
439

Appendix440

Table of Contents441
442

A Simulation Environment 12443

A.1 Object dataset preprocessing . 12444

A.2 Collecting goal poses . 13445

A.3 Representing the goal as per-point goal flow 13446

A.4 Success rate definition . 14447

A.5 Observation . 14448

A.6 Action . 15449

B Algorithm and Training Details 15450

B.1 HACMan (Ours) . 15451

B.2 Baselines . 16452

C Supplementary Experiment Results 17453

C.1 Additional ablations . 17454

C.2 Training curves and tables . 17455

C.3 Extending Motion Parameters . 19456

C.4 Experiments on Cluttered Environments . 19457

C.5 Effect of longer training time . 20458

C.6 Effect of longer episode lengths . 20459

C.7 Per-category result breakdown . 20460

D Real Robot Experiments 22461

D.1 Real robot setup . 22462

D.2 Analysis . 23463

D.3 Failure cases . 23464

E More discussion on the related work 23465

E.1 Compared to Chen et al. [17, 18] . 23466

E.2 Compared to Cheng et al. [1], Hou and Mason [2] 24467
468
469470

A Simulation Environment471

A.1 Object dataset preprocessing472

We use the object models from Liu et al. [35]. Before importing the object models to Mu-473

Joco, we perform convex decomposition using V-HACD (https://github.com/kmammou/474

v-hacd) and generate watertight meshes using Manifold (https://github.com/hjwdzh/475

Manifold). The objects are first scaled to 10 cm according to the maximum lengths along x, y,476

and z axis. The object sizes are randomized with an additional scale within [0.8, 1.2] for the “All477

Objects” task variants.478

We filter out a part of the objects in the original dataset due to simulation artifacts such as wall479

penetration and unstable contact behaviors. For example, some of the long and thin objects can be480

pushed into the walls and bounce back like springs. Some of the objects cannot remain stable on the481

table. The filtering procedure proceeds as follows: 1) we drop an object with an arbitrary quaternion482

and translation for 100 times; 2) we calculate the percentage of rollouts where the objects are still483

unstable after 80 simulation steps; 3) we filter out objects with larger than 10% instability rate. We484

also filter out flat objects because they are hard to flip. Flat objects are defined as objects for which485

the ratio between the second smallest dimension to the smallest dimension is larger than 1.5. After486

12

https://github.com/kmammou/v-hacd
https://github.com/kmammou/v-hacd
https://github.com/kmammou/v-hacd
https://github.com/hjwdzh/Manifold
https://github.com/hjwdzh/Manifold
https://github.com/hjwdzh/Manifold

Figure 8: Training objects. 32 objects used in training.

Figure 9: Evaluation objects (unseen in-
stance). 7 objects used in unseen instance eval-
uations. These instances are from the same cat-
egories as the training objects.

Figure 10: Evaluation objects (unseen cate-
gory). 5 objects used in unseen category eval-
uations. They come from 4 randomly chosen
categories.

filtering, we are left with 44 objects. We split the 44 objects into three datasets: train (32 objects),487

unseen instances (7 objects), and unseen categories (5 objects). The object models of the three488

datasets are visualized in Fig. 8, Fig. 9 and Fig. 10 respectively. The Cylindrical Objects used489

in the experiments is a subset of the All Objects dataset. Cylindrical Objects consist of 9 train490

objects, 3 unseen instance objects, and 4 unseen category objects.491

A.2 Collecting goal poses492

To collect stable goal poses, we sample an SE(3) object pose in the air above the center of bin, drop493

the object in the bin, and then wait until it becomes stable to record the pose. We collect 100 goal494

poses for each object. At the beginning of each episode, a goal is sampled from the list of stable495

poses. Furthermore, we randomize the location of the sampled stable goal pose within the bin.496

A.3 Representing the goal as per-point goal flow497

As mentioned in Section 5.3, we represent the goal as the “goal flow” of each object point from the498

current point cloud to the corresponding point in the transformed goal point cloud. In other words,499

suppose that point xi in the initial point cloud corresponds to point x0
i in the goal point cloud; then500

the goal flow is given by �xi = x0
i � xi. The goal flow �xi is a 3D vector which is concatenated501

to the other features of the input point cloud to represent the goal. In the ablations in Appendix C.1,502

we show that such a representation of the goal significantly improves training, compared to other503

goal representations such as concatenating the goal point cloud with the observed point cloud.504

13

Figure 11: Camera locations in simulation.

In order to compute the flow to the goal, we need to estimate correspondences between the ob-505

servation and the goal. In simulation, we calculate the goal flow based on the ground truth cor-506

respondences, based on the known object pose. In the real robot experiments, we estimate the507

correspondences using point cloud registration methods (see Appendix D for details).508

Further, for training the RL algorithm, we need some measure of the distance between the initial509

pose and the goal pose as the reward. Rather than computing a weighted average of the translation510

and rotation distance (which requires a weighting hyperparameter), we instead define the reward at511

each timestep rt as the negative of the average goal flow: rt = � 1
N

PN
i=1 ||�xi||, in which || · ||512

denotes the L2 distance and �xi is the “goal flow” as defined above. This computation is similar to513

the “matching score” [36] or “PLoss” [37] used in previous work, except here we use it as a reward514

function.515

A.4 Success rate definition516

An episode is marked as a success when the average distance of the corresponding points between517

the object and the goal is smaller than 3 cm. More specifically, this is calculated by the average518

norm of the per-point goal flow vectors as described in Appendix A.3. The episode terminates when519

it reaches a success. If the episode does not reach a success within 10 steps, it is marked as a failure.520

We include an additional experiment on longer episode length in Appendix C.6.521

A.5 Observation522

The observation space includes a point cloud of the entire scene X . It contains background points523

X b and object points X obj . Note that we move the gripper to a reset pose after every action before524

taking the next observation. Thus, the gripper is not observed in the point cloud. To get the point525

cloud, we set three cameras around the bin (Fig. 11). The depth readings from the cameras are526

converted to a set of point locations in the robot base frame and combined.527

The object points are then downsampled with a voxel size of 0.005 m ⇥ 0.005 m ⇥ 0.005 m and the528

background points are downsampled with a voxel size of 0.02 m ⇥ 0.02 m ⇥ 0.02 m. We empirically529

find that using a slightly denser object point cloud may increase the performance. More specifically,530

using a 0.005 m ⇥ 0.005 m ⇥ 0.005 m voxel downsample is slightly better than 0.01 m ⇥ 0.01 m531

⇥ 0.01 m. We suspect that the policy can perform more precise manipulation of the object with a532

denser point cloud.533

After downsampling, we estimate the normals of the object points using Open3D534

(http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.535

estimate_normals.html). The estimated normals will be used during action execution536

(discussed in the next section).537

As mentioned in Section 5.3 and Appendix A.3, the feature of each point contains the goal flow538

and the segmentation mask (foreground vs background). The goal flow of the object point is cal-539

14

http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html

culated according to Section A.3. The goal flow of the background point is set to zero. We obtain540

the segmentation labels of the object points and the background points from Robosuite[33] dur-541

ing simulation. Details of obtaining segmentation labels in real robot experiments are discussed in542

Appendix D.543

A.6 Action544

As mentioned in Section 5, the proposed method uses an action space with a contact location selected545

from the object points and a set of motion parameters. We discuss the implementation details of546

executing such an action in the simulation environment in this section. Note that we use a floating547

gripper as the robot in simulation since we only focus on gripper interactions with the objects.548

Once the policy selects a point on the object point cloud, we obtain the corresponding location549

and estimated normal of the point as described in the previous section. The robot first moves to550

a “pre-contact” location which is 2 cm away from the contact location along the surface normal.551

In simulation, this is implemented by directly setting the gripper to the desired pose. In real ex-552

periments, we adopt a workaround solution discussed in Appendix D. If the gripper encounters a553

collision at the desired pose, we mark this action as failure and skip the remaining action execution554

procedure. After reaching the pre-contact location, the gripper will approach to the desired contact555

location using a low-level controller.556

After that, the robot will execute the motion parameters which is the end-effector delta position557

command that was output by the policy. For the delta actions, we use an action scale of 2 cm.558

The delta action is executed with an action repeat of 3. We use Operation Space Controller with559

relatively low gains to allow compliant contact-rich motions with the object. Note that we only560

consider translation commands (3 dimensions) without rotation in the main experiments because561

it leads to sufficiently complex object motion for our task. Appendix C.3 discusses the effect of562

including rotation in the gripper movements.563

The gripper may not exactly reach the desired location in both sim and real, due to the compliant564

low-level controller and the gripper geometry. We consider this imperfect execution as a part of the565

environment dynamics. We do not enforce assumptions such as keeping the contact while executing566

the motion parameter or avoiding other contact points. Avoiding such assumptions on contacts is a567

strength of the proposed method compared to some of the classical methods [1, 2].568

B Algorithm and Training Details569

B.1 HACMan (Ours)570

HACMan is implemented as a modification on top of TD3 [6] based on the implementation571

from Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3). We use572

PointNet++ segmentation-style backbones for both the actor and the critic using the implementation573

from PyG (https://pytorch-geometric.readthedocs.io). Weights are not shared574

between the actor and the critic. Hyperparameters are included in Table 3. The actor and the critic575

use the same network size and the same learning rate. To improve the stability of policy training,576

we clamp the target Q-values according to an estimated upper and lower bound of the return for the577

task. The location policy temperature � is described in Eqn. 4.578

Table 3: Hyperparameters.
Hyperparameters Values
Initial timesteps 10000
Batch size 64
Discount factor (�) 0.99
Critic update freq per env step 2
Actor update freq per env step 0.5
Target update freq per env step 0.5
Learning rate 0.0001
MLP size [128, 128, 128]
Critic clamping [-20, 0]
Location policy temperature (�) 0.1

15

https://github.com/DLR-RM/stable-baselines3
https://pytorch-geometric.readthedocs.io

B.2 Baselines579

The baselines share the same code framework as HACMan. We discuss their differences with HAC-580

Man in this section.581

Regress Contact Location. Unlike HACMan, this baseline does not use the object surface for582

contact point selection. Instead, it directly predicts a location (3 dimensions) and a motion parameter583

(3 dimensions, represented as a delta end-effector movement). For each action execution, the end-584

effector moves to the selected location, moves according to the motion parameters, and then resets to585

the default pose. To improve the performance of this baseline, we project the contact location output586

to be within the bounding box of the object. Thus, in this baseline, for a location output of the587

policy, a value of 0 corresponds to the center of the object along a specific dimension, while 1 and588

�1 represent the maximum and minimum boundaries of the bounding box along that dimension,589

respectively. Since the location output is no longer a point selected from the object surface, we590

can no longer use the surface normal vector to determine the approach direction as in HACMan.591

Instead, this baseline always approaches the location from the top at a height equal to the maximum592

side length of the object bounding box.593

No Contact Location. This baseline does not use the idea of a contact point. Instead, the policy only594

predicts a motion parameter (3 dimensions, represented as a delta end-effector movement). For each595

action execution, the end-effector moves according to the motion parameter starting from where596

it ends after the previous action, without resetting to the default pose. To reduce the exploration597

difficulties, we make two additional changes: 1) we always start the end-effector right above the598

object (at a height equal to the maximum side length of the object bounding box) at the beginning599

of an episode, and 2) we add an extra term to the reward function that penalizes the end-effector for600

being too far from the object,601

Jdist =

⇢
��dist(dmin � 0.05), dmin > 0.05 m
0, otherwise (8)

where dmin is the minimum distance from the end-effector to the object point cloud vertices, and602

�dist is the weight for this reward term.603

Point Cloud. Unlike HACMan, these point cloud baselines use PointNet++ classification-style604

backbones from PyG (https://pytorch-geometric.readthedoc.io). For each point605

cloud, it extracts a single global feature vector instead of per-point feature.606

State. In the state-based baselines, the input consists of the pose of the current object, the goal, and607

optionally the end-effector if the baseline is using “No Contact Location”. Each pose is a vector608

(dim=7) that consists of a position (dim=3) and a quaternion (dim=4). The model concatenates all609

the pose vectors into a single vector as the input to an MLP.610

We report the best results of the baselines in the paper by searching over different hyperparameters611

for each baseline, including learning rate, actor update frequency, initial timesteps, and EE distance612

weight �dist. The best hyperparameters for each baseline that are different from HACMan are613

summarized in Table 4; any hyperparameter not listed in Table 4 is the same as our method (Table 3).614

Table 4: Baseline-specific Hyperparameters.

Baselines Hyperparameters Values
Regress Contact Location (Point Cloud) Actor update freq per env step 0.25
No Contact Location (Point Cloud) Actor update freq per env step 0.25

EE Distance Weight �dist 1
No Contact Location (State) EE Distance Weight �dist 5

16

https://pytorch-geometric.readthedoc.io

C Supplementary Experiment Results615

C.1 Additional ablations616

We perform additional ablation studies to analyze each component of the proposed method with all617

the variants of the object pose alignment task. The results of the ablations are summarized in Fig. 12.618

Figure 12: Additional ablations. All of the components of our method are essential to achieve the
best performance when the task becomes more difficult.

Effect of Contact Location: To test the hypothesis that contact location matters for non-prehensile619

manipulation, we design a “Random Location” ablation: the policy randomly selects a contact620

location on the object instead of learning to predict a contact location. From Fig. 12, we observe a621

performance drop for not predicting the contact location even for the simplest task variant.622

Effect of Goal Representations: As described in Section 5.3 and Appendix A.3, in our method,623

we represent the goal by first computing the correspondence between the observation and goal point624

clouds and concatenating a per-point “goal flow” to the observation. We include two alternative goal625

representations to justify the use of goal flow in our pipeline: “No Flow (Goal PC”) concatenates626

the goal point cloud with the observed point cloud [17, 18]. We use an additional segmentation627

label in the point features to distinguish the goal points from the observed points. From Fig. 12,628

this ablation only works well on planar goals for this task. In “No Flow (Goal Transformation)”,629

we represent the goal as the transformation between the current observation pose and the goal pose.630

We represent this transformation as a 7D vector that includes a translation vector and a quaternion.631

We concatenate the 7D goal pose to the observation at all of the object points. Note that, similar to632

our method, this baseline also requires computing correspondences between the observation and the633

goal. This approach performs well but slightly worse than our method in the last two task variants.634

Effect of Actor Map: Instead of using an Actor Map which has per-point outputs, this ablation uses635

an actor that outputs a single vector of motion parameters while keeping the Critic Map. This is636

different from the baselines in the previous section that remove both the Actor and Critic Maps. In637

the “No Actor Map” experiments, we observe a relatively minor performance drop compared to the638

full method. Nonetheless, using the per-point action output from an Actor Map instead of a single639

output may allow the agent to reason more effectively about different actions for different contact640

locations, such as the multimodal solution shown in Fig. 6 (middle).641

C.2 Training curves and tables642

In this section, we include the full training results for all the methods with additional task variants.643

Fig. 13 and Fig. 14 include the training curves for the baselines and the ablations. Table 5 and Table 6644

are recorded at 200k environment interaction steps from the training curves for all the methods. The645

numbers in the tables are used to generate the bar plots in Fig. 4 and Fig. 12.646

Note we also interpolate between the tasks ”Planar Goals” and ”6D Goals” and include an additional647

task configuration with a fixed initial object pose and a randomized 6D goal, “6D Goals (Fixed648

Init)”. This task configuration is combined with the Single Object dataset and the Cylindrical Object649

dataset. Thus, we include 7 variants in total (5 variants in the main paper).650

As discussed in Section 7, the baselines and ablations have poor performance when the task becomes651

more challenging. Our method achieves the best converged performance across all task variants652

while being more sample efficient.653

17

Figure 13: Baselines. It shows success rates on the train dataset over environment steps. The shaded
area represents the standard deviation across three training seeds.

Figure 14: Ablations. It shows success rates on the train dataset over environment steps. The shaded
area represents the standard deviation across three training seeds.

Table 5: Baselines. We compare our method with baselines with different action representations and
observations. Our approach outperforms the baselines, with a larger margin for more challenging
tasks. The success rate is reported with the mean and standard deviation across three seeds.

Methods
No Contact Location Regress Contact LocationObject Dataset Task Configuration
State Point Cloud State Point Cloud Ours

Single Object
Planar Goal 0.812 ± .012 0.973 ± .016 1.000 ± .000 0.996 ± .005 1.000 ± .000
6D Goal (Fixed Init) 0.003 ± .000 0.020 ± .002 0.060 ± .014 0.971 ± .005 0.982 ± .004
6D Goal 0.000 ± .000 0.009 ± .001 0.573 ± .015 0.991 ± .004 0.997 ± .003
Planar Goal 0.361 ± .019 0.107 ± .007 0.990 ± .002 0.924 ± .027 0.961 ± .003
6D Goal (Fixed Init) 0.001 ± .001 0.021 ± .002 0.264 ± .017 0.324 ± .014 0.885 ± .004Cylindrical Objects
6D Goal 0.006 ± .002 0.035 ± .002 0.258 ± .010 0.187 ± .012 0.879 ± .014

All Objects 6D Goal 0.012 ± .004 0.016 ± .009 0.094 ± .018 0.243 ± .028 0.854 ± .028

18

Table 6: Ablations. We show that all of the components are essential to achieve the best performance
when the task becomes more difficult. Each success rate is reported with the mean and standard
deviation across three seeds.

Object Dataset Task Configuration
Methods

Random Greedy No Flow No Flow No OursLocation (Goal PC) (Goal Pose) Action Map

Single Object
Planar Goal 0.323 ± .011 1.000 ± .000 0.989 ± .002 1.000 ± .000 1.000 ± .000 1.000 ± .000
6D Goal (Fixed Init) 0.075 ± .005 0.754 ± .023 0.198 ± .025 1.000 ± .000 0.991 ± .002 0.982 ± .004
6D Goal 0.037 ± .003 0.633 ± .014 0.181 ± .018 0.994 ± .004 0.989 ± .002 0.997 ± .003

Cylindrical Objects
Planar Goal 0.158 ± .006 0.767 ± .017 0.949 ± .003 0.927 ± .012 0.925 ± .012 0.961 ± .003
6D Goal (Fixed Init) 0.097 ± .006 0.346 ± .012 0.189 ± .009 0.746 ± .015 0.805 ± .016 0.885 ± .004
6D Goal 0.093 ± .004 0.262 ± .011 0.216 ± .008 0.631 ± .016 0.775 ± .018 0.879 ± .014

All Objects 6D Goal 0.147 ± .021 0.293 ± .026 0.153 ± .017 0.808 ± .028 0.835 ± .017 0.854 ± .028

C.3 Extending Motion Parameters654

The motion parameters in the main results are defined as a 3D vector that describes the translation655

motion of the gripper. In this section, we extend the motion parameters in different ways:656

6D Contact. The motion parameters also predict the orientation of the gripper when the gripper657

approaches the contact location. The orientation is in the form of ZYX Euler angles. To account for658

the physical constraints of our task setup, we restrict the y and x angles to the range of [�0.5⇡, 0.5⇡],659

and the z angle to the range of [�⇡,⇡].660

6D Motion. We introduce the ability for the gripper to change orientation while executing the661

motions after making contact. Similar to the translation motion parameters, the rotation motion662

parameters (ZYX Euler angles) represent the delta rotation at each action repeat step.663

Per-point Contact Location Offset. We conduct an experiment where the agent learns a per-point664

contact location offset combined with 3D motion. The agent’s continuous action space is defined as665

(contact offset, 3D motion parameters). For each action on a given point at location x, the agent uses666

(x + xoffset) as the contact location. Notably, the xoffset value is mapped to scale with the bounding667

box since it ranges between [�1, 1].668

Table 7: Success rates of different
motion parameters in HACMan. All
methods are evaluated on all train ob-
jects with 6D goals.

Method Success Rate
HACMan Default 0.833 ± .018
+ with 6D Motion 0.866 ± .090
+ with 6D Contact 0.819 ± .077
+ with Contact Offset 0.800 ± .011

Table 7 presents the results of our evaluation for each669

modified action space. The success rates are reported670

along with their corresponding standard deviations. We671

find that including 6D motion in the motion parameters672

allows for more dexterous movements. These enhanced673

motion capabilities improve the efficiency of HACMan’s674

actions, resulting in higher success rates. However, the675

addition of 6D contact or contact offset does not seem to676

provide significant benefits to HACMan’s performance.677

Instead, these modifications lead to slower training speeds678

and lower success rates.679

C.4 Experiments on Cluttered Environments680

Table 8: Success rates under different
cluttered scenes. All methods are eval-
uated with 6D goals.

of Scene Objects Success Rate
0 (Default) 0.833
1 0.773
5 0.580

We can directly apply HACMan to a setting of manipulat-681

ing objects in cluttered scenes. We conduct preliminary682

experiments in which we introduce varying numbers of683

scene objects into the bin. The scene objects serve as ob-684

stacles that add challenges to the task. We train HACMan685

under two conditions: with one scene object and with686

five scene objects, and we compare the results with the687

performance achieved in the absence of any scene objects688

(default setting). From Table 8, as expected, the task be-689

comes more challenging when there are more obstacles in the bin. As illustrated in Fig 15, the policy690

tends to push the object directly toward the goal by pushing the scene object aside.691

19

Figure 15: Qualitative results for object pose alignment tasks in cluttered environments. HAC-
Man shows complex non-prehensile behaviors that move objects to goal poses (shown as the trans-
parent objects). The scene objects are colored in brown to distinguish from the target object to be
manipulated to the goal pose.

Figure 16: Success rate with extended training. The success rate of our method reaches 91.1 ±
7.3% after 500k training steps, compared to 83.3% after 200k training steps.

C.5 Effect of longer training time692

Although we report the success rate at 200k training steps for all the results due to computational693

limitations, our method continues to improve performance with longer training (Figure 16). The694

graph illustrates the success rate achieved by our method as the number of training steps increases.695

Notably, after 500k training steps, our method achieves a success rate of 91.1± 7.3%, significantly696

improving from the 83.3% success rate reported in the main text (at 200k training steps).697

C.6 Effect of longer episode lengths698

We conducted an additional experiment to explore the relationship between success rates and max-699

imum episode length. In the main paper, our episodes were limited to a maximum of 10 steps, and700

any episode exceeding this limit was deemed a failure. During this additional evaluation, we relaxed701

the episode length restrictions and allowed the agent to operate with a maximum episode length of702

30. As shown in Fig 17, HACMan achieves more than 95% success rates across all datasets (Train703

96.6%, Train (Common) 99.4%, Unseen Instance (Common) 99.7%, Unseen Category 95.1%) when704

the maximum episode length is extended to 30. This suggests that providing the agent with a longer705

time horizon enables it to achieve higher success rates without the need for retraining.706

C.7 Per-category result breakdown707

Fig. 18 shows the breakdown of the results for each object category. Although our method demon-708

strates consistent performance across the majority of objects, there are certain objects with geome-709

tries that pose intrinsic challenges for our approach. For example, our method is limited to poking a710

bowl from the top due to occlusions, making it difficult to flip an upward-facing bowl downwards.711

20

Figure 17: Success rates at various maximum episode lengths. This line plot shows the success
rates of HACMan evaluated on the four datasets. It is worth noting that the success rates for Unseen
Instance (Common) and Train (Common) are marginally higher compared to Train and Unseen
Category, similar to the pattern in Table 2.

Figure 18: Results breakdown. Object categories in the unseen instance set (orange) can be com-
pared to the same object categories in the train set (blue) to see the level of instance generalization.

21

Figure 19: Real robot setup.

D Real Robot Experiments712

D.1 Real robot setup713

The robot setup is shown in Fig. 19. We use three cameras on the real robot to get a combined714

point cloud. We follow a similar procedure as Appendix A to process the point cloud and to execute715

the action except the following details: We segment the object points from the full point cloud716

based on the location and the dimension of the bin instead of using the ground truth segmentation717

labels from Robosuite. To move the gripper to the pre-contact location, we first move the robot to a718

location above the pre-contact location and then move down to the pre-contact location, instead of719

“teleporting” the gripper in simulation.720

To obtain goals for the real world evaluation, we record 10 goal point clouds for each object by721

manually setting the objects into different stable poses. During each timestep, we use point cloud722

registration algorithm to estimate the goal transformation to calculate the goal flow. Specifically, we723

use the global registration implementation from Open3D (http://www.open3d.org/docs/724

release/tutorial/pipelines/global_registration.html) and then use Iterative725

Closest Point (ICP) for local refinement. Note that we only match the shapes of the object instead726

of matching both the colors and the shapes due to the limitation of the registration algorithms.727

Note that the evaluation process can be done automatically without any manual resets. The reward728

and the episode termination condition (Appendix A.4) are both calculated automatically.729

For the real robot experiments, we use the policy trained in the “6D goals” configuration with the730

“All Objects” dataset. We perform zero-shot sim2real transfer without finetuning or additional do-731

main randomization. We have tried to add noise to the contact location execution and add noise to732

the point cloud observation. However, these modifications did not result in better real robot perfor-733

mance.734

22

http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html

D.2 Analysis735

We include additional analysis on the real robot results in this section. The proposed method assumes736

an estimated goal transformation as input. To estimate the transformation from the object to the goal,737

we use point cloud registration, as described above. However, the estimation of the transformation738

might not be perfect in the real world. To better understand the performance of our system, we739

define two types of evaluation criteria: The “flow success” is automatically calculated based on740

the estimated point cloud registration according to the evaluation metric in Appendix A.4. Hence,741

“flow success” will sometimes mark an episode as a success or failure incorrectly due to errors in the742

point cloud registration. For the “actual success” evaluation metric, we manually mark as failures the743

cases among the flow success episodes where the goal estimation is significantly wrong. Thus, “flow744

success” indicates the performance of the trained policy (assuming perfect point cloud registration745

at termination) while the “actual success” indicates the performance of the full system (accounting746

for errors in the point cloud registration). Fig. 7 in the main text reports the actual success. We747

include both success metrics in Table 9 below. The policy achieves a 61% success rate based on the748

flow success, indicating that some of our errors are due to failures in point cloud registration.749

Table 9: Additional analysis on the real robot experiments. An episode is considered a “flow
success” if the average norm of the estimated flow is less than 3 cm. An episode is considered as an
“actual success” if the object is aligned with the goal pose without point cloud registration failure.

Planar Goals Non-planar Goals Total
Object Name Flow Actual Flow Actual Flow Actual

(a) Blue cup 4/7 4/7 7/13 4/13 5/20 4/20
(b) Milk carton 6/7 6/7 10/13 10/13 16/20 16/20
(c) Box 2/5 2/5 10/15 10/15 12/20 12/20
(d) Red bottle 7/7 4/7 6/13 0/13 13/20 4/20
(e) Hook 5/8 5/8 5/12 5/12 10/20 10/20
(f) Black mug 4/7 4/7 2/13 0/13 6/20 4/10
(g) Red mug 5/7 5/7 7/13 3/13 12/20 8/20
(h) Wood block 6/7 6/7 8/13 6/13 14/20 12/20
(i) Toy bridge 9/10 9/10 7/10 5/10 16/20 14/20
(j) Toy block 2/2 2/2 10/18 10/18 12/20 12/20

Total 50/67 47/67 72/133 53/133 122/200 100/200
Percentage 75% 70% 54% 40% 61% 50%

D.3 Failure cases750

We discuss the failure cases of the real robot experiments in this section and include the videos751

on our website: https://hacman-2023.github.io/. The most noticeable failure cases are due to the752

errors of point cloud registration. The challenges of the registration methods come from noisy depth753

readings and partial point clouds. The error of the point cloud registration methods will lead to754

unexpected actions during the episode. In addition, it may end the episode early because the episode755

termination depends on the goal estimation. This motivates us to separate out the success criteria in756

Table 9 based on the failures of the registration method.757

On the action side, both the contact location and the motion parameters might have execution errors.758

Since the contact location is selected from the observed point cloud, when the camera calibration is759

not accurate enough, the robot might not be able to reach the desired contact location of the object.760

In addition, since we use a compliant low-level controller to execute the motion parameters, the761

robot might not be able to execute the desired motion the same way as in simulation.762

In addition, the object dynamics might be different from simulation due to the surface friction and763

the density of the object. The performance of our method could be further improved with domain764

randomization over the physical parameters.765

E More discussion on the related work766

E.1 Compared to Chen et al. [17, 18]767

Our work is substantially different from Chen et al. [17, 18] from the follow aspects:768

23

Approach: The approach in Chen et al. [17, 18] follows a student-teacher training pipeline. The769

teacher training is equivalent to the “No Contact Location” baseline with “states” observations in770

our paper. The policy takes all the relevant robot state and object state information and outputs delta771

robot actions. Note that they train a single teacher policy across all shapes without using the point772

cloud which results in a state-observation policy that is “robust” to shapes instead of “adaptive” to773

shapes (see Discussion section in Chen et al. [18]). As shown in Table II, this baseline performs774

significantly worse than our method in our task because it lacks shape information from the point775

cloud and the robot-centric action space is not as efficient as our object-centric action space. On the776

other hand, although the student policy in Chen et al. [17, 18] takes point cloud observation, it is777

trained using imitation learing from the teacher, so its performance is upper bounded by the teacher778

policy which has been shown to be worse than our proposed method.779

Task: We investigate a completely different task and thus the numbers are not really comparable780

with the numbers from previous work [17, 18]. First, we use a simple gripper instead of a dexterous781

hand. Second, we consider matching the orientation and position of the goal pose while Chen et al.782

[17, 18] only considers orientation.783

E.2 Compared to Cheng et al. [1], Hou and Mason [2]784

Unlike Cheng et al. [1], Hou and Mason [2], our method does not rely on quasi-static assumptions, is785

not limited to a simplified gripper model, and does not require the knowledge of object environment786

contact modes which are challenging to estimate during real robot execution. As shown in our787

experiments, our approach exhibits superior motion complexity and object diversity compared to788

previous work.789

790

24

	Introduction
	Related Work
	Preliminaries
	Problem Statement and Assumptions
	Method
	Action Representation
	Hybrid RL Algorithm
	Representing the Goal as Per-Point Goal Flow

	Experiment Setup
	Simulation Results
	Real robot experiments
	Limitations
	Conclusion
	Appendix
	 Appendix
	Simulation Environment
	Object dataset preprocessing
	Collecting goal poses
	Representing the goal as per-point goal flow
	Success rate definition
	Observation
	Action

	Algorithm and Training Details
	HACMan (Ours)
	Baselines

	Supplementary Experiment Results
	Additional ablations
	Training curves and tables
	Extending Motion Parameters
	Experiments on Cluttered Environments
	Effect of longer training time
	Effect of longer episode lengths
	Per-category result breakdown

	Real Robot Experiments
	Real robot setup
	Analysis
	Failure cases

	More discussion on the related work
	Compared to chen2021system, chen2022visual
	Compared to cheng2022contact, hou2019robust

