edges. A directed edge A→ B means that the A→ B is present in every DAG in the
MEC. An undirected edge A—B means that there is at least one DAG in the MEC with an A→ B
edge and at least one DAG with the B → A edge.

The PC algorithm (Fig. 12) starts with a fully connected skeleton and runs CI tests to remove
edges. For each pair of nodes (A,B) that are adjacent in the skeleton, we run CIs of size s—starting
with s = 0 and then increasing it by one in each subsequent iteration—until the edge is removed or
the number of nodes adjacent to both A and B is less than s. Once the skeleton is found, UCs are
detected and then additional edges are oriented by repeatedly applying Meek’s rules (Fig. 13) until
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Input: Node X .
1 MB(X)← ∅;
// Forward Pass.

2 while MB(X) has changed do
3 for V ∈ V \ (MB(X) ∪ {X}) do
4 if V ⊥̸⊥ X|MB(X) then MB(X).add(V )

;
5 end
6 end
// Backward Pass.

7 for V ∈ MB(X) do
8 if V ⊥⊥ X|(MB(X) \ {X}) then

MB(X).remove(V ) ;
9 end

Output: MB(X)

Figure 14: The IAMB algorithm.

1 def Nbrs(CPDAG G, Target X):
2 parents← ∅;
3 children← ∅;
4 unoriented← ∅;
5 for V ∈ NeG(X) do
6 if X ← V ∈ G then
7 parents.add(V );
8 else if X → V ∈ G then
9 children.add(V );

10 else
11 unoriented.add(V );
12 end
13 return parents, children, unoriented;

Figure 15: The Nbrs subroutine used by SD.

no additional edges can be oriented. Under faithfulness, with access to a CI oracle, the output of PC
is a CPDAG encoding the MEC of the true DAG G∗.

Appendix B. Additional details for Section 4

In the example below, we demonstrate that there exist causal graphs with nodes for which mns does
not exist.

Example 6 (MNS does not exist) In the following graph, for node Y ∈ Desc(X), mnsX does not
exist because there is no subset of Ne(X) that d-separates Y from X .

X YM

A

B.1. Omitted Proofs for Section 4

Proposition 2 For any node V /∈ (Desc(X)∪Ne+(X)), mnsX(V ) exists and mnsX(V ) ⊆ Pa(X).

Proof Let Q = Desc(X) ∪ Ne+(X). Since Pa(X) blocks all backdoor paths from X , for every
V /∈ Q, we have V ⊥⊥ X|Pa(X). Therefore, for every V /∈ Q, there exists some subset S ⊆ Pa(X)
such that V ⊥⊥ X|S.

Proposition 3 [Uniqueness of MNS] For nodes V s.t. mnsX(V ) exists, it is unique.

Proof We will prove this by contradiction. Consider a node V with two MNSs: S1 ⊆ Ne(X) and
S2 ⊆ Ne(X) with S1 ̸= S2. If S1 ⊂ S2 or S2 ⊂ S1, then minimality is violated. Hence, going
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forward we will only consider the case where S1 \ S2 ̸= ∅ and S2 \ S1 ̸= ∅. Consider any node
A ∈ S1 \ S2. For S2 to be a valid MNS, some nodes in S2 \ S1 must block all paths from V to X
that contain A (this is because if this path were to be only be blocked by some nodes in S1, then
minimality of S1 will be violated as S1 \ {A} would also have been a valid MNS). This means that
there is a path from V to X through some nodes in S2 \ S1 that cannot be blocked by S1 (else these
nodes in S1 would have blocked the paths from V to A violating minimality of S1). This contradicts
the fact that S1 is a valid MNS. Therefore, we must have S1 = S2.

Proposition 4 [Eager Collider Check] For nodes A,B ∈ V \Ne+(X), any S ⊂ V \ {A,B,X}, if
(i) A ⊥⊥ B|S; and (ii) A⊥̸⊥ B|S ∪ {X}; then A,B /∈ Desc(X) and mnsX(A),mnsX(B) ⊆ Pa(X).

Proof We prove this by contradiction. Let’s say there is a child M of X such that M ∈ mnsX(B)
or M ∈ mnsX(A). First, note that if Conditions (i, ii) hold, then there is a path of the form A• → C
and B• → C and C → . . . X , where • means that there can be either an arrowhead or tail (i.e., there
can be either a directed path A→ . . .→ C or a backdoor path A← . . .→ C and likewise for B)
with C /∈ S. W.l.o.g., let’s say that M ∈ mnsX(B) (the argument for node A follows similarly).
Then there is a directed path from X to B through M (i.e., X →M → . . .→ B). There cannot be
a path B → . . .→M because then M will be a collider and therefore we will have M /∈ mnsX(B).
These components are illustrated in the figure below:

X

C
A

B

M

We now show that B /∈ Desc(X) (the argument for node A is the same). There cannot be a
directed path B → . . .→ C because otherwise a cycle B → . . .→ C → . . .→ X →M → . . .→
B gets created. Thus the path from B to C must be of the form B ← . . . → C. Note that there
is an active path between A and B through X (A• → . . . → C → . . . → X → M → . . . → B).
Since A ⊥⊥ B|S, there are two possibilities: (i) S contains X to block this path which contradicts
the definition of S (where X /∈ S); or (ii) S blocks all paths between A and X or between B and
X in which case A and B cannot become dependent when additionally conditioned on X thereby
violating Condition (ii). Therefore, we have that A,B /∈ Desc(X) and by Prop. 2, mnsX(A) and
mnsX(B) will be valid and only contain parents of X .

Claassen and Heskes (2012) use minimal (in)dependencies to construct three logical rules which
are sound and complete for performing causal discovery. While their algorithm cannot directly be
used for local causal discovery, we show below that Lemma 3 in their paper can be used to simplify
the proof of Eager Collider Check:
Proof [Alternative proof of ECC] Since we have A ⊥⊥ B|S and A ⊥̸⊥ B|S ∪ {X}, by Claassen
and Heskes (2012, Lemma 3), we have A,B /∈ Desc(X). Therefore, by Prop. 2, mnsX(A) and
mnsX(B) will be valid and only contain parents of X .
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B.1.1. PROOF OF CORRECTNESS OF LDECC UNDER THE CFA

Lemma 27 Consider a DAG G(V,E) and a node X ∈ V. Let A,B ∈ Pa(X) be two parents
of X such that A—B /∈ E. Then, for any S ⊆ V \ {A,B,X} such that A ⊥⊥ B|S, we have
Ch(X) ∩ S = ∅.

Proof We prove this by contradiction. Let’s say that there is child M ∈ S (the relevant component
of the graph is shown in the figure below).

X M

A

B

Since M is a child of X , conditioning on M opens up the path A→ X ← B rendering A and
B dependent conditioned on S. Therefore, we must have M /∈ S.

Theorem 5 [Correctness] Under the CFA and with access to a CI oracle, we have ΘLDECC
set
= Θ∗.

Proof We will prove the correctness of LDECC by showing that (i) every orientable neighbor of
the treatment X will get oriented correctly by LDECC; and (ii) every unorientable neighbor of the
treatment will remain unoriented.

We assume that the function FindMarkovBlanket finds the Markov blanket correctly under the
CFA. The IAMB algorithm, which we use in our experiments, has this property. Additionally, the
function RunLocalPC will also return the correct Ne(X) under the CFA and with a CI oracle.

Parents are oriented correctly. In PC, edges get oriented using UCs and then additional orienta-
tions are propagated via the application of Meek’s rules (Figure 13).

The simplest case is where two parents form a UC at X . Consider parents W1 and W2 that get
oriented because they form a UC W1 → X ←W2. Lines 7,8 will mark W1 and W2 as parents.

We will now consider parents that get oriented due to each of the four Meek rules and show that
LDECC orients parents for each of the four cases.

Meek Rule 1:
Consider a parent W that gets oriented due to the application of Meek’s rule 1. This can only

happen due to some UC A→ C ← B from which these orientations have been propagated (relevant
components of the graph are illustrated in the figure below).

X

C
A

B
W

Thus there is a directed path C → . . .→W → X . This would mean that W ∈ mnsX(A) and
W ∈ mnsX(B). Thus Line 16 will mark W as a parent.

Meek Rule 2:
Consider a parent W2 that gets oriented due to the application of Meek’s rule 2. In this case, we

have an oriented path W2 →W1 → X but the edge W2—X is unoriented (and Meek Rule 2 must
be applied to orient it).
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The first possibility is that the X ←W1 was oriented due to some UC A→ C ← B with a path
C → . . .→W1 (relevant components of the graph are illustrated in the figure below):

X

𝑊!

𝑊"

C
A

B

In this case, there would be a collider at W1: C → . . .→W1 ←W2. Thus if W1 ∈ mnsX(A),
then W2 ∈ mnsX(A) and thus LDECC will mark W2 as a parent in Line 16.

The other possibility is that X ←W1 was oriented due to a UC like W3 → X ←W1 but there
is an edge W3—W2 which causes the collider W2 → X ← W3 to be shielded and due to this, the
W2—X remained unoriented. However, by definition of the Meek rule, the edge W2 → W1 is
oriented. Thus, (i) either there is a UC of the form W2 →W1 ← C; or (ii) there is a UC from which
the W2 →W1 orientation was propagated. The relevant components of the graph for these two cases
are illustrated in the figures below.

X

𝑊!

𝑊"

C

𝑊#

X

𝑊!

𝑊" C
A

B

𝑊#

For Case (i), W2 ∈ mnsX(C) and for Case (ii), W2 ∈ mnsX(A) and W2 ∈ mnsX(B). In both
cases, LDECC will mark W2 as a parent in Lines 16.

Meek Rule 3:

Consider a parent W that gets oriented due to the application of Meek’s rule 3 (relevant compo-
nent of the graph is shown in the figure below).

X

𝑊!

𝑊"

W

By definition of the Meek rule, W1—W—W2 is a non-collider (because if it were a collider,
the edges would have been oriented since this triple is unshielded) and therefore for any S ⊆
V \ {W1,W2} such that W1 ⊥⊥W2|S, we have W ∈ S. Thus Line 9 will mark W as a parent.

Meek Rule 4:

Consider a parent W that gets oriented due to the application of Meek’s rule 4. The relevant
component of the graph is shown in the figure below.

X𝑊!

𝑊" W

The first possibility is that the orientations W2 → W1 → X were propagated from a UC
A→ C ← B with a path C → . . .→ W2 (the relevant components of the graph are shown in the
figure below).
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X𝑊!

𝑊" W

C

A B

In this case, due to the non-collider W2—W—X (because if it were a collider, the edges would
have been oriented since this triple is unshielded), we have W ∈ mnsX(A) and thus W will be
marked as a parent in Line 16.

The second possibility (similar to the Meek rule 2 case) is that W2 →W1 was oriented due to a
UC like Z → W1 ← W2 but there is an edge Z—W which shields the Z → W1—W causing the
W1—W edge to remain unoriented (the relevant components of the graph are shown in the figure
below).

X𝑊!

𝑊" W

Z

In this case, we would have W ∈ mnsX(Z) and thus W gets marked as a parent in Line 16.

Children are oriented correctly. We now similarly show that children of X get oriented correctly.
The simplest case is when there is a UC of the form X →M ← V . Since MB(X) and Ne(X)

are correct, the function GetUCChildren (Fig. 4) will mark M as a child.
Now, we consider each Meek rule one at a time and show that LDECC will orient children for

each rule.
Meek Rule 1:
Consider a child M that gets oriented due to the application of Meek’s rule 1. This can only

happen if there is some parent W that gets oriented and W—X—M forms an unshielded non-collider.
In this case, Line 19 will mark M as a child.

Meek Rule 2:
Consider a child M2 that gets oriented due to the application of Meek’s rule 2: there is an oriented

path X →M1 →M2 but the X—M2 edge is still unoriented (the relevant component of the graph
is shown in the figure below).

X

𝑀!

𝑀"

One possibility is that there is UC of the form V →M1 → X which orients the X →M1 edge
and V —M1—M2 is a non-collider which orients the M1 →M2 edge (the relevant components of
the graph are shown in the figure below).

X

𝑀!

𝑀"

V
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In this case, since V is a spouse (i.e., parent of child) of X , the function GetUCChildren (Fig. 4)
will mark M2 as a child.

Note that if the X →M1 was oriented due to a UC upstream of X via the application of Meek
rule 1, this would also cause the X → M2 edge to be oriented (and thus Meek rule 2 would not
apply).

The other possibility is that there might be a UC of the form M1 → M2 ← Z that can orient
M1 → M2. However, for the X → M1 edge to remain unoriented, there must be an edge Z—X
to shield the X—M2—Z collider. If this happens, Meek rule 3 would apply (which we handle
separately as shown next).

Meek Rule 3:
Consider a child M that gets oriented due to the application of Meek’s rule 3 (the relevant

component of the graph is shown in the figure below).

X

𝑊!

𝑊"

M

By definition of the Meek rule, W1—X—W2 is a non-collider (because if it were a collider, the
edges would have been oriented since this triple is unshielded) and since W1 →M ←W2 forms a
collider, we have W1 ⊥̸⊥W2|S ∪ {M} for any S s.t. W1 ⊥⊥W2|S. Thus Line 13 will mark M as a
child.

Meek Rule 4:
Consider a child M that gets oriented due to the application of Meek’s rule 4 (the relevant

component of the graph is shown in the figure below).

M𝑀!

𝑊 X

One possibility such that the W → M1 gets oriented leaving the edges W—X , X—M , and
X—M1 unoriented is if there is a UC of the form V →M1 ←W where there is an edge V —X to
shield the X—M1 edge (the relevant component of the graph is shown in the figure below).

M𝑀!

𝑊 X

V

Here the triple W—X—V must be a non-collider to keep the X—M edge unoriented (otherwise
applying Meek rule 1 from the UC W → X ← V would orient X →M ). So for any S such that
V ⊥⊥ W |S, we must have X ∈ S and V ⊥̸⊥ W |S ∪ {M}. Therefore, Line 13 will mark M as a
child.

The other possibility is that the W → M1 gets oriented due to Meek rule 3 (the relevant
component of the graph is shown in the figure below).

M𝑀!

𝑊 X
V

Z
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Here the Z—X and V —X must be present to keep the X—M1 edge unoriented (because
otherwise an unshielded collider would be created). Furthermore, the triple Z—X—V must be a
non-collider in order to keep the X—M edge unoriented (otherwise applying Meek rule 1 from the
UC Z → X ← V would orient X →M ). So for any S such that V ⊥⊥ Z|S, we must have X ∈ S
and V ⊥̸⊥ Z|S ∪ {M}. Therefore, Line 13 will mark M as a child.

No spurious orientations. Now we prove that nodes are never oriented the wrong way by LDECC.
We show that GetUCChildren (Fig. 4) will never orient a parent as a child. We prove this by

contradiction. Let’s say there is a parent W that is oriented as a child by GetUCChildren. This will
happen if there is a node D ∈ MB(X) \ Ne(X) s.t. D ⊥̸⊥W |DSep(D,X) with W /∈ DSep(D,X).
Thus, there would a path D—W . Since W is a parent, there would be a path D—W → X leading
to W ∈ DSep(D,X) which is a contradiction.

Line 8 can never mark a child as a parent since otherwise the CFA would be violated.
Line 13 will not mark a parent as a child. Consider a parent M that incorrectly gets marked as a

child by Line 13 (the relevant component of the graph is shown in the figure below).

X

𝑊!

𝑊"

M

For Line 13 to be reached, the if-condition in Line 10 must be True. This will happen if
W1—X—W2 is a non-collider. Thus at least one of W1 or W2 is a child. W.l.o.g., let’s assume that
W1 is a child. If that happens, a cycle gets created: X →W1 →M → X . Therefore M can never
be oriented by Line 13.

Line 16 cannot mark a child as a parent because of the correctness of the ECC (Prop. 4).
Line 9 will not mark a child as a parent. Both A and B from Line 7 are parents of X . By

Lemma 27, the set S in Line 9 cannot contain a child.
Line 19 will not add a child as a parent because otherwise the CFA would be violated.

B.2. Omitted proofs for computational requirements (Sec. 4.1)

Proposition 6 [PC vs LDECC] We have TLDECC ≤ TPC +O(|V|2) +O
(
|V| · 2|Ne(X)|) .

Proof LDECC performs O
(
|V| · 2|Ne(X)|) CI tests to find Ne(X). After that LDECC runs CI tests

like PC. The GetMNS function requires O(2|Ne(X)|) CI tests. The O(|V|2) term accounts for the
extra CI tests of the form A⊥̸⊥ B|S ∪ {X} we might run for ECCs.

Proposition 11 [LDECC upper bound] For a locally orientable DAG G∗, let D = maxV ∈MB+(X)

|Ne(V )| and S = maxP∈Pa(X)minα∈POC(P ) sep(α). Then TLDECC ≤ O(|V|max{S,D}).

Proof Since the graph is locally orientable, all neighbors of X will get oriented. The complexity
of discovering the neighbors of X is upper bounded by O(|V||MB+(X)|); that of discovering any
non-colliders of the form A—X—B is O(|V|D); and in order to unshield the colliders that orient
the parents, LDECC runs O(|V|S) tests. Thus the total number of CI tests is O(|V|max{S,D}).
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Proposition 12 [SD upper bound] For a locally orientable DAG G∗, let π : V → N be the
order in which nodes are processed by SD (Line 4 of SD). For P ∈ Pa(X), let CUC(P ) =
argminα∈POC(P ) π(α) denote the closest UC to P . Let C = maxP∈Pa(X) sep(CUC(P )), D =

maxV ∈MB+(X) |Ne(V )|, and E = max{V :π(V )<π(CUC(P ))} |Ne(V )|. Then TSD ≤ O(|V|max{C,D,E}).

Proof Like LDECC, the complexity of discovering the neighbors of X and non-colliders of the form
A—X—B is at most O(|V|D) tests. Then, in order to sequentially reach the closest UCs, SD runs
O(|V|E) tests. Once the collider is reached, SD runs O(|V|C) CI tests to unshield them.

B.3. Omitted proofs for faithfulness requirements (Sec. 4.2)

Proposition 17 PC will identify the MEC of G∗ if LF holds for all nodes.

Proof It is known that the PC algorithm correctly identifies the MEC of G∗ if AF and OF hold
for all nodes (see e.g., Zhang and Spirtes (2008)). AF for all nodes ensures that the skeleton is
recovered correctly. OF for all unshielded triples ensures that UCs are detected correctly and that the
orientations propagated via Meek’s rules are correct.

Proposition 18 [Faithfulness for PC and SD] PC and SD will identify Θ∗ if (i) LF holds ∀V ∈
MB+(X); (ii) ∀(A → C ← B) ∈ J∗, (a) LF holds for A, B, and C, and (b) LF holds for
each node on all paths C → . . . → V ∈ G∗ s.t. V ∈ Ne(X); (iii) For every edge A—B /∈ G∗,
∃S ⊆ (NeU (A) ∪ NeU (B)) s.t. A ⊥⊥ B|S; and (iv) OF holds for all unshielded triples in G∗.

Proof Similar to the proof of Thm. 5, we will prove this by showing that all neighbors of X get
oriented correctly and the unorientable neighbors remain unoriented.

The key ideas of the proof are as follows: (1) Condition (i) guarantees that the structure inside
MB+(X) is discovered correctly which further ensures that Meek rules 2-4 work correctly (since, as
shown in the proof of Thm. 5, they are only applied inside MB+(X)); (2) Condition (ii)(a) guarantees
that each UC in G∗ is detected and unshielded; (3) Condition (ii)(b) guarantees that orientations
from each UC in G∗ are propagated correctly to X; (4) Condition (iii) guarantees that the undirected
skeleton discovered by PC and SD is a subgraph of the skeleton of G∗: This is because PC and SD
remove an edge A—B by running CI tests by conditioning on neighbors of A and B in the current
undirected skeleton; and (5) Condition (iv) guarantees that in the skeleton recovered by PC and SD,
there are no incorrectly detected UCs.

Parents are oriented correctly. In PC and SD, edges get oriented using UCs and then additional
orientations are propagated via the application of Meek’s rules (Figure 13).

The simplest case is where two parents form a UC at X . Consider parents W1 and W2 that get
oriented because they form a UC W1 → X ←W2. Condition (i) ensures they are marked as parents.

We will now consider parents that get oriented due to each of the four Meek rules and show that
SD and PC orient parents for each of the four cases.

Meek Rule 1:
Consider a parent W that gets oriented due to the application of Meek’s rule 1. This can only

happen due to some UC A→ C ← B from which these orientations have been propagated (relevant
components of the graph are illustrated in the figure below).
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X

C
A

B
W

Thus there is a directed path C → . . .→W → X . By Condition (ii)(a), the UC A→ C ← B
will get detected correctly, and by Condition (ii)(b), the orientations will be propagated correctly
along this path.

Meek Rule 2:
Consider a parent W2 that gets oriented due to the application of Meek’s rule 2. In this case, we

have an oriented path W2 →W1 → X but the edge W2—X is unoriented (and Meek Rule 2 must
be applied to orient it). Condition (i) ensures that this relevant component of the graph is discovered
correctly.

Meek Rule 3:
Consider a parent W that gets oriented due to the application of Meek’s rule 3 (relevant compo-

nent of the graph is shown in the figure below).

X

𝑊!

𝑊"

W

Condition (i) ensures that this relevant component of the graph is discovered correctly.
Meek Rule 4:
Consider a parent W that gets oriented due to the application of Meek’s rule 4. The relevant

component of the graph is shown in the figure below.

X𝑊!

𝑊" W

Condition (i) ensures that this relevant component of the graph is discovered correctly.

Children are oriented correctly. We now similarly show that children of X get oriented correctly.
The simplest case is when there is a UC of the form X →M ← V . Condition (i) ensures that

this UC is discovered correctly.
Now, we consider each Meek rule one at a time and show that SD and PC will orient children for

each rule.
Meek Rule 1:
Consider a child M that gets oriented due to the application of Meek’s rule 1. This can only

happen if there is some parent W that gets oriented and W—X—M forms an unshielded non-collider.
Condition (i) ensures that this unshielded non-collider is discovered correctly.

Meek Rule 2:
Consider a child M2 that gets oriented due to the application of Meek’s rule 2: there is an oriented

path X →M1 →M2 but the X—M2 edge is still unoriented (the relevant component of the graph
is shown in the figure below).

X

𝑀!

𝑀"
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Condition (i) ensures that this relevant component of the graph is discovered correctly.
Meek Rule 3:
Consider a child M that gets oriented due to the application of Meek’s rule 3 (the relevant

component of the graph is shown in the figure below).

X

𝑊!

𝑊"

M

Condition (i) ensures that this relevant component of the graph is discovered correctly.
Meek Rule 4:
Consider a child M that gets oriented due to the application of Meek’s rule 4 (the relevant

component of the graph is shown in the figure below).

M𝑀!

𝑊 X

Condition (i) ensures that this relevant component of the graph is discovered correctly.

No spurious orientations. As argued in the preamble of the proof, Conditions (iii, iv) ensure
that there are no incorrectly detected UCs. Condition (ii) ensures that no incorrect orientations are
propagated from the detected UCs.

Proposition 20 [Faithfulness for LDECC] LDECC will identify Θ∗ if (i) LF holds ∀V ∈ MB+(X);
(ii) H ⊆ H∗; (iii) ∀(A,B,S) ∈ H , MFF holds for {A,B} \ Ne(X); and (iv) ∀(A,B,S) ∈ H∗ s.t.
there is a UC (A→ C ← B) ∈ G∗, we have (a) AF holds for A and B; and (b) (A,B,S) ∈ H .

Proof The proof is very similar to that of Theorem 5. The high-level idea is as follows. For any
nodes in Ne(X) that are oriented without using ECCs, Condition (i) will ensure they get oriented
correctly as they only depend on the structure inside MB(X). For nodes that get oriented via ECCs,
Condition (iv)(a) ensures that each UC eventually gets unshielded. For any UC A → C ← B in
Condition (iv), since AF holds for both A and B, Ne(A) and Ne(B) are detected correctly. Since
∃S ⊆ (Ne(A) ∪ Ne(B)) s.t. A ⊥⊥ B|S, we will eventually remove the A—B thereby unshielding
this collider. Condition (iv)(b) ensures that we run an ECC for this UC, i.e., the if-block in Line 15 is
entered. Next, by Condition (iii), since MFF holds for A and B, the GetMNS function will correctly
return the parents of X that this UC orients.

We assume that the function FindMarkovBlanket identifies the Markov blanket correctly under
Condition (i). The IAMB algorithm, which we use in our experiments, has this property. Additionally,
the function RunLocalPC will also identify the correct Ne(X) under Condition (i).

Parents are oriented correctly. The simplest case is where two parents form a UC at X . Consider
parents W1 and W2 that get oriented because they form a UC W1 → X ← W2. By Condition (i),
Lines 7,8 will mark W1 and W2 as parents.

We will now consider parents that get oriented due to each of the four Meek rules and show that
LDECC orients parents for each of the four cases.

Meek Rule 1:
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Consider a parent W that gets oriented due to the application of Meek’s rule 1. This can only
happen due to some UC A→ C ← B from which these orientations have been propagated (relevant
components of the graph are illustrated in the figure below).

X

C
A

B
W

As explained in the preamble, Conditions (iii, iv) ensure that ECCs mark parent correctly and
thus Line 16 will mark W as a parent.

Meek Rule 2:
Consider a parent W2 that gets oriented due to the application of Meek’s rule 2. In this case, we

have an oriented path W2 →W1 → X but the edge W2—X is unoriented (and Meek Rule 2 must
be applied to orient it).

The first possibility is that the X ←W1 was oriented due to some UC A→ C ← B with a path
C → . . .→W1 (relevant components of the graph are illustrated in the figure below):

X

𝑊!

𝑊"

C
A

B

By Conditions (iii, iv), LDECC will mark W2 as a parent in Line 16.
The other possibility is that X ←W1 was oriented due to a UC like W3 → X ←W1 but there

is an edge W3—W2 which causes the collider W2 → X ← W3 to be shielded and due to this, the
W2—X remained unoriented. However, by definition of the Meek rule, the edge W2 → W1 is
oriented. Thus, (i) either there is a UC of the form W2 →W1 ← C; or (ii) there is a UC from which
the W2 →W1 orientation was propagated. The relevant components of the graph for these two cases
are illustrated in the figures below.

X

𝑊!

𝑊"

C

𝑊#

X

𝑊!

𝑊" C
A

B

𝑊#

In both cases, by Conditions (iii, iv), LDECC will mark W2 as a parent in Lines 16.
Meek Rule 3:
Consider a parent W that gets oriented due to the application of Meek’s rule 3 (relevant compo-

nent of the graph is shown in the figure below).

X

𝑊!

𝑊"

W

By definition of the Meek rule, W1—W—W2 is a non-collider (because if it were a collider,
the edges would have been oriented since this triple is unshielded) and therefore for any S ⊆
V \ {W1,W2} such that W1 ⊥⊥W2|S, by Condition (i), we have W ∈ S. Thus Line 9 will mark W
as a parent.

Meek Rule 4:
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Consider a parent W that gets oriented due to the application of Meek’s rule 4. The relevant
component of the graph is shown in the figure below.

X𝑊!

𝑊" W

The first possibility is that the orientations W2 → W1 → X were propagated from a UC
A→ C ← B with a path C → . . .→ W2 (the relevant components of the graph are shown in the
figure below).

X𝑊!

𝑊" W

C

A B

In this case, due to the non-collider W2—W—X (because if it were a collider, the edges
would have been oriented since this triple is unshielded), we have W ∈ mnsX(A) and thus by
Conditions (iii, iv), W will be marked as a parent in Line 16.

The second possibility (similar to the Meek rule 2 case) is that W2 →W1 was oriented due to a
UC like Z → W1 ← W2 but there is an edge Z—W which shields the Z → W1—W causing the
W1—W edge to remain unoriented (the relevant components of the graph are shown in the figure
below).

X𝑊!

𝑊" W

Z

In this case, we would have W ∈ mnsX(Z) and thus by Conditions (iii, iv), W gets marked as a
parent in Line 16.

Children are oriented correctly. We now similarly show that children of X get oriented correctly.
The simplest case is when there is a UC of the form X → M ← V . By Condition (i), since

MB(X) and Ne(X) are correct, the function GetUCChildren (Fig. 4) will mark M as a child.
Now, we consider each Meek rule one at a time and show that LDECC will orient children for

each rule.
Meek Rule 1:
Consider a child M that gets oriented due to the application of Meek’s rule 1. This can only

happen if there is some parent W that gets oriented and W—X—M forms an unshielded non-collider.
By Condition (i), Line 19 will mark M as a child.

Meek Rule 2:
Consider a child M2 that gets oriented due to the application of Meek’s rule 2: there is an oriented

path X →M1 →M2 but the X—M2 edge is still unoriented (the relevant component of the graph
is shown in the figure below).
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X

𝑀!

𝑀"

One possibility is that there is UC of the form V →M1 → X which orients the X →M1 edge
and V —M1—M2 is a non-collider which orients the M1 →M2 edge (the relevant components of
the graph are shown in the figure below).

X

𝑀!

𝑀"

V

In this case, since V is a spouse (i.e., parent of child) of X , by Condition (i), the function
GetUCChildren (Fig. 4) will mark M2 as a child.

Note that if the X →M1 was oriented due to a UC upstream of X via the application of Meek
rule 1, this would also cause the X → M2 edge to be oriented (and thus Meek rule 2 would not
apply).

The other possibility is that there might be a UC of the form M1 → M2 ← Z that can orient
M1 → M2. However, for the X → M1 edge to remain unoriented, there must be an edge Z—X
to shield the X—M2—Z collider. If this happens, Meek rule 3 would apply (which we handle
separately as shown next).

Meek Rule 3:
Consider a child M that gets oriented due to the application of Meek’s rule 3 (the relevant

component of the graph is shown in the figure below).

X

𝑊!

𝑊"

M

By definition of the Meek rule, W1—X—W2 is a non-collider (because if it were a collider, the
edges would have been oriented since this triple is unshielded) and since W1 →M ←W2 forms a
collider, we have W1 ⊥̸⊥W2|S ∪ {M} for any S s.t. W1 ⊥⊥W2|S. Thus, by Condition (i), Line 13
will mark M as a child.

Meek Rule 4:
Consider a child M that gets oriented due to the application of Meek’s rule 4 (the relevant

component of the graph is shown in the figure below).

M𝑀!

𝑊 X

One possibility such that the W → M1 gets oriented leaving the edges W—X , X—M , and
X—M1 unoriented is if there is a UC of the form V →M1 ←W where there is an edge V —X to
shield the X—M1 edge (the relevant component of the graph is shown in the figure below).

M𝑀!

𝑊 X

V
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Here the triple W—X—V must be a non-collider to keep the X—M edge unoriented (otherwise
applying Meek rule 1 from the UC W → X ← V would orient X →M ). So for any S such that
V ⊥⊥W |S, by Condition (i), we must have X ∈ S and V ⊥̸⊥W |S ∪ {M}. Therefore, Line 13 will
mark M as a child.

The other possibility is that the W → M1 gets oriented due to Meek rule 3 (the relevant
component of the graph is shown in the figure below).

M𝑀!

𝑊 X
V

Z

Here the Z—X and V —X must be present to keep the X—M1 edge unoriented (because
otherwise an unshielded collider would be created). Furthermore, the triple Z—X—V must be a
non-collider in order to keep the X—M edge unoriented (otherwise applying Meek rule 1 from the
UC Z → X ← V would orient X →M ). So for any S such that V ⊥⊥ Z|S, by Condition (i), we
must have X ∈ S and V ⊥̸⊥ Z|S ∪ {M}. Therefore, Line 13 will mark M as a child.

No spurious orientations. Now we prove that nodes are never oriented the wrong way by LDECC.
By Condition (i), GetUCChildren (Fig. 4) will never orient a parent as a child.
Line 8 can never mark a child as a parent since otherwise Condition (i) would be violated.
Line 13 will not mark a parent as a child. Consider a parent M that incorrectly gets marked as a

child by Line 13 (the relevant component of the graph is shown in the figure below).

X

𝑊!

𝑊"

M

For Line 13 to be reached, the if-condition in Line 10 must be True. This will happen if
W1—X—W2 is a non-collider. Thus at least one of W1 or W2 is a child. W.l.o.g., let’s assume that
W1 is a child. If that happens, a cycle gets created: X →W1 →M → X . Therefore, Condition (i)
ensures that M can never be oriented by Line 13.

By Condition (ii), every ECC that is run is valid, and thus Line 16 cannot mark a child as a parent
because of the correctness of the ECC (Prop. 4).

Similarly, by Condition (i), Line 9 will not mark a child as a parent. Both A and B from Line 7
are parents of X . By Lemma 27, a child cannot d-separate two non-descendants nodes and thus the
set S in Line 9 cannot contain a child.

Line 19 will not add a child as a parent because otherwise Condition (i) would be violated.

We now provide sufficient faithfulness conditions for LDECC when ECCParents(A,B,S) is run
with check=True.

For a node V /∈ Ne+(X), let Q(V ) = {S ⊆ Ne(X) : V ⊥⊥ X|S} and Qmin(V ) = {S ∈
Q(V ) : |S| = minS′∈Q(V ) |S′|}. With H∗ and H as defined in Sec. 4.2, let H (check) = {(A,B,S) ∈
H : {A,B} ∩ Ne(X) = ∅; andQmin(A) ∩ Qmin(B) ̸= ∅}; let H (single) = {(A,B,S) ∈ H :
|{A,B} ∩ Ne(X)| = 1}; and let H (total) = H (check) ∪H (single).

Lemma 28 For a true graph G∗, let (A→ C ← B) be a UC such that (A,B,S) ∈ H∗ for some
subset S. Then, we have that mnsX(A) = mnsX(B).
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Proof Since (A,B,S) ∈ H∗, by Prop. 4, this UC can be used to orient parents via an ECC. We
begin by considering node A. By definition of MNS, we have A ⊥⊥ X|mnsX(A). Since the nodes
in mnsX(A) are on the path from X ← . . . ← C ← A, conditioning on mnsX(A) opens up the
A → C ← B path (because the nodes in mnsX(A) are descendants of C). Therefore, we have
mnsX(A) ⊆ mnsX(B). We can make a similar argument for node B to show that mnsX(B) ⊆
mnsX(A). Combining the two statements, we get mnsX(A) = mnsX(B).

Proposition 29 (Weaker faithfulness for LDECC) If ECCParents(A,B,S) is run with check=True,
then LDECC will identify Θ∗ if: (i) LF holds for every V ∈ Ne+(X); (ii) H (total) ⊆ H∗; (iii)
∀(A,B,S) ∈ H (total), MFF holds for {A,B} \ Ne(X); and (iv) ∀(A,B,S) ∈ H∗ s.t. there is a UC
(A→ C ← B) ∈ G∗, we have (a) AF holds for A and B; and (b) (A,B,S) ∈ H (total). Futhermore,
Conditions (i)-(iv) of this proposition are implied by the conditions of Prop. 20 (i.e., this is a weaker
sufficient faithfulness condition for LDECC).

Proof The can be proved in the same way as Prop. 20 with the crucial difference that the set of
ECCs that LDECC now runs is restricted to the set H (total). Condition (ii) now ensures that every
ECC that is run by LDECC is a valid ECC. We just have to show that even by restricting the ECCs to
H (total), we still run an ECC for the UCs. For this, we leverage Lemma 28 which states that the MNS
of nodes A and B for the UC A→ C ← B will be the same. Since, by Condition (iii), MFF holds
for such nodes A and B, the check GetMNS(A) = GetMNS(B) will succeed and thus, the ECCs for
these UCs will still be run.

Now, we show that the conditions of this proposition are implied by those of Prop. 20. Con-
ditions (i),(iv)(a) of both propositions are the same. Observe that H (total) ⊆ H . Therefore, Condi-
tions (ii),(iii) of Prop. 20 imply Conditions (ii),(iii) of this proposition. Finally, we show that Condi-
tion (iv)(b) of this proposition is also implied by the conditions of Prop. 20. Consider any (A,B,S) ∈
H∗ such that the UC A → C ← B ∈ G∗ and {A,B} ∩ Ne(X) = ∅. If |{A,B} ∩ Ne(X)| = 1,
then (A,B,S) ∈ H (single) ⊆ H (total). If {A,B} ∩ Ne(X) = ∅, then by Condition (iii) of Prop. 20,
MFF holds for A and B are therefore Qmin(A) ∩ Qmin(B) = mnsX(A) = mnsX(B). Thus,
(A,B,S) ∈ H (check) ⊆ H (total).

Proposition 23 [Testing faithfulness for LDECC] Consider running the algorithm in Fig. 8 before
invoking GetMNS(A) for some node A in LDECC. If the algorithm returns Fail, MFF is violated for
node A. If the algorithm returns Unknown, we could not ascertain if MFF holds for node A.

Proof The set Q contains all subsets S ⊆ Ne(X) s.t. A ⊥⊥ X|S (Lines 1–4). The set Qmin contains
those sets from Q that are minimal, i.e., for every S′ ∈ Qmin, there is no subset of S′ in Q. If
|Qmin| > 1, then there are multiple possible mnsX(A) violating the uniqueness of MNS (Prop. 3).
Thus we return Fail (Example 3 demonstrates this failure case).

Next, if Line 5 is reached, we know that |Qmin| = 1 and S is the single element from Qmin.
Line 7 returns Fail if there is a set S′ such that S ⊂ S′ and S′ ∈ Q, and an intermediate set S′′ such
that S ⊂ S′′ ⊂ S′ and S′′ /∈ Q (Example 4 demonstrates this failure case). Here MFF fails because if
S was the correct mnsX(A), then we must have S′′ ∈ Q. This is because, since S′ ∈ Q, there cannot
be an active path from A to X through nodes in S′ \ S (otherwise, we would not have A ⊥⊥ X|S).
Therefore, adding nodes in S′′ \ S to the conditioning set should not violate the independence. But
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since we have S′′ /∈ Q, there must be a faithfulness violation and S is not guaranteed to be equal to
mnsX(A).

If Line 9 is reached, we have not been able to detect an MFF violation. However, the algorithm
is not complete, i.e., a failure to detect a violation does not mean a violation does not exist. So we
return Unknown which signifies that we were unable to ascertain if MFF was violated for A.

The additional tests are performed in Line 1. Since these tests are performed for every subset
S ⊆ Ne(X), the number of extra CI tests is O(2|Ne(X)|).

Proposition 24 [Testing faithfulness for SD] Consider running the algorithm in Fig. 9 with each
UC detected by SD. If the algorithm returns Fail, then faithfulness is violated for SD. If the algorithm
returns Unknown, we could not ascertain if the faithfulness assumptions for SD hold.

Proof In Line 3, M contains every neighbor of X that gets oriented as a parent due to the input UC
A → C ← B by SD. If the faithfulness assumptions for SD did hold, then all nodes in M would
actually be parents of X . Thus there should be at least one subset S ⊆ Ne(X) such that A ⊥⊥ X|S
and M ⊆ S, and likewise for B. If such a subset is not found, this means that one of the nodes that
was marked as a parent was actually a child. In this case, Line 6 would return Fail. Similarly to the
LDECC case, if we are unable to detect a faithfulness violation, we return Unknown to indicate that
we could not determine if the faithfulness assumptions for SD hold. Since CI tests are performed for
every subset S ⊆ Ne(X), the number of extra CI tests is O(2|Ne(X)|).

Appendix C. Experiments

C.1. More details for the synthetic linear graph experiments.

We generate synthetic linear graphs with Gaussian errors, Nc = 20 covariates—non-descendants
of X and Y with paths to both X and Y —and Nm = 3 mediators—nodes on some causal paths
from X to Y . We generate edges between the different types of nodes with varying probabilities:
(i) We connect the covariates to the treatment with probability pcx; (ii) We connect one covariate to
another with probability pcc; (iii) We connect the covariates to the outcome with probability pcy; (iv)
We connect the treatment to the mediators with probability pmx; (v) We connect one mediator to
another with probability pmm; (vi) We connect the mediators to the outcome with probability pmy;
(vi) We connect a mediators to a covariate with probability pcm. For our experiments, we have used
pcx = pcc = pcy = pmx = pmm = pmy = 0.1 and pcm = 0.05.

For each node V , we generate data using the following structural equation:

v := b⊤V pa(v) + ϵV , ϵV ∼ N (0, σ2
V ),

where v and pa(v) are the realized values of node V and its parents, respectively; b⊤V ∈ R|Pa(V )|

is the vector denoting the edge coefficients; and ϵV is an independently sampled noise term. Each
element of bV is sampled uniformly from the interval [−1,−0.25] ∪ [0.25, 1] and σ2

V is sampled
independently from a uniform distribution U(0.1, 0.2).
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Figure 16: Results on synthetic linear Erdos-Renyi graphs.

C.2. Results on synthetic linear binomial (Erdos-Renyi) graphs.

We also test our methods on binomial graphs of size |V| = 30. In binomial graphs, an edge between
two nodes is generated with some probability pe. For our experiments, we use pe = 0.8. We generate
the data using linear Gaussian models where the model parameters are sampled in the same way
as Sec. C.1. We compare PC, SD, MB-by-MB, and LDECC based on accuracy (Fig. 16(a)), recall
(Fig. 16(b)), MSE (Fig. 16(c)), and number of CI tests (Fig. 16(d)) across four different sample sizes.

In terms of accuracy, MB-by-MB performs the best with LDECC-checks performing slightly
better than SD and PC. In terms of recall, PC performs the best with LDECC-checks, MB-by-MB,
and SD doing comparably. We also observe that LDECC-checks has higher accuracy and recall than
LDECC. LDECC-checks and MB-by-MB have the lower MSE than PC and SD Both variants of
LDECC have lower MSE than PC and SD and all four local causal discovery algorithms perform a
comparable number of CI tests (and fewer tests than PC).

C.3. Additional results on semi-synthetic graphs.

We also present results on the linear Gaussian MAGIC-IRRI graph from bnlearn (Fig. 17). We plot
the distribution of CI tests with a CI oracle by repeatedly setting each node as the treatment (capping
the maximum number of tests per node to 20000). We see that LDECC and MB-by-MB perform
differently across different nodes and outperform SD on most nodes (Fig. 17(a)). Next, we designated
the nodes G6003 and BROWN as the treatment and outcome, respectively. At four sample sizes, we
sample data from the graph 100 times (capping the maximum number of tests run by each algorithm
to 7000). In terms of both accuracy (Fig. 17(b)) and recall (Fig. 17(c)), LDECC-checks, SD, and
MB-by-MB perform comparably while LDECC does worse. In terms of Median SE, LDECC-checks,
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Figure 17: Results on the semi-synthetic MAGIC-IRRI graph.
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(b) Insurance graph.
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Figure 18: Comparison of PC, SD, MB-by-MB, and LDECC based on the number of CI tests (with a
CI oracle) on three discrete graphs from bnlearn.

SD, and MB-by-MB perform comparably (Fig. 17(d)) but LDECC performs substantially more CI
tests (on average) than SD and MB-by-MB (Fig. 17(e)).

Finally, we compare PC, SD, MB-by-MB, and LDECC based on the number of CI tests (with ac-
cess to a CI oracle) on three discrete graphs from bnlearn: Alarm (Fig. 18(a)), Insurance (Fig. 18(b)),
and Mildew (Fig. 18(c)). We plot the distribution of tests for SD, MB-by-MB, and LDECC by setting
each node in the graph as the treatment. We see that for most nodes on all three graphs, MB-by-MB
and LDECC outperform SD. MB-by-MB has the best performance for all three graphs and performs
well across all nodes.
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Input: Treatment X , Outcome Y , Z.
1 M← Ch(X) ∪ Uo(X);
2 I← {V : GetMNS(V ) = invalid};
3 PossDesc(X)←M∪ I∪{V ∈ V\ I : M∩GetMNS(V ) ̸= ∅};
4 if Z ∩ PossDesc(X) ̸= ∅ then return False ;
5 for Q ∈ (Pa(X) ∪ Uo(X)) \ Z do
6 if Q⊥̸⊥ Y |{X} ∪ Z then return False ;
7 end
8 return True;

Figure 19: Checking the Generalized Backdoor Criterion.

Appendix D. Covariate adjustment using local information

D.1. Checking the backdoor criterion.

The backdoor criterion (Pearl, 2009, Defn. 3.3.1) is a sufficient (but not necessary) condition for a
given subset of nodes Z to be a valid adjustment set with respect to a treatment X and an outcome Y .
Maathuis and Colombo (2015) extended this criterion to be applicable to various MECs including
CPDAGs. We begin by briefly introducing the existing results in Maathuis and Colombo (2015) and
then we prove that it is possible to check the backdoor criterion using only local information around
X and O(|V| · 2|Ne(X)|) additional CI tests.

For introducing existing results, let the true DAG be G∗ and let the corresponding CPDAG that
represents the MEC of G∗ be C∗ (see Defn. 26).

Definition 30 (Possibly causal path) A path A— . . .—B is said to be possibly causal if there is at
least one DAG in C∗ with a directed path from A to B: A→ . . .→ B.

Definition 31 (Visible and invisible edges (Maathuis and Colombo, 2015, Defn. 3.1)) All directed
edges in a CDPAG are said to be visible. All undirected edges in a CPDAG are said to be invisible.

Definition 32 (Backdoor path (Maathuis and Colombo, 2015, Defn. 3.2)) We say that path be-
tween X and Y is a backdoor path if this path does not have a visible edge out of X .

Definition 33 (Definite non-collider (Maathuis and Colombo, 2015, Defn. 3.3)) A nonendpoint ver-
tex Vj on a path < . . . , Vi, Vj , Vk, . . . > in a CPDAG is a definite non-collider if the triple
< Vi, Vj , Vk > is unshielded and the edges Vi—Vj and Vj—Vk are undirected.

Definition 34 (Definite status path (Maathuis and Colombo, 2015, Defn. 3.4)) A nonendpoint ver-
tex B on a path p in a CPDAG is said to be of a definite status if it is either a collider or a definite
non-collider on p. The path p is said to be of a definite status if all nonendpoint vertices on the path
are of a definite status.

Definition 35 (Possible Descendant) A node A is a possible descendant of a node V iff there is a
possibly causal path from V to A.
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Definition 36 (Generalized backdoor criterion (GBC) (Maathuis and Colombo, 2015, Defn. 3.7))
A set of variables Z satisfies the backdoor criterion relative to (X,Y ) in a CPDAG if the following
two conditions: (1) Z does not contain any possible descendants of X; and (2) Z blocks every
definite status backdoor path from X to Y .

Intuitively, the GBC checks whether Z satisfies the backdoor criterion for every DAG in an MEC.
Having introduced the GBC, we extend this result and prove that it is possible to check this criterion
using only local information. Our procedures are related to existing methods in prior work used
for covariate selection (VanderWeele and Shpitser, 2011; Entner et al., 2013) which also use very
similar testing strategies. However, these works make slightly stronger assumptions on the known
partial orderings (e.g., that all covariates are pre-treatment) whereas our goal is to demonstrate that a
similar testing strategy along with the output of a local causal discovery algorithm is also sufficient
to determine if a given subset is a valid adjustment set. These prior works also accommodate latent
pre-treatment variables whereas we make the assumption of causal sufficiency throughout our work.

Definition 37 (Unoriented nodes) We define unoriented nodes, denoted by Uo(X), as the set of
nodes V ∈ Ne(X) such that the edge X—V is invisible in C∗.

Importantly, both local discovery procedures, SD and LDECC, find Uo(X). These nodes are
stored in the variable unoriented in the algorithms (See Figs. 3,5).

Lemma 38 Let M = Ch(X) ∪ Uo(X) and I = {V : mnsX(V ) = invalid}. The possible
descendants of a node X are PossDesc(X) = M ∪ I ∪ {V ∈ V \ I : M ∩ mnsX(V ) ̸= ∅}.

Proof The nodes in M are possible descendants of X . By Prop. 2, nodes in I are also possible
descendants. For any possible descendant V /∈ Ne+(X) ∪ I of X , there must be a path X →M →
. . . → V , where M ∈M, in at least one DAG. Therefore, it must be the case that for every such
node V , we have M ∩mnsX(V ) ̸= ∅.

Proposition 39 (Checking the GBC) Let M = Ch(X) ∪ Uo(X), where Uo(X) is defined in
Defn. 37. Let PossDesc(X) = M ∪ {V : M ∩ mnsX(V ) ̸= ∅}. Consider a subset of nodes Z. Let
Q = (Pa(X) ∪ Uo(X)) \ Z. Then Z satisfies the backdoor criterion for every DAG in the MEC iff:
(i) Z ∩ PossDesc(X) = ∅, and (ii) ∀Q ∈ Q, Q ⊥⊥ Y |{X,Z}. The algorithm for checking the GBC
is given in Fig. 19 and it performs O(|V| · 2|Ne(X)|) additional CI tests.

Proof By Lemma 38, PossDesc(X) contains the possible descendants of X . Condition (i) is
therefore necessary since the descendants of X cannot satisfy the backdoor criterion. Thus, for the
rest of the proof, we assume that Z ∩ PossDesc(X) = ∅.

We first prove the forward direction: If Z is a valid adjustment set then ∀Q ∈ Q, Q ⊥⊥ Y |{X,Z}.
Since Z is a valid adjustment set, Z blocks all possibly backdoor paths in every DAG in the MEC.
Therefore, we have ∀Q ∈ Q, Q ⊥⊥ Y |{X,Z} because otherwise there will at least one DAG where
the path X ← Q— . . .→ Y will be open for some Q ∈ Q.

Next, we prove the backward direction: if ∀Q ∈ Q, Q ⊥⊥ Y |{X,Z}, then Z is a valid adjustment
set. Firstly, for all P ∈ Pa(X) ∩ Z (i.e., P /∈ Q), all backdoor paths of the form X ← P— . . .—Y
are blocked because P ∈ Z. Since for all Q ∈ Q, we have Q ⊥⊥ Y |{X,Z}, all possible backdoor
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paths X ← Q— . . .→ Y are blocked by Z and therefore it is a valid adjustment set in every DAG
of the MEC.

Finally, we perform O(|V| · 2|Ne(X)|) additional CI tests in Lines 2,3 to find PossDesc(X)
(because for every node, we can find its MNS in O(2|Ne(X)|) tests). Next, in Line 6, since we only
run tests for N ∈ (Pa(X) ∪ Uo(X)) \ Z, we perform O(|Ne(X)|) extra CI tests.

D.2. Finding the optimal adjustment set.

A given DAG can have multiple valid adjustment sets. Henckel et al. (2019)[Sec. 3.4] introduce a
graphical criterion for linear models for determining the optimal adjustment set, i.e., the set with the
lowest asymptotic variance. This criterion was later shown to hold non-parametrically (Rotnitzky
and Smucler, 2019). We begin by introducing the existing results and then prove that we can find the
optimal adjustment set using only local information and O(|V|) additional CI tests (see (Fig. 20)).

Like the previous section, let the true DAG be G∗ and let the corresponding CPDAG that
represents the MEC of G∗ be C∗ (see Defn. 26).

Definition 40 (Possible causal nodes (Henckel et al., 2019, Sec. 3.4, Pg. 29)) The causal nodes rel-
ative to (X,Y ), denoted by posscn(X,Y ), are all nodes on possibly causal paths from X to Y ,
excluding X .

Definition 41 (Forbidden nodes (Henckel et al., 2019, Sec. 3.4, Pg. 29)) The forbidden nodes rel-
ative to (X,Y ), denoted by forb(X,Y ), are defined as

forb(X,Y ) = PossDesc(posscn(X,Y )) ∪ {X}.

Definition 42 (Optimal adjustment set (Henckel et al., 2019, Defn. 3.12)) The optimal adjustment
set relative to X,Y is defined as

O(X,Y, C∗) = Pa(posscn(X,Y )) \ forb(X,Y ).

We now show that it is possible to find the optimal adjustment set using only local information.

Lemma 43 Given a CPDAG C, the optimal adjustment set does not contain PossDesc(X).

Proof As stated in Defn. 42, the optimal adjustment set is O(X,Y, C∗) = Pa(posscn(X,Y )) \
forb(X,Y ). Therefore, we only need to show that possible descendants of X that are not on a
causal path from X to Y cannot be in O (otherwise they will be in forb(X,Y )). Consider a node
V ∈ Desc(X) not on a causal path from X to Y . This node cannot be a parent of any node in
cn(X,Y ). This is because if that happens, then V must also belong to cn(X,Y ) which leads to a
contradiction.

Corollary 1 The optimal adjustment set satisfies the GBC.

Proof By Lemma 43, the optimal adjustment set does not contain any possible descendants of X .
Furthermore, by definition, it is a valid adjustment set and therefore blocks all backdoor paths from
X to Y . Therefore, it satisfies the GBC.
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Input: Treatment X , Outcome Y , Pa(X),Ch(X),
unoriented Uo(X).

1 M← Ch(X) ∪ Uo(X);
2 I← {V : GetMNS(V ) = invalid};
3 PossDesc(X)←M ∪ I ∪ {V ∈ V \ I :

M ∩ GetMNS(V ) ̸= ∅};
4 Z← (V \ PossDesc(X));
5 O← HenckelPrune(X,Y,Z) (Henckel et al., 2019,

Alg. 1) (Fig. 21) ;
6 for M ∈ (Pa(X) ∪ Uo(X)) \O do
7 if M ⊥̸⊥ Y |{X,O} then return noValidAdj;
8 end

Output: O

Figure 20: Finding the optimal adjustment set.

1 def HenckelPrune(Treatment X ,
Outcome Y , Subset Z):

2 Z′ ← Z;
3 for Z ∈ Z do
4 if Y ⊥⊥ Z|{X} ∪ (Z′ \ {Z})

then Z′ ← Z′ \ {Z};
5 end
6 return Z′;

Figure 21: The HenckelPrune function.

Proposition 44 (Optimal adjustment set) Consider the algorithm in Fig. 20. It performs O(|V| ·
2|Ne(X)|) CI tests and (i) returns noValidAdj if there is no valid adjustment that applies to all
DAGs in the MEC; (ii) else, returns the optimal adjustment set that is valid for all DAGs in the MEC
(denoted by O).

Proof In Line 4, Z = V \ PossDesc(X) represents the largest possible set that could satisfy the
GBC, if any such set exists. Therefore, this set Z would be a superset of the optimal adjustment
set, if it exists (by Cor. 1). In Line 5, we invoke the pruning procedure in Henckel et al. (2019,
Algorithm 1) which outputs the optimal adjustment when starting from a superset (see Fig. 21). In
Line 6, we verify that the pruned set O is a valid adjustment set (see Prop 39). Henckel et al. (2019,
Theorem 3.13(i)) also prove that an optimal adjustment set exists iff there is some valid adjustment
set. Thus, if Line 7 is reached, it means that there is no valid adjustment set that applies to every
DAG in the MEC.

We perform O(|V| · 2|Ne(X)|) CI tests to find PossDesc(X). The HenckelPrune function and
Line 6 perform O(|V|) additional CI tests.
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