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ABSTRACT

The cosine router in Mixture of Experts (MoE) has recently emerged as an at-
tractive alternative to the conventional linear router. Indeed, the cosine router
demonstrates favorable performance in image and language tasks and exhibits
better ability to mitigate the representation collapse issue, which often leads to
parameter redundancy and limited representation potentials. Despite its empirical
success, a comprehensive analysis of the cosine router in MoE has been lacking.
Considering the least square estimation of the cosine routing MoE, we demonstrate
that due to the intrinsic interaction of the model parameters in the cosine router via
some partial differential equations, regardless of the structures of the experts, the
estimation rates of experts and model parameters can be as slow as O(1/log" (n))
where 7 > 0 is some constant and n is the sample size. Surprisingly, these pes-
simistic non-polynomial convergence rates can be circumvented by the widely
used technique in practice to stabilize the cosine router — simply adding noises
to the ¢2-norms in the cosine router, which we refer to as perturbed cosine router.
Under the strongly identifiable settings of the expert functions, we prove that the
estimation rates for both the experts and model parameters under the perturbed
cosine routing MoE are significantly improved to polynomial rates. Finally, we
conduct extensive simulation studies in both synthetic and real data settings to
empirically validate our theoretical results.

1 INTRODUCTION

Proposed by |Jacobs et al.|(1991)) and Jordan & Jacobs|(1994), Mixture of Experts (MoE) has been
known as an effective statistical method to incorporate the capabilities of various specialized models
called experts. Different from conventional mixture models (Lindsayl, [1995) in which the mixture
weights are scalars, the MoE rather utilizes a routing mechanism to determine a set of weights
depending on an input token. In particular, the router first computes the similarity scores between
each token and experts and then assigns more weights to the more relevant experts determined
based on those scores. To further improve the scalability of the MoE, |Shazeer et al.| (2017) has
recently introduced a sparse variant of this model, which routes each input to only a subset of
experts. This sparse MoE model allows us to increase the number of learnable parameters with nearly
constant computational overhead. As a consequence, the sparse MoE has been leveraged in several
applications, including large language models (Jiang et al.,[2024; |Puigcerver et al., 2024} |[Zhou et al.,
2023b; Dai et al.| [2024; [Pham et al., [2024)), computer vision (Riquelme et al.| 2021} |Liang et al.|
2022), speech recognition (You et al., 2021} |Gulati et al., [2020; Peng et al., |1996), continual learning
(Le et al., [2024; L1 et al.,|2025)), multi-task learning (Hazimeh et al., 2021)), and other applications
(Han et al., |[2024;|Chow et al.,|[2023; |Le et al., 2025)).

In the above applications, practitioners often use a linear router which calculates the similarity score by
taking the inner product of a token hidden representation and an expert embedding. Nevertheless, (Chi
et al.|(2022) discovered that utilizing the linear router might induce the representation collapse issue.
This phenomenon occurs when a fraction of experts govern the decision-making process, leading to
the redundancy of other experts. In response, |Chi et al.|(2022) proposed an alternative known as a
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cosine router. In particular, this router begins with projecting the token hidden representation into
a low-dimensional space, followed by applying L? normalization to both the token representations
and expert embeddings. By doing so, the similarity scores become more stable, circumventing the
dominance of certain experts. The efficacy of the cosine routing MoE has been experimentally
demonstrated in language modeling (Chi et al.||2022), and domain generalization (Li et al.,|2023]).
On the other hand, a comprehensive theoretical study of the cosine router has remained lacking.

In the literature, there have been some attempts to understand the MoE models with different types of
gating functions whose outputs are the composition of some functions and the routing scores. First of
all, considering the classification problem with cluster structures, (Chen et al.|(2022) demonstrated
that the router operated by a neural network could learn the cluster-center features, which helped
divide a complex problem into simpler classification sub-problems that individual expert could handle.
Next, Ho et al.|(2022)) studied the expert estimation under an input-free gating Gaussian MoE model,
showing that the rates for estimating experts depend on the algebraic structures among experts.
Subsequently, the Gaussian MoE model with softmax gating was explored in (Nguyen et al.| 2023}
2024a) which pointed out that interactions among model parameters via some partial differential
equations (PDE) did harm the expert estimation rates. Saying that the setting of Gaussian MoE
was far from practice, [Nguyen et al.| (2024c) rather took into account a regression framework with
the regression function being a linear router MoE model. They verified the benefits of formulating
experts as feed-forward networks with popular activation functions like ReLLU and sigmoid from the
perspective of the expert estimation problem.

It is worth noting that the expert estimation problem allows us to capture how fast an expert specializes
in a specific task, which is one of the most important problems in the MoE literature known as expert
specialization (Dat et al., |2024; |Krishnamurthy et al.| [2023). Furthermore, from the convergence
analysis of expert estimation, we can gain several insights for designing the router and expert networks
(see Section E]) Therefore, we will investigate the effects of the cosine router on the convergence of
expert estimation in this paper. For that sake, let us now present the problem setting formally.

Problem setting. We assume that (X1, Y1), (X2, Y2), ..., (X,, Yn) € R x Ris an i.i.d sample of
size n generated according to the following model

Yi:fG*(Xi)—i_Ei» 7;:17"’7’”? (1)

where regression function f¢, () takes the following form:

ZSoftmax< (B“) +501> h(z,n;). 2)
183311 - [l

Here, the function h(z,n) is known as the expert function, which we assumed to be of parametric
form. Meanwhile, (5;, 53;, nj‘)f: , are true yet unknown parameters in the parameter space © C
R x R* x R% and G, := Zf;l exp(f5;)d(sz, ) denotes the associated mixing measure, i.e. a
weighted sum of Dirac measures 4. Additionally, we define for any vector v = (v, va,...,vg,)
in R** that Softmax(v;) := exp(v;)/ Z * , exp(v;). In the cosine router in equation (2), we omit
the step of reducing the dimension of the input token x, and assume that it has already been in
a low-dimensional space for simplicity. Furthermore, we assume that X, Xo, ..., X,, are i.i.d.
samples from some probability distribution p. Lastly, €1, €9, ..., €, are independent Gaussian noise
variables such that E[g;|X;] = 0 and Var(g;|X;) = o for all 1 < i < n. Notably, the Gaussian
assumption is just for the simplicity of the proof argument.

Least squares estimation (LSE). To estimate the true parameters (35;, 87;, n; )f;l or, equivalently,
to estimate the true mixing measure G, we leverage the popular least squares method (see, e.g.,
van de Geer], [2000). Formally, the mixing measure G is approximated by

G = arg(r;ning (Yi — fg(Xi))2. 3)

Under the exact-specified setting, i.e., when the true number of expert &, is known, the minimum
in the above equation is subject to the set of all mixing measures with k, atoms, denoted by

& (0) = {G = ZZ 1exp(Boi)0(81,m) + (Boi, Bri,ms) € ©}. On the other hand, under the
over-specified setting, i.e., when k, is unknown and the true model (2)) is over-specified by a mixture
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of k experts where k > k., the minimum is subject to the set of all mixing measures with at most k
atoms, i.e., gk(@) = {G = Zf 1 exp(ﬁOi)(S(gmm) . 1 S k/ S k, (501',511',772') S 9}

Universal assumptions. In the sequel, we implicitly impose four following mild assumptions on the
model parameters, which were widely used in previous works (Nguyen et al.l [2024c), unless stating
otherwise:

(A.1) Convergence of LSE: The parameter space © C R x R% x R? is compact, while the input
space X C R% is bounded. This helps ensure the convergence of least squares estimation.

(A.2) Distinct experts: The true parameters n7,...,7n; are distinct so that the experts

h(-,ny),--.,h(-,ny, ) are different from each other. Furthermore, the expert function A(-,7) is
Lipschitz continuous w.r.t its parameters and bounded.

(A.3) Identifiability of the MoE: In order that the cosine routing MoE is identifiable, i.e., fo(x) =
fa. (z) for almost every x implies that G = G, we let ng,* =0.

(A.4) Input-dependent router: To ensure that the router is input-dependent, we assume that at least
one among the parameters 37, . .., 37, is non-zero.

Technical challenges. The normalization of parameters in the cosine router leads to a fundamental
challenge in theory. In particular, to establish parameter and expert estimation rates based on the
convergence rate of the regression function, we rely on decomposing the discrepancy f@n ()= fa, (x)
into a combination of linearly independent terms by applying Taylor expansions to the product of the

C
softmax’s numerator and the expert function, i.e. H(x, 81,7) := exp (Hb’ﬁlﬁ) h(x,n). However,

the normalization of 31 in the cosine router leads to an intrinsic interaction among the elements of
the parameter (3, via the following PDE:

o
L op

Although parameter interactions expressed in the language of PDEs have been observed in|[Nguyen
et al.| (2024c)), the structure of the above interaction is much more sophisticated (even hold for the
first-order derivatives while those in Nguyen et al.|(2024c) occurs only when taking the second-order
derivatives). Thus, this PDE induces several linearly dependent terms in the Taylor expansion, and we
have to aggregate their coefficients in order to form the desired combination of linearly independent
terms. Then, the resulting coefficients become complex, thereby negatively affecting the convergence
of expert estimation. To the best of our knowledge, such a phenomenon with the cosine router has
never been observed in previous works.

B (z,B1,m) = 0. )

Main contributions. In this work, we develop a comprehensive theoretical analysis of regression
function estimation as well as parameter and expert estimations under the cosine router MoE model (T).
Our contributions are two-fold and can be summarized as follows (see also Table|[T):

1. Cosine router: Equipped with the cosine router, we demonstrate that under both the exact-specified
and the over-specified settings, the rates for estimating ground-truth parameters 35;, 87, and 1} are
slower than any polynomial rates and, therefore, could be as slow as Op(1/log” (n)), where 7 > 0
is some constant. These slow rates are attributed to the internal interaction among router parameters
expressed by the PDE in equation (@). As a result, the estimation rates for experts h(-, 7} ) are also
negatively affected, and could be of order Op(1/log" (n)).

2. Perturbed cosine router: In response, we propose a novel router called perturbed cosine router
in which we add noises to the L? norms of the token representations and the expert embeddings.
This not only helps stabilize the router but also eliminates the intrinsic interaction in equation (@).
Additionally, we also establish identifiability conditions to characterize expert functions that have
faster estimation rates than others under the exact-specified and over-specified settings, respectively.
Those conditions indicate that the rates for estimating experts, which are formulated as feed-forward
networks (FFNs) with widely used activation functions such as ReLU and GeL U, are significantly

improved, ranging from Op(+{/log(n)/n) to Op(y/log(n)/n).
Outline. In Section[2] we establish the convergence rates of parameter and expert estimations under

the setting of the cosine router MoE. Then, we derive these rates when the cosine router is replaced by
the perturbed cosine router in Section [3] Based on these theoretical results, we provide a few practical
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Table 1: Summary of worst possible estimation rates for linear experts, polynomial experts and FFN
experts equipped with the ReLU activation function under the MoE with linear router (Nguyen et al.
2024c), cosine router (ours) and perturbed cosine routers (ours).

Routers/ Experts | Linear: o'z + b | Polynomial: (a”x +b)?, p > 2 | ReLU FFN
Linear 1/log" (n) 1/log"™ (n) n~1/4
Cosine 1/1log"™ (n) 1/1log™ (n) 1/1log™ (n)

Perturbed cosine 1/1og™ (n) n-1/4 n-1/4

implications in Section[d] Next, we empirically verify the (theoretical) benefits of the perturbed
cosine router over the cosine router under both the synthetic and real data settings in Section [5] before
concluding the paper in Section [6] Finally, proofs and additional details of the experiments are
deferred to the Appendices.

Notations. We let [n] stand for the set {1,2,...,n} for any n € N. Next, for any set S, we
denote | S| as its cardinality. For any vector v € R? and o := (a1, as,...,aq) € N7, we let
v = vtuy? g v == v +ve 4.+ vgand of i= aglas! . .. aq!, while ||v]| stands for its
L2-norm value. Lastly, for any two positive sequences (@n)n>1 and (by)n>1, we write a, = O(by,)
or a, < b, if there exists C' > 0 such that a,, < Cb,, for all n € N. Meanwhile, the notation

~

a, = Op(b,) indicates that a,, /b, is stochastically bounded.

2 COSINE ROUTER MIXTURE OF EXPERTS

In this section, we characterize the parameter and expert estimation rates under the over-specified
setting of the cosine router MoE. We first start with the convergence rate of the regression function
estimation fz to the true regression function f¢, under the L?(1) norm in the following theorem:

Theorem 1. Given the least-square estimator G, defined in equation (3)), the regression estimator
fa () converges to the true regression function fq, (.) at the following rate:

Ifa, = fe.llL2uy = Or(Vlog(n)/n).

The proof of Theorem [I] is in Appendix [B.I] The result of Theorem [I] indicates that the re-
gression estimation rate is parametric. Therefore, as long as we can establish the lower bound

Ifa, — fo.llL2y 2 /j(@n, G.) where L is some loss function among parameters, we arrive at the

parameter estimation rate £(G,,, G,.) = Op(+/log(n)/n). This approach is the key component of
the convergence rates of parameter and expert estimations under the cosine router MoE. In the sequel,
we will consider the over-specified setting of the cosine router, while the results for the exact-specified
setting will be presented in Appendix

Recall that under the over-specified setting, the true number of experts k. is unknown. Then, based
on the notion of Voronoi cells (Manole & Ho, 2022), we will construct a Voronoi loss function among
parameters tailored to this setting.

Voronoi loss. Let G be a mixing measure with &" atoms w; := (81;,7;). Then, we distribute these
atoms to the Voronoi cells generated by the atoms wj := ( Bij n;‘) of G, which are defined as

A= A(G) 1= {i € K] : flwn — w3 | < flws — w7 Y€ # 5} 5)

Then, the Voronoi loss of interest is given by

k. k.
£1,(G, G = 3| 3 exp(Bor) = exp(5;)| + D D exp(Bon) 188 | + 1 Amy 7],

Jj=1 icA; J=1i€A;
where 7 > 1 is some constant, AS1;; 1= B1; — ij and An;; =1, — 17;-‘.

Note that, due to the parameter interaction inside the cosine router captured by the PDE (@), the
lower bound || fa  — fa.llz2(u) 2 £1,-(Gn, G+) does not hold true, and thus, we cannot achieve

4
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the desired bound EL,“((A}’,L7 G.) = Op(4/log(n)/n) mentioned at the beginning of Section By
contrast, we show in Appendix [B.3]an opposed result to the previous lower bound, saying that

I inf - L1 (GG =0,
M et @ (g )<e M6~ el /L1a(G, G

for any » > 1. This result implies the following minimax lower bound of parameter estimation:
Theorem 2. Under the over-specified setting, the following minimax lower bound of estimating G ,

_ inf sup Efq [El,r(ém Gz n_1/27

Gn€Gr(©) GEGL(O)\Gr, —1(O)
holds true for any r > 1, where K, indicates the expectation taken w.r.t the product measure with
f& and the infimum is over all estimators taking values in G (O).

See Appendix [B.3|for the proof of Theorem [2] There are two main implications of the above result:

(i) Parameter estimation rates. The minimax lower bound together with the formulation of £, ,
indicate that at least one among the rates for estimating parameters 37;, 8g;, 77} is slower than any

polynomial rates O p(n~'/2") and, thus, could be of order Op(1/log” (n)), for some constant 7 > 0.

(ii) Router estimation rates: When the estimation rate of either 8 or 3 is slower than any
polynomial rates, since the softmax function is Lipschitz w.r.t the Euclidean norm (Gao & Pavel,
2018)), we deduce that the worst possible rate of estimating the cosine router or the mixture weights
in equation (2) could also be slower than any polynomial rates. In practice, the router and the expert
networks are trained simultaneously (see Section 1.2 in (Shazeer et al., [2017)). Thus, the slow
convergence of the router might decelerate the model convergence.

(iii) Expert estimation rates. Assume that G,, := Zf;l exp(ﬁm)é (3. 7 Since the expert h(-,n)
1074
is Lipschitz continuous, it follows that
sup [z, ;") — h(z,n7)| < 105 = 05 - (©)
T

Consequently, the worst possible rate for estimating the expert h(z, n}‘) is identical to the worst
possible rate for estimating the parameter 7. For instance, if the expert function takes the polynomial

form of h(x,n) := (nx)? (considered in (Mendes & Jiang, [2012;Nguyen et al., 2021} 2024c)), where
we assume z € R for simplicity, then we have |h(z,7) — h(z,n*)| = [7 —n*| - |7 +n*| - |z|. Asa
result, the expert estimation rate is exactly the parameter estimation rate. Thus, when the estimation
rate of 77 is slower than any polynomial rates, the worst possible estimation rates for the experts
h(-,m;) could also be slower than any polynomial rates and be as slow as Op(1/log” (n)). This
indicates that the cosine router is even less sample efficient than the linear router (see also Table/[I)).
Note that by employing techniques of partitioning the input space in (Nguyen et al.,|2024b)), we can
show that these results still hold when using the Top-K sparse softmax gating function. Therefore, in
order to improve the sample efficiency while preserving the robustness to the representation collapse,
we need to slightly modify the structure of the cosine router in the next section.

3  PERTURBED COSINE ROUTER MIXTURE OF EXPERTS

In this section, we demonstrate that the pessimistic non-polynomial convergence rates of parameter
and expert estimation under the cosine router can be easily circumvented by the widely used technique
in practice to stabilize the cosine router: adding noises to the L? norm in the cosine router. Although
this perturbation technique and the cosine router have been well studied in the literature, we would
like to emphasize that to the best of our knowledge, our work is the first to be aware of combining
these two methods together which we refer to as the perturbed cosine router MoE. We now present
the formulation of a MoE with the perturbed cosine router under the regression setting.

Problem setup for the perturbed cosine router MoE model. We assume that an i.i.d. sample of
size n: (X1,Y7), (X2, Y3),...,(X,,Y,) € R4 x Ris generated according to the model

K:gG*(Xi)"_EM i=1,...,n, (N
where regression function g¢, (+) takes the following form:

k. i
ga.(x) == Z Softmax < (B1) "«
i=1

* ok ) 3
(|/3ii-ll+n)-(x||+72)”’0@) (a,77) ®)
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Here, 71, 72 > 0 are two noise hyper-parameters. The main difference between the two regression
functions f, and g, is the noise hyper-parameters 7y, 7o that we add to the norms of the expert
embeddings 7, and the token input z, which leads to the perturbed cosine router. By doing so, the pa-
rameter interaction inside the router as in equation (@) does not occur. More specifically, let us denote

77 Tz . . 7
H(x,B1,n) :=exp (m)h(x, 7), then it can be verified that ﬁfg—g(az, B1,1m) # 0.

Least squares estimation. Similar to the cosine router setting, we can estimate the unknown
ground-truth parameters (3g;, 81;, ;) f;l using the least-square estimator, which is given by:

G = arg min ; (Y; - gG(Xi))Q- ©)

In the following theory, we provide a convergence rate of regression function estimation under the
perturbed cosine router MoE model.

Theorem 3. Given a least squares estimator G, defined in equation Q)), the regression function
estimation gz (-) admits the following convergence rate:

g, — 9c.llL2(n) = Or(V/10g(n)/n). (10)

Proof of Theorem 3]is in Appendix The result of Theorem 3] proves that the regression function
estimation rate Op(4/log(n)/n) under the perturbed cosine router MoE is of the same order as that
with the vanilla cosine router in Theorem [I] Following the similar proof strategy in the cosine router
MOoE in Section 2] for capturing the convergence rates of parameter and expert estimations under
the perturbed cosine router MoE model, it is sufficient to establish the lower bound between the
difference of regression functions and the difference of parameters under both the exact-specified and
over-specified settings.

In this section, we study the over-specified setting of the perturbed cosine router. The results for the
exact-specified setting of the perturbed cosine router is in Appendix [A.2]

We now derive a condition called strong identifiability on the expert function h(-,7) to identify which
experts exhibit faster estimation rates than others under the over-specified setting.

Definition 1 (Strong identifiability). An expert function x — h(x,n) is called strongly identifiable if
it is twice differentiable with respect to its parameter n, and the set of functions in x

gleal+loz| fr 4 4
W(%ﬁmm) ton € NT o € N%,0 < ag| +]az| <20,
is linearly independent for almost every x for any k > 1 and distinct parameters 1y, . . . , N, where

~ T
we denote H(x, $1,7) := e)cp(m)h(m7 n).

Example. For experts formulated as neural networks, i.e. h(x, (a,b)) = ¢(a z +b), if the activation
¢ is selected as ¢(z) = ReLU(z), ¢(z) = tanh(-) or ¢(z) = 2P for p > 2, then they are strongly
identifiable. Conversely, a linear expert h(z, (a,b)) = a x + b fails to meet the strong identifiability
the condition.

To capture the convergence behavior of expert estimation rate under the over-specified setting in
Theorem [ we will use the Voronoi loss defined as follows:

k.

Ly(G,G.) =) Zexp(ﬁoi)*eXP(ﬂéj)’Jr S Y exo(Bo) 1Al + l1An;]]

j=1 1i€A; je[k)*]:|Aj|:1i€.Aj

Y (B 188112 + Ang12]. A

JERJIA;[>1iEA,

Theorem 4. Suppose that the expert function h(x,n) satisfies the strong identifiability condition in
Deﬁnition then the following L?-lower bound holds for any mixing measure G € G.(©):

l9c — 9c. L2 2 L2(G, G).

Furthermore, this bound and the result in Theoremimply that L2(Gy, Gy) = Op(+/log(n)/n).
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The proof of Theorem f]is in Appendix [C.3] A few comments regarding this theorem are in order:

(i) Parameter estimation rates. Under the over-specified setting, parameters (3];,7; which are
fitted by one atom, i.e. |4;(G,)| = 1, share the same estimation rate of order Op(1/log(n)/n).
Meanwhile, those for parameters fitted by more than one atom, i.e. |Aj (Gr)| > 1, are slightly slower,

standing at order Op({/log(n)/n).

(ii) Expert estimation rates. Given the above parameter estimation rates and the inequality (6], we
observe that the rates for estimating strongly identifiable experts h(-, 7)) range from Op(y/log(n)/n)

to Op(4/log(n)/n). Notably, these rates apply even for polynomial experts of degree at least two, i.e.
h(z, (a,b)) = (a’z+ b)P with p > 2, as they satisfy the strong identifiability condition. By contrast,
the estimation rates for polynomial experts when using the vanilla cosine router (see Theorem [2) and
the linear router (see Theorem 4.6, (Nguyen et al., 2024c))) are significantly slower and could be of
order Op(1/log™ (n)), where 7 > 0 is some constant (see also Table[I)). This observation highlights
that our proposed perturbed cosine router is more sample efficient than both the linear router and the
cosine router.

4 PRACTICAL IMPLICATIONS
We now discuss two important practical implications from the theoretical results of the paper.

1. Router and expert design: From the benefits of the perturbed cosine router for the expert
estimation of MoE models, our theories suggest that when using the cosine router to avoid the repre-
sentation collapse, practitioners should add noises to L? norms of the token hidden representations
and the expert embeddings to achieve a favorable performance. Additionally, the strong identifiability
condition also verifies the advantages of using non-linear expert networks over linear ones.

2. Misspecified settings. Thus far in the paper, we have only considered well-specified settings,
namely, the data are assumed to be sampled from the (perturbed) cosine router MoE. Although it may
look restrictive, the results under this setting lay an important foundation for a more realistic misspec-
ified setting where the data are not necessarily generated from those models. Under that misspecified
setting, we assume that the data are generated from a regression framework as in equation (T)) but
with an arbitrary regression function ¢(+), which is not a (perturbed) cosine router MoE. Then, we can
demonstrate that the LSE G, converges to a mixing measure G € arg mingeg, o) 17 — fallz2(w)

where f(+) is a regression function taking the form of the (perturbed) cosine router MoE. Further-
more, the optimal mixing measure will be in the boundary of the parameter space Gi(0), namely,

G has k atoms. Thus, as n becomes sufficiently large, én also has k atoms. The insights from
our theories for the well-specified setting indicate that the Voronoi losses can be used to obtain the
estimation rates of individual parameters of the LSE @n to those of G and therefore, achieve the
following expert estimation rates under the misspecified settings, which will be empirically validated
via numerical experiments in Appendix

(2.1) Cosine router MoE: the worst expert estimation rate could be as slow as Op(1/log™ (n)) for
some 7 > 0. It indicates that we still need an exponential number of data (roughly exp(1/€”) where
€ is the desired approximation error) to estimate the experts as well as select important experts.

(2.2) Perturbed cosine router MoE: the slowest expert estimation rate is of order Op(n~'/%). Thus,
we only need a polynomial number of data (roughly e~#) to estimate the experts. This explains why
the perturbed cosine router is a solution to the parameter estimation problem, or more generally, the
expert estimation problem of the MoE models.

However, the convergence analysis under the misspecified setting suffers from the challenges of
understanding the universal approximation power of the (perturbed) cosine router, which have
remained elusive in the literature. However, since this is beyond the scope of our paper, we leave it
for future development.

5 EXPERIMENTS

In this section, we first conduct numerical experiments on synthetic data (cf. Section[5.1)), and then
carry out experiments with real data on language modeling (cf. Section[5.2) and domain generalization
(cf. Section[5.3) tasks. Our main goal is to empirically demonstrate the efficacy of the perturbed
cosine router over the vanilla cosine router and the linear router in MoE models.
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Figure 1: Logarithmic plots displaying empirical convergence rates. Subfigures E [1al and [1b] . depict
the empirical averages of the Voronoi losses L£3(G,,, G,) (cf. equation (12)) and L, (G, G, (cf.
equation (TT)) for the exact and over-specified settings, respectively. The blue lines depict the Voronoi
loss associated with the perturbed router, whereas the green lines are indicative of the Voronoi loss
associated with the standard cosine router. The red dash-dotted lines are used to illustrate the fitted
lines for determining the empirical convergence rate.

5.1 NUMERICAL EXPERIMENTS

We first perform numerical experiments on synthetic data to empirically verify the theoretical
convergence rates of the least squares estimation for both perturbed and vanilla cosine router MoE
models. We generate synthetic data based on the model described in equatlon . Specifically, we
generate {(X;,Y;)}?_; C R?x R by first sampling X; ~ Umform([ 1,1]%) fori = 1,...,n. Then,
we generate Y accordmg to the model: Y; = fq, (X;) +¢; fori € [n], where the regression function

1 TCE * * *
fa.(+) is defined as: fg, (z) == 25;1 Softmax (m + BOZ-) ¢ ((a7) Tz 4+ b)) . The
input data dimension is set at d = 32. We employ k. = 8 experts of the form ¢ ((a}) "z + b),

where the activation function ¢ is set to be the ReLLU function. The details of the values of the
parameters as well as the training procedure are in Appendix [E.]

Results. Two experimental settings are examined: (1) Exact-specified, and (2) Over-specified. In the
exact-specified setting, the model is fitted with the same number of experts as the data generation
model, specifically k¥ = k. = 8. In the over-specified setting, the model includes one additional
expert, totaling k = k, + 1 = 9 experts. In each setting, experiments are conducted using both the
standard and the perturbed cosine routers, with 7 set to zero for the standard router and 0.1 for the
perturbed router. For each experiment, we calculate the Voronoi losses for every model and report the
mean values for each sample size in Figure[I] Error bars representing two standard deviations are
also shown. In Figure[Ta] the empirical convergence rates of both the standard and perturbed routers
are analyzed under the exact-specified setting. The perturbed router shows a rapid convergence rate
of O(n~5), while the standard vanilla router has a noticeably slower rate of O(n~°-11). Similarly,
in Figure [Ib} the convergence rates are assessed for the same routers under the over-specified setting.
Here, the perturbed router again shows a faster convergence rate of O(n~%47), compared to the
cosine router’s slower rate of O(n=°9%).

Misspecified settings. In Appendix [F| we will also conduct numerical experiments for comparing
the sample efficiency of the cosine router and its perturbed variant under the setting where the data
are generated from the regression framework with the same regression function.

5.2 LANGUAGE MODELING

In this section, we focus on the language modeling task (Bahl et al.||1983), a fundamental challenge
in natural language processing that involves predicting the next word or character in a sequence to
evaluate a model’s ability to generate and understand text. To assess how different routers influence
the model’s ability to capture linguistic structures and enhance performance across varying levels of
textual granularity, we compare the performance of perturbed and vanilla cosine router Mixture of
Experts (MoEs) on both character-level (Graves, 2013 and word-level (Bengio et al., 2000) tasks.

Datasets. We evaluate the model’s pre-training capabilities on character-level language modeling
using Enwik8 and Text8 datasets (Mahoney, 2011)), and assess its word-level language modeling
performance on Wikitext-103 (Merity et al., 2016).
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Table 2: Performance of vanilla and perturbed cosine routers on language modeling tasks.

‘ Enwik8 (BPC |) ‘ Text8 (BPC |) ‘ Wikitext-103 (PPL |)
| Small Medium | Small Medium | Small Medium

Cosine 1.213 1.161 1.310 1.271 90.070 38.018
Perturbed cosine | 1.197 1.147 1.303 1.251 89.910 37.859

Router/Experts

Metrics. To quantify the performance of our perturbed cosine router relative to the vanilla cosine one,
we utilize the Bit Per Character (BPC) metric (Graves},|2013) for character-level language modeling
and Perplexity (PPL) (Jelinek et al.,{1977) for word-level language modeling tasks.

Architecture and training procedure. In order to alleviate the representation collapse issue associ-
ated with estimating routing scores in the original space, we follow |Chi et al.| (2022) to first project
input representations on lower-dimensional space and parameterize experts with corresponding lower-
dimensional embeddings. Subsequently, we calculate the routing scores of inputs and embeddings
in this reduced-dimensional space using our proposed perturbed cosine router. Our experiments
adopt the Switch Transformer (Fedus et al.|[2021)), which is fundamentally a sparse variant of the TS
encoder-decoder (Raffel et al.,|2020), with MoE layers replacing the MLPs. Detailed information
regarding the datasets, metrics, training setup, and hyperparameters for this task is provided in

Appendix [E.2]

Results. The empirical advantage of our proposed cosine router over the vanilla version when applied
to language modeling tasks is demonstrated in Table 2} The results indicate that the perturbed cosine
router enhances the performance of the original cosine router in all datasets across both small and
medium configurations. It notably improves results for the Enwik8 and Text8 datasets at various
scales and slightly outperforms the original cosine router for the Wikitext-103 dataset.

5.3 DOMAIN GENERALIZATION

We conduct experiments on the applications of MoE models in domain generalization. Our objective
is to empirically demonstrate the efficacy of our proposed perturbed cosine router over the vanilla
cosine router in this field. Domain generalization (Zhou et al.,[2023a) aims to generalize a model’s
performance to unseen test domains with distributions different from those encountered during
training. Specifically, in domain generalization, a model is expected to leverage multiple training
datasets gathered from various domains and exhibit robustness to domain shifts during testing. Such
ability of out-of-distribution generalization largely hinges on the model’s capability to incorporate
invariances across multiple domains (Li et al.,|2023)). Given that distribution shifts in data correspond
to distribution shifts in (visual) attributes (Wiles et al.} 2022), capturing these diverse attributes and
aligning them with invariant correlations is crucial. Mixture of Experts emerges as a powerful tool for
efficiently capturing these visual attributes, and it has been proven effective in enhancing performance
in domain generalization (L1 et al.l 2023). Therefore, we further justify the effectiveness of our
perturbed cosine router in domain generalization.

Datasets. We followed the experimental setting of |Li et al.| (2023) and evaluated our method using
5 benchmark datasets in DomainBed: PACS, VLCS, OfficeHome, Terralncognita, and DomainNet.
Each dataset is comprised of images for classification tasks from different domains.

Architecture. Following|Gulrajani & Lopez-Paz|(2021), we conduct experiments on ViT-S/16, which
has an input patch size of 16 x 16, comprising 6 heads in multi-head attention layers, and a total of 12
transformer blocks. We adopt a last-two two-layer configuration, where each MoE block comprises 6
experts. The router selects the top 2 out of 6 experts for each image patch.

Training procedure and result. We follow the training-domain validation procedure outlined in
(L1 et al.} 2023 |Gulrajani & Lopez-Paz, 2021), where each training domain is split into training and
validation subsets. The final overall validation set consists of the validation subsets from all training
domains. Subsequently, we select the model with the highest performance on the overall validation
set. To ensure fair comparisons, the results are averaged over three runs.

Table [3| summarizes the experimental results. For each dataset, we report the average results across
test domains. The results demonstrate that our perturbed cosine router consistently outperforms the
linear and vanilla cosine router across all datasets, thereby convincingly justifying the effectiveness of
adding noise to cosine routers. Detailed performances for each domain are reported in Tables ] and 3]
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Table 3: Average out-of-distribution test accuracies.

Router/Experts | PACS VLCS OfficeHome Terralncognita DomainNet | Avg.

Linear 86.33  78.15 73.02 41.30 48.19 65.40
Cosine 87.22  78.99 73.27 45.55 48.45 66.70
Perturbed cosine | 89.36  80.01 74.09 49.87 48.51 68.37

Table 4: Per-domain performance of PACS, VLCS, OfficeHome, Terralncognita.

| Router/Experts | A C P S
PACS Linear 87.29 81.20 98.50 78.34
Cosine 89.24 86.11 97.60 75.92
Perturbed cosine | 89.87 86.97 97.90 82.68

| Router/Experts | C L S \Y
VLCS Linear 97.53 63.65 74.09 77.33
Cosine 98.59 67.42 70.88 79.07
Perturbed cosine | 98.59 67.80 74.70 78.95

| Router/Experts | A C P R
OfficeHome Linear 72.99 57.27 79.03 82.78
Cosine 73.40 57.27 78.69 83.70

Perturbed cosine | 74.64 57.85 79.59 84.27

| Router/Experts | L100 L30 L43 L46
Terralncognita | Linear 4599 28,51 54.66 36.05
Cosine 50.00 37.49 53.02 41.67

Perturbed cosine | 57.59 43.30 56.93 41.67

Table 5: Per-domain performance of DomainNet.

| Router/Experts | clipart infograph painting quickdraw real sketch

DomainNet | Linear 69.11 24.95 54.81 16.88 68.95 54.41
Cosine 68.05 24.48 55.75 17.39 69.41 55.59
Perturbed 68.31 24.52 55.03 17.90 6946 55.83

6 CONCLUSION

In this paper, we investigate the impacts of the cosine router on the convergence rates of least
squares estimation in MoE models. We figure out that owing to the parameter interaction inside
the cosine router expressed by a PDE, the rates for estimating parameters and experts are slower
than any polynomial rates and therefore, could be as slow as Op(1/log” (n)). In response to this
issue, we propose using the perturbed cosine router where we add noises to the L? norms of the
token representations and the expert embeddings in the cosine router in order to eliminate the
previous parameter interaction. Equipped with this novel router, we demonstrate that if the expert
function satisfies the strong identifiability condition, then the parameter and expert estimation rates
are significantly improved to be of polynomial orders. Finally, we conduct several experiments on
both synthetic and real-world data to empirically justify the theoretical results.

There are a few limitations in our current analysis. First of all, the assumption that the data are
sampled from the (perturbed) cosine router MoE is often violated in real-world settings. However,
as discussed in Section ] our theories can totally be extended to a more realistic misspecified
setting where the data are not necessarily generated from those models, which we leave for future
development. Second, since the ground-truth parameters are implicitly assumed to be independent of
the sample size n, the parameter and expert estimation rates presented in this work are point-wise
rather than uniform. To deal with this problem, we can utilize the techniques for characterizing the
uniform parameter estimation rates in traditional mixture models (see (Heinrich & Kahn, |2018}; Do
et al., 2023} Yan et al.,[2025))). Nevertheless, since the adaptation of those techniques to the setting of
the (perturbed) cosine router MoE is still challenging due to the complex structures of the (perturbed)
cosine router, we believe that further technical tools need to be developed to achieve the desired
uniform estimation rates.

10
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Supplementary Material for “Statistical Advantages of
Perturbing Cosine Router in Mixture of Experts”

In this supplementary material, we first explore the exact-specified settings of the (perturbed) cosine
router MoE model in Appendix [A] Next, we provide proofs of theoretical results associated with
the cosine router MoE and its perturbed counterpart in Appendix [Bland Appendix [C] respectively.
Those proofs are partially supported by auxiliary results presented in Appendix [D| Subsequently, in
Appendix [E| we specify the details for the experiments performed in Section[5] Finally, we conduct
further numerical experiments on the convergence of least squares estimation under the misspecified
settings in Appendix [F|

A ADDITIONAL RESULTS

In this appendix, we provide the convergence analysis of parameter and expert estimation under
the exact-specified settings of the cosine router MoE and its perturbed variant in Appendix [A.T]and

Appendix respectively.

A.1 EXACT-SPECIFIED SETTING OF THE COSINE ROUTER MOE

Firstly, we start with the exact-specified setting of the cosine router MoE.

Recall that under the exact-specified setting, the true number of experts &, is known. According to
the proof technique for deriving parameter estimation rates under the exact-specified setting in the
literature (Nguyen et al.| |2023), a key step is to apply the first-order Taylor expansions to the product

X
of the softmax’s numerator and the expert function, i.e. H(z,51,7n) := exp (Hﬁfﬁﬁ)h(m, 7).

However, since the parameter interaction via the PDE in equation (@), i.e. 8, g—g(:p, Bi,m) =0,

holds even for the first derivatives of the function H, the convergence of LSE under the exact-specified
setting is illustrated by minimax lower bound for estimating G, in Theorem [3]

Theorem 5. Under the exact-specified setting, the following minimax lower bound of estimating G

_inf sup  Ef,[L1,(Gn, G)] Zn 2
Gn€lr, (0) Ge&y, (©)

holds true for any r > 1, where ¢, indicates the expectation taken w.r.t the product measure with
f& and the infimum is over all estimators taking values in &, (©).

Proof of Theorem [5]is deferred to Appendix [B.2] It can be seen that the convergence behavior of
parameter and expert estimation under the exact-specified setting is analogous to that under the
over-specified setting. That is, the rates for estimating parameters 7; and 7} as well as experts
h(-,m;) are slower than any polynomial rates and thus, could be as slow as Op(1/log” (n)), where
7 > ( is some constant.

A.2 EXACT-SPECIFIED SETTING OF THE PERTURBED COSINE ROUTER MOE

We now consider the exact-specified setting of the perturbed cosine router MoE model (7). To begin
with, we introduce a condition called weak identifiability on the expert function h(-, n) to characterize
which experts have faster estimation rates than others under this setting.

Definition 2 (Weak identifiability). An expert function x — h(x,n) is said to be weakly identifiable
if it is differentiable w.r.t its parameter 1 and the set of functions in x

{3|a1|+|azlﬁ[

W(%ﬁu,m) cap € N ap € N2 0 < |ay| + |ag| < 1},
1

is linearly independent for almost every x, for any k > 1 and pair-wise distinct parameters 1y, . . . , N,

where we denote ﬁ(m, B1,m) = exp(m)h(x, n).
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Recall from the “Technical challenges” paragraph in Section [I]that a key step to establish the expert
estimation rates is to decompose the difference fz () — f, () into a combination of linearly
independent terms via Taylor expansions to the function H (-, 31, n). Therefore, the purpose of the
weak identifiability condition is to avoid all potential parameter interactions as in equation (@), which
may lead to undesirable linearly dependent terms.

Example. For simplicity, we consider experts formulated as neural networks, i.e. h(z, (a,b)) =
#(a’x + b). It can be validated that if the function ¢(-) is either a popular activation such as
ReLU(+) and tanh(-) or a polynomial ¢(z) = 2P, for any p € N, then the expert h(z, (a,b)) is
weakly identifiable. On the other hand, a constant expert h(-,7) = constant fails to satisfy the weak
identifiability the condition.

Next, we will use the Voronoi loss function £3(G, G.) defined below to determine the estimation

rates for weakly identifiable experts in Theorem[6] whose proof can be found in Appendix [C.2}
k. k.

L3(G,G.) =" > exp(Boi) — exp(/a"sj)] +Y > exp(ﬁm)[HAﬁujH + ||Amj||] (12)

j=1 ieAj j=1 iE.Aj

Theorem 6. Assume that h(-,n) is a weakly identifiable expert function, then the following lower
bound holds true for any G € &, (09):

lgc — 9c. L2 (n) 2 L£3(G, G).
Furthermore, this bound and the result in Theoremimply that L3(G, G,) = Op(y/log(n)/n).

The bound £3(C~¥n, G.) = Op(y/log(n)/n) all the parameters 37,7 enjoy the same parametric es-
timation rates, standing at order Op(y/log(n)/n). Furthermore, by employing the argument in equa-
tion (), we deduce that the rates for estimating experts (-, 7;) are also of order Op(+/log(n)/n).
Those rates are substantially faster than their counterparts when using the vanilla cosine router, which

could be as slow as Op(1/log”(n)) (see Theorem [5). This comparison highlights the benefits of our
proposed perturb cosine router over the vanilla cosine router.

B PROOF OF RESULTS FOR COSINE ROUTER MOE

In this appendix, we provide proofs for the theoretical results regarding the cosine router in stated in
Section 2] including Theorem[I} Theorem[5} and Theorem 2] in that order.

B.1 PROOF OF THEOREM/[I]

First of all, let us introduce the definitions of some necessary concepts for the proof, namely an
e-bracket, a bracketing number, a bracketing entropy, an e-cover and a covering number. In particular,
let (R, || - ||) be the space of real-valued functions f : X — R. Then, the aforementioned concepts
are defined as follows:

Definition 3 (¢-bracket). Given two functions L(-) and U (-), the bracket [L,U] is the set of all
Sfunctions f € R such that L(x) < f(z) < U(x) forallz € X, and ||U — L|| <e.

Definition 4 (Bracketing number). The bracketing number Nyj(e, R, || - ||) is the minimum number of
e-brackets needed to cover R.

Definition 5 (Bracketing entropy). The bracketing entropy Hg (e, R, || - ||) is the logarithm of the
bracketing number Njj(e, R, || - ).

Definition 6 (s-cover). An e-cover of the set R under some norm || - || is a set {m1, ..., 7N} such
that for any f € R, there exists some i € [N] such that || f — ;| < e.
Definition 7 (Covering number). The e-covering number N (e, R, | - ||) is the minimum number of

balls B(m;e) ={f € R: ||f — 7| < €} need to cover R.

Subsequently, we denote by R (O) the set of regression functions w.r.t mixing measures in G (0),
thatis, Rx(0) := {fc(z) : G € Gx(©)}. Additionally, for each § > 0, the L? ball centered around
the regression function f¢, and intersected with the set Ry (0) is defined as

Rk(@,é) = {f S Rk(@) : Hf - fG*HLz(#) < (5} .
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In order to measure the size of the above set, van de Geer|(2000) suggest using the following quantity:

5

Ta(6.Ru(©,0) 1= [ HY(0RUO.0). | 2 dt v, (13)
S5 /213

where Hp(t, Ri(©,1), || - [|12(.)) stands for the bracketing entropy (van de Geer, 2000) of R (©, )

under the L2-norm, and ¢ V § := max{t, §}. By using the similar proof argument of Theorem 7.4
and Theorem 9.2 in (van de Geer, 2000) with notations being adapted to this work, we obtain the
following lemma:

Lemma 1. Take ¥(§) > Jg(0, Rr(0,0)) that satisfies ¥(5)/8? is a non-increasing function of
8. Then, for some universal constant ¢ and for some sequence (3,,) such that \/nd> > c¥(5,,), we
achieve that

nd?
]P’(Hfé - fG*HLZ(#) > 5) < cexp (_02> ,
forall § > 6,

General picture. We first show that when the expert functions are Lipschitz continuous, the following
bound holds for any 0 < ¢ < 1/4:

Hp(e, Ri(0,¢), ||l 22(n)) < log(1/e). (14)

Given this bound, it follows that

)
HY2(4 Ru(O,8), - [120) V8 S [ og(1/t)at v, (15)
52/213

)
T(6,Ru(0,8)) = /

52/213

Let U(8) = 6 - [log(1/6)]*/2, then ¥(5)/6? is a non-increasing function of §. Furthermore, equa-
tion (T9) indicates that ¥(5) > Jp(d, Rx(©,4)). In addition, let 6,, = /log(n)/n, then we get
that /nd2 > c¥(4,,) for some universal constant c. Finally, by applying Lemma we achieve the
desired conclusion of the theorem. As a consequence, it suffices to demonstrate the bound @I)

Proof for the bound (14). In order to prove the bracketing entropy bound in equation (14)), we
leverage the proof arguments for the convergence of regression estimation in (Nguyen et al., 2024c).

Since the expert functions are Lipschitz continuous, then for any function fo € Ry (©), we have that
fa(x) < M for all z where M > 0 is some constant.

Let 7 < € and {m1,...,mn} be the 7-cover under the L> norm of the set Ry (©) where N :=
N(1,Ri(©),] - ||z=) is the T-covering number of the metric space (R (©), || - ||z ). Then, we
construct the brackets of the form [L;(x), U;(x)] for all i € [N] as follows:

L;(x) := max{m;(x) — 7,0},
Ui(z) := max{m;(z) + 7, M }.

From the above formulation, it can be checked that Ry (©) C UN,[L;(z), U;(z)], and U;(x) —
L;(z) < min{27, M }. Additionally, we get that

)\ /2
105 = Lillrgy = ([ 0:@) - Li@)?) " dta) <2
By definition of the bracketing entropy, we achieve that
Hp (21, Ri(©), || - l2(w)) = log Ny (27, Rie(©), [| - |22 (1))
<logN =1log N(7,Ry(0), || - lz==)- (16)

Therefore, it is necessary to provide an upper bound for the covering number N. Indeed, let us denote
A = {(Bo, 1) € R x R¥ : (By,B1,n) € O} and Q := {n € R% : (By, B1,1) € O}. Since O is a
compact set, A and 2 are also compact. Therefore, we can find 7-covers A, and €2, for A and €2,
respectively. Furthermore, it can be validated that

Ar] < Op(r @), |0, < Op(r ).
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For each mixing measure G = Zle exp(B0i)d(s,,,m) € Gr(O), we consider two other mixing
measures G’ and G defined as

k k
=D ow(Bo)dpimy,  C= ) exw(Boi)d,, 7

i=1 i=1

Here, 7; € 2, such that 7j; is the closest to 7; in that set, while (8, 31;) € A, is the closest to
(Boi, B14) in that set. Now, we aim to upper bound the term || f¢ — fo/||- In particular, we have

Il fa — farllee = sup

zeX

2
E Softmax (”é?lﬁ) HQ;H + 501‘) [W(x,m;) — h(x,7;)
i=1 ¢

< Z sup Softmax <WF + 501) |z, mi) — h(z,7;)]

208 1Bul T
k

< sup |(e, ) — he.7)|
i—] TEX
k

<Zsup i =l - Nzl < 7
i=17%

Above, the second inequality holds as the softmax weight is bounded by 1, and the third inequality is
due to the fact that the expert h(z, -) is a Lipschitz function w.r.t 77 and the input space X’ is bounded,
i.e., ||| < B forany xz € X for some constant B > 0.

~

Next, we demonstrate that || for — fz|leo S 7 as follows:

lfar = falloe = sup

k =T
Brix _ Bt 7). =
2[S°ftm‘“‘X<||Bh| oy * o) — Sofemas (o + 7 ‘”)] e

< Z sup Softmax( Bist +604) - Softmax(ﬂl:x + B ) h(z,7m,.)
i - B » e
Lo e 1Bl - Tl 1Byl - Nzl
k p— p—
< > sup (181 = Buill - llzll + |Boi = Boall
i—1 TEX
k
§Zsup [T-B+71] ST,
i—1 TEX
By the triangle inequality, we have
Ife = fallo < llfe = forlloo + [ far = falls S T
By definition of the covering number, we deduce that
N(7,Ri(0), L) < |A,| x |Q;]
< Op(n™ " 8) x O(n="H)
< O(n_(d1+1+d2)k). (17)

Putting the results in equations (T6) and (I7) together, we achieve that
HB(2T, Rk(®)7 || . ”Lz(#)) 5 10g(1/7’).
By setting 7 = €/2, we achieve that

Hp (e, Ri(©) [[-I22(w)) < log(1/e),

which completes the proof.

18



Published as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM [3]

Lemma 2. [fthe following holds for any r > 1:

|fe — fe.llL2(w

li e &R, 18
E%GESk*(G):LM(G,G*)gs L1.(G,Gy) (18)

then we obtain that

inf sup  Ef.[L1,(Gn, G)] 2 n~ Y2, (19)
Gn€E, () GEE, (©)

Proof of Lemmal Indeed, from the Gaussian assumption on the noise variables €;, we obtain that
Yi|X; ~ N(fg.(X;),0?) for all i € [n]. Next, the assumption in equation (I8) indicates for
sufficiently small € > 0 and a fixed constant C'; > 0 which we will choose later, we can find a mixing
measure G, € &, (©) such that £, (G, G«) = 2 and || fa: — fa. ||2(u) < Cie. From Le Cam’s
lemma (Yul [1997), as the Voronoi loss function £, ,. satisfies the weak triangle inequality, we obtain
that

inf sup Efc [ﬁl T (Gn; G)]
G, €8y, (O) Ge&y, (©)

2 %;G*)exp(_nEx~u[KL(N(fG; (X),0%),N(fe.(X),5)])

2 e exp(=nl|for — fa.ll72):
> e -exp(—Cine?), (20)
where the second inequality is due to the fact that
for(X) = fa.(X))?
KLV (fa (X).0%). N (fa. (X). %)) = Lol Je-COP

By choosing ¢ = n~'/2, we obtain that ¢ - exp(—Cyne?) = n~ /2 exp(—C1). As a consequence,
we achieve the desired minimax lower bound in equation (T9). O

Main proof. It is sufficient to show that the following limit holds true for any r > 1:

|fe — ()
li —_— = =0. 21
5% Gee,. (e):lgnl,,.(qc;*)ge L1.(G,Gy) @b

To this end, we need to construct a sequence of mixing measures G,, € &, (O) that satisfies
L1,(Gn,Gy) = 0and

||fGn ()
coGnay 0

as n — oo. Next, let us take into account the sequence G,, = Zf;l exp(ﬁ{fi)&( gy, ) in which
» exp(fy;) = exp(Bg;) forany 1 < i < k,;
o B = (1+ 1)1, and By, = 65, forany 2 < i < k;
e =n; forany 1 <i < k..

Consequently, it can be verified that when n — oo, we have
* n * T * \/;l T
L1,(Gr, Gy) = exp(B51) [Hﬁn — b1l ] = exp(By) - (7) — 0,

Next, we demonstrate that || f,
quantity

(w)/L1,+(Gn, Gx) — 0. For that purpose, we consider the

ieXp <||ﬁfllj) e +ﬁé}-> fa, (x) = fa. (@), (22)
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which can be decomposed as follows:

k
IS . B N o) — o (P72
(o) =2 2, k) [eXp (i) oy = (nﬁz ~ ||x||> " ’"ﬂ’]

j=14€A;
< * \ T

- ex ex (ﬁlz) Z) — ex M .
2 2 ool l > (o) o0 oo <||6fj| . ||x|> fa >]
3 (6i,) @

+ ; (i;Aj exp(8g;) — exp(ﬂgj)) exp <||513| E |> [ (z,n}) — fa, (z)}

= Ay (z) — By(z) + Cp ().
Since exp(8y;) = exp(Sg;) for all i € [k,], we deduce that C,,(z) = 0. Additionally, from the
choices of 87, and 1", we can rewrite A, (x) as

() = ex5) e (néiuﬁ ) e (M)] il )

.
Let us denote F'(x, 1) := exp (Hb’ﬁlﬁ) By applying the Taylor expansion of order r, we have

T

1
An(x) = exp(B5,)h(z,n}) Y o1 (Bl = Fn)°

l]=1

ol
: a37 e (2, B11) + R(x)

r ] olel
= exp(Bg1 ) h(,m7) Z %(1‘*‘ %) (B1)* - aﬁf(x Bi1) + R(x),
laj=1

where R(x) is a Taylor remainder such that R(x)/L; »(Gp,G«) — 0 as n — oo. It is implied from
Lemma 3] (see Appendix D)) that

1 ol

E ﬁ(ﬁikl)a‘ —7a (@, 811) =
o 0p5

laj=t

forany 1 < ¢ <, it follows that A, (z) = R(x). This result indicates that A,,(z)/L1 -(Gpn, Gx) —
0 as n — oo. By arguing similarly, we also obtain that B,,(x)/L1,,(Gp,G+) — 0 asn — oo.
Combine the previous results together, we achieve that

Qn(z)/L1,+(Gn,Gy) = 0

Since the input space X and the parameter space © are both bounded, the term
* \ T

Zf*:l exp (m + ﬁgj) is also bounded. This result together with the formulation of @, ()
1j

in equation (22)) suggests that [f¢, () — fa. (2)]/L1.-(Gn, Gx) — 0 for almost every z € X. As a
consequence, we get that

I fa ()
- — 0,
£1,T(Gn7 G*)
as n — oo, and hence, achieve the result in equation (ZT).

B.3 PROOF OF THEOREM [2]

Similar to the proof of Theorem [5]in Appendix [B:2] we only need to demonstrate that the following
limit holds true for any » > 1:
. I fa — (1)
li nf = =0. 23
0 GeGL(O): 51 ~(G.Go<e  L1,(G,Gy) 29

For that purpose, it suffices to build a sequence of mixing measures G,, € Gi(O) that satisfies
L1 (Gp,Gy) — 0and

I /.,

El,r(Gna G*)

- kut1 S
asn — oo. Let us consider the sequence G,, = >~ F exp(fBy;)d(py. ey in which

— 0,
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* exp(fBy;) = exp(Bin) = eXP(ﬁol) and exp(fg;) = exp(ﬁo (i—1) )forany 3 <i < k. +1;
s 81 = (1= 2)80 Bt = (1+ 1) Biy and B, = By, forany 3 < i <k, + ;
el =0y =nf,andn] =n;_, forany 3 < <k, + 1.

Consequently, it can be verified that when n — oo, we have

1 * n * ||T n * |7 * \/a r
L1,:(Gn,Gy) = geXP(ﬂm) Nﬁll = Bill" + 1182 — Biall"| = exp(Bgy) - (T) -0,
Next, we demonstrate that || fg, +(Gn,Gi) — 0.
To this end, we consider the quantity
)T
Z exp + 855 | | - o (@) = fa. (@), (24)
IIﬂle ]

which can be decomposed as follows:

ks * \ T
- X n x BT >h X M h *
2 2 exeldh) [ P (nﬁhn [y ) M) — X <||ﬁi‘j Tay ) ")

j=licA,

k. -

% &, lep(ﬁull EA ep(llﬁi‘jl-llwl e (o)
k. ﬂ
D2 M eXp(nﬂ T |>[<x %)~ Jo. )]
j=1 €A, 15

= An(z) — Bp(z) + Cy(2).

From the choices of 37, and n}*, we can rewrite A,,(z) as

Ane) = L exp(B5h(e) S o (M) — exp (Mﬂ '

i=1

Let us denote F'(z, 81) := exp ( A H~H I ) By applying the Taylor expansion of order r, we have

2 ool
Ap(z) = ;eXp(ﬁol (,n1 Z Z ai (Bt — Bi)™ - Tﬂf‘(x’ﬂl*i) + R(z)
i=1 |a|=1
" i o glel g
;GXP(ﬂol (01 2:: Z; 0%( = ) B —za PR (z, B11) + R(x),

where R(z) is a Taylor remainder such that R(x)/L1 (G, Gx) — 0 as n — oo. It follows from
Lemma 3] (see Appendix [D) that

—1)\ | laf
Z é(l—f— ( nl) )l ‘(5f1)a'aaﬁf( :B11)

la=t

1)t la
= (1+( D) ) Z i(ﬁfl)“ : 8855( ,B11) =

n
|| =t

forany 1 < ¢ < r. Thus, we get that A,,(x) = R(z), which implies that A,,(z)/L1 (G, Gx) = 0
as m — oo. By arguing similarly, we also obtain that B, (x)/L1,(Gp,Gs) — 0asn — oo.
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Furthermore, we have

) [1teit) = o )]

2 ¥ (B1) "=
0 = (S exnla) - explin)) exp (0L
(S ewiss) - etiin) e (il

K * \ T
+ Z; (exp(ﬁg(jﬂ)) - eXP(ﬂSj)) exp <||;i1|]) ||x|> [h(x,n;) - fa. (g;)]

=0.
Putting the previous results together, we achieve that
Qu(@)/L1,(Gn,Gy) =0
Since the input space X and the parameter space © are both bounded, the term
Z’?*:l exp ( B " wl + ﬁoj) is also bounded. This result together with the formulation of Q,,(z)

J 181; Tl

in equation (Z4) suggests that [f¢,, (z) — fa. (x)]/L1,+(Gy, Gy) — 0 for almost every z € X. Asa
consequence, we get that

Ifa. — fa
L:l,r(Gna G*)

as n — 0o, and hence, achieve the result in equation (23)).

)—>0,

C PROOF OF RESULTS FOR PERTURBED COSINE ROUTER MOE

In this appendix, we provide proofs for the theoretical results regarding the perturbed cosine router,
namely Theorem 3] Theorem [6] and Theorem 4] in that order.

C.1 PROOF OF THEOREM[3]

Since the proof of Theorem [3|can be done in a similar fashion to that of Theorem [I] it is omitted.

C.2 PROOF OF THEOREM[G]

In this proof, we aim to establish the following inequality:

(0/L3(G,G.) > 0. (25)

inf —
Ge&y, (0) ”gG

For that purpose, we divide the proof of the above inequality into local and global parts in the sequel.

Local part: In this part, we demonstrate that

li nf - L3(G,GL) > 0. 26
T Gegu (@)t 6 )< lge = g6. llz=o/£al ) 20

Assume by contrary that the above inequality does not hold true, then there exists a sequence of

mixing measures G,, = ZZ 1exp(B5;)d(pn ) in G (O) such that L3, := L3(Gp, Gx) — 0 and

lgc, — gc. ||L2(u)/£3n -0, (27)

as n — oo. Let us denote by A7 := A; (G,,) a Voronoi cell of G, generated by the j-th components
of G... Since our arguments are asymptotlc we may assume that those Voronoi cells do not depend on
the sample size, i.e. A; = A" Moreover, recall that under the exact-specified setting, each Voronoi
cell has only one element. Therefore, we may assume WLOG that Aj ={j}, and

k.

ﬁgn = Z

i=1

exp(ﬁgz) exp 601

Zexp (85 [ 14821 + 1Az,

where we denote ASY; := 7, — 87, and Anl* == n —n}.
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Since L3, — 0, we get that (87;,n"") — (B87;, 1) and exp(8;) — exp(Bg;) as n — oo for any
i € [k.]. Now, we divide the proof of the local part into three steps as follows:

Step 1: Taylor expansion. In this step, we decompose the term

ks * T.f
Soesp () +63,)| - o (@)~ g6 ()]

B3I+ 70) - ([l + 72)

into a combination of linearly independent elements using Taylor expansion. In particular, let us

denote F'(z, 81) := exp ( )), then we have

B
(B1l+71)-(=ll+72

Zexp B) [F (@, B)h () = F (. Bi)he,n})]
—Zexp BE;) { x,B) — (w,ﬂfi)}gcn(f)

+ Z (exp(83) — exp(55)) [F(x. Bioh(w,mt) - F(@, 816, (2)]
= Ay, (z) — Bp(z) + Cp(2). (28)

By means of the first-order Taylor expansion, we have

k
. exp(ﬁni) n\a1 n\ao 8‘a1|F * a|012\h *
z) = ; lgl TO(Aﬁu) (Ani)* - 0BT (@, B1s) ooz (z,n7) + Ra(z), (29)

where Ry (x) is a Taylor remainder such that Ry (x)/Ls, — 0asn — oo. Similarly, we also get that

< ohlp
Z Z exp ﬁOz 5%)7 . W(;ﬁ,ﬁ;)gg" (CL’) + R2(1')7

=1 |y|=1

where Ry(z) is a Taylor remainder such that Ra(x)/Ls, — 0 as n — co. As a result, we deduce
that

-

1
ul olal p lezlp,

> T

0 1,001,002 aﬂal (,’E,ﬁ )a s (.’13 771)+R1($U)

@
Il
-

|

=

* 1

oMk
> Sty S @ Bigc, (@) = Rao) (30)
|=0

i=1|

5]

where we define

Ty 0 = 2 A Ay,

i,a1,02
— exp(ﬂOZ)

SZL’Y (Aﬁlw ) )

for any (a1, a2) # (04, 0) and v # 04. Otherwise, Ty, o = S, = exp(fy;) — exp(55;)-

Step 2: Non-vanishing coefficients. In this step, we show that not all the ratios 77", ,,/L3n, and

Si*, /L3, converge to zero. Indeed, assume by contrary that all of them converge to zero, i.e.

n n
@ — O7 Siﬁ'Y -0
‘CSn £3n

as n — oo. Then, it follows that

k. k. .
* Lin il [exp(Bg;) — exp(Bg;)| = L,lsn it 15T, = 0;
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Lin : Z’L 1 exp(ﬂOz)HAﬂﬁHl ,C:lsn Z Z z edl u,0d| —0;
* d
* L‘én ' Zi:l eXP(ﬁ&)HAmnHl = ﬁi" Zz 1 Z 2 =1 | 4,04,€d,, 1,| — 0.

Due to the topological equivalence of norm-1 and norm-2, we deduce that

K.
ZeXp DI ABLG] =0, — > exp(B5) A} — 0.
no=1

As a result, we obtain that

£3n
1= £3n = £3n {ZZ ‘ exXp ﬂOz) exp /BOZ

which is a contradiction. Thus, at least one among the ratios 7;
g0 to zero as n — oo.

+ zexp 8o) I ABEN + 1A ||}} -0,

/L3n,and S7! /Egn must not

1041 a2

Step 3: Application of Fatou’s lemma. In this step, we demonstrate a result opposed to that in Step

2,i.e. theratios 17", ,,/Lan, and S7". /L3, all converge to zero.
In particular, let us denote by m,, the maximum of the absolute values of 17", . /L3n, and Sﬁv /Lsn.

Since at least one among those ratios must not approach zero as n — oo, we get that 1 /m,, / oo as
n — 0o.

Recall from the hypothesis in equation that ||gq,, (w)/L3n — 0asn — oo, which

indicates that || g, — 0 due to the equivalence between L' (y)-norm and L?(p)-
norm. By means of the Fatou’s lemma, we have

T—00 m E
n~3n

0= lim lgc.,
n—00 anSn

This result implies that [g¢, (2) — 9. (2)]/[mnLsn] — 0 for almost every z.
Let us denote
T}y an/MnLan = tiayas

Szy/mn['dn — Siy

with a note that at least one among the limits #; o, ., Si,y is non-zero. Then, from the decomposition
in equation (30), we deduce that

ko 1 ko 1
* Hlal p . alaz\h a‘W‘F
Z Z ti7a11l)é2 . 66?1 (xvﬂli) 8770‘2 771 ; EZ: i,y " 661 LC ﬂlz)gG ( ) 0,

=1 |a|=0

for almost every x. Note that the expert function h(-,n) satisfies the condition in Definition 2| then
the above equation implies that ¢; o, ., = Si, = 0, for any i € [k.], a1 € N4, ay € N® and
v € N4 such that 0 < |ay| + |az|,|y| < 2. This contradicts the fact that at least one among the
limits ¢; o, o, Si,~ is different from zero.

Hence, we obtain the local inequality in equation (26). Thus, we can find an ¢’ > 0 such that

inf — 0/ L3(G,Gy) >0
GESk*(@):lgs(G,G*)Ss’”gG 9620/ £3( )

Global part: Given the above result, it suffices to demonstrate that

inf — L3(G,Gy) > 0. 31
GGEk*(@):l£13(G,G*)>s’ HgG gG*”L?(M)/ 3( ) S

Assume by contrary that the inequality (3T)) does not hold true, then we can find a sequence of mixing
measures G, € &, (0) such that L5(G),, G.) > ¢’ and

lim

nseo  L3(Gl Gy =9
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which indicates that ||gc: — ga. [|12(n) — 0 as n — oo. Recall that © is a compact set, therefore,

we can replace the sequence G,, by one of its subsequences that converge to a mixing measure
G’ € &, (). Since L3(GY,, Gx) > €', we deduce that L3(G', G.) > €.

Next, by invoking the Fatou’s lemma, we have that
2
1200 > / lim inf ‘QG; () - gc. (x)’ dp(z).

Thus, we get that go (z) = g, () for almost every . From Proposition[I] we deduce that G’ = G..
Consequently, it follows that £3(G’, G,) = 0, contradicting the fact that £3(G’,G) > &’ > 0.

0= lim |lgc: — ga.
n— o0

Hence, the proof is completed.

C.3 PROOF OF THEOREM[4]

In this proof, it is sufficient to demonstrate the following inequality:
L2(y)/£2(G7 G*) > 0. (32)

inf —
cato) lgc — 9a.

This can be done by deriving its local part and the global part as in Appendix[C.2] Since the global
part can be argued similarly, our main goal is to prove the local part:

li inf — Lo(G,Gy) > 0. 33
EER)GGQk(@):l?z(G,G*)Ss”gG gG*”L?(u)/ 2( ) &9

Assume by contrary that the above inequality does not hold true, then there exists a sequence of
mixing measures G,, = Ele exp(Bg;)0 (7, ey in G (©) such that Loy, = Lo(Gr, Gx) — 0 and
Han — 9G. ||L2(u)/£2n — 0, (34)

as n — oo. Let us denote by A’ := A;(G,) a Voronoi cell of G, generated by the j-th components
of G. Since our arguments are asymptotic, we may assume that those Voronoi cells do not depend
on the sample size, i.e., A; = A?. Therefore, we may assume WLOG that

k.

Loni= | 3 exo(B) —exp(Bi)|+ 0D exp(Bi) [1481 12 + lAng ]

j=1 i€A; JEk«]:|Aj|>1i€A;

Y e 18801+ A

FElk ]| A;|=1 i€ A;

where we denote ASY;; := B, — B7; and Anj == —n7.
Now, we divide the proof of the local part into three steps as follows:

Step 1: Taylor expansion. In this step, we decompose the term

0@ = Yo (I e o) - g )
' 2 OPBE T+ 7)) (el + )~ 02| 7196 :

into a combination of linearly independent elements using Taylor expansion. In particular, let us

denote F'(z,81) := exp ( ), then we have

By x
B l+71)-(llll+72)
k

Qule) =3 3 exp(B) [Fle. B h(a. ) — Flw. 5i)he. )

j=1li€A;
k.

=303 exp() [P, B1) - Fla,85))] 96, (@)
J=licA;
k.

30 (X exol8r) - exolBi) ) [Flo, 8i)h(z.n)) = Flz. 51))g6, ()]
Jj=1 €A

= A, (x) — By(z) + Cp (). (35)
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Next, we continue to separate the term A,,(z) into two parts as

Au(@) = D exp(B5) [Fla, Bi)h(e,n) — F(, 81, n))|

JE[k]:|Aj|=11€A4;
YD exn(B) [P Bz n) — F(w, 85 b))
Gelk.:| A > 1 €A,
= Anyl({E) + An’z((E)

Similar to equation (29), by applying the first-order and the second-order Taylor expansions to
Ay 1(z) and A, o(z), respectively, we have

exp 5 : o 2 Hleal p . Plezlp, .
Apa(z) = Z Z — Aﬁm) (A L]) ’ W(ﬂ% 51j)w($,77j) + Ry (z),
jelk.]: A =1 al=1 !
2
€xXp 67'7, n \o1 n\ oo 8‘0/1|F * 6‘(’2‘}1 *
App(d) = Y Y %(Aﬂm) (Anj;)** - W(l‘vﬁlj)W(xanj) + R (),
. 1

GEka:| A |>1 |al=1

where R;(z) is a Taylor remainder such that R;(x)/ L2, — 0asn — oo, fori € {1,2}. Analogously,
we also get that B,,(xz) = B,, 1(x) + By, 2(x) where

ol
Buste) = Yoy e ﬁm (ABL)T -a;?(x,ﬁi‘j)gcn(w)Jng(x),

€ [kx]:[Aj|= 1\“/| 1

exp 6 /i ol F
Bt = Yy S g 2 S @B, (@) + Rala).
€Ki A;[>1 |y]=1
in which R;(x) is a Taylor remainder such that R;(x)/La, — 0 as n — oo, for i € {3,4}.

As a result, we deduce that

plovl ol
Z Z T (@, BL) e () + Ra (%) + Ra()

Jj= 1|a\ 0 851&1 o
ol g
—ZZ S BET (z,85;)96, (x) — Rs(z) — Ra(x), (36)
J=1]v|=0

where we define

11]?’10‘170‘2 = Z %(Aﬂh])al( 777,]) %

iEA]'
o exp(8y;)
SJ% = Z T(Aﬁlw) )

iE.Aj
for any (a1, g) # (04,0) and v # 04. Otherwise, T}, o = ST, = ZiEA exp(8g;) — exp(Bg;)-
Step 2: Non-vanishing coefficients. In this step, we show that not all the ratios T]"a1 s /Loy, and
57 /Loy, converge to zero. Indeed, assume by contrary that all of them converge to zero, i.e.

By ST
J,01,02 -0 71 -0
E2n ’ £2n

as n — oo. Then, it follows that

K X .
* Lin 'Zj:l ZieAJ exp(fg;) — eXP(ﬁoj) = i : ZJ 1 1S 7, ol = 0;

K , n )
* f; : Zj:l Zz‘eAj eXP(ﬁ&)HAﬂﬁg’Hl = ﬁ Zj 1 Z 17 edy, u,0d| — 0;
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K

* Lin 'Zj:l ZieAj exp(ﬂ&)HAnZ’jHl = cln Z Z ],Od,ed2 =0
ks .

¢ L‘,in ’ Zj:l ZieAj eXp<5n')||A1811j||2 £2n Ej 1 Z ] 2€d1 ws Od‘ —0;
K

¢ L"in : Zj:l Zz‘eAj exp(f} )||A77”||2 g% Z] 1 E g od 2eq,, 1,| — 0.

Due to the topological equivalence of the norm-1 and norm-2, we deduce that

k. k.
1

1
Lo Z Z exp(Bg;) || ALY — 0, o Z Z exp(Bg;)[|Anij || — 0.

J=licA, o iTlie A,

Thus, by taking the summation of the above limits, we obtain that 1 = Egn /Lon — 0asn — oo,
which is a contradiction. Consequently, at least one among the ratios 77", /Laon, and ;’)7 /Laon
must not go to zero as n — 00.

Step 3: Application of Fatou’s lemma. In this step, we demonstrate a result opposed to that in Step

2,ie. theratios T}, ,, /Lan, and S7 / Lo, all converge to zero.
In particular, let us denote by m,, the maximum of the absolute values of 7", . /Lon, and SZ,Y /Lo

Since at least one among those ratios must not approach zero as n — oo, we get that 1/m,, / oo as
n — 00.

Recall from the hypothesis in equation (34) that ||g¢,, 2(u)/L2n — 0 as n — oo, which

indicates that ||ga, — (4)/ L2n — 0 due to the equivalence between L' (1)-norm and L?(p1)-
norm. By means of the Fatou’s lemma, we have

0= lim lgc. > /lim inf 96, (%) - gG*(x)|du(m) > 0.
n—o00 mnpLon n—oo mpLon
This result implies that [gg, (2) — g, (2)]/[mnL2s] — 0 for almost every z.

Let us denote
T] a1,a2/m"£2” = tjar,a0
j,v/mnﬁgn — Sj.
with a note that at least one among the limits ¢; o, ., 5,4 is non-zero. Then, from the decomposition
in equation (36), we deduce that

ky 2 glal p alaz\h 5I~/\F

Z Z tj,oz1,a2 : W(iuﬁikj) ana2 Z Z Sjy - aﬂ'y 7ﬂikg)an(x) = 07

j=1 |a]=0 1 j=1|~|=0
for almost every . Note that the expert function h(-, n) satisfies the condition in Deﬁnition then
the above equation implies that ; 4, o, = S, = 0, for any j € [k.], a1 € N%, ay € N% and
v € N% such that 0 < || + |azl, || < 2. This contradicts the fact that at least one among the
limits ¢} o, s 8j,4 is different from zero.

Hence, we obtain the local inequality in equation (33)) and complete the proof.

D AUXILIARY RESULTS

In this appendix, we present three additional results to facilitate the proofs in Appendix [B| and
Appendix [C]

Proposition 1 (Identifiability). If go(z) = g, (x) holds true for almost every x, then it follows that
G=G.

Proof of Proposition[l] For almost every z, since g (z) = ga, (), then we have

S (Bri) "z
;Softmax((ﬂun +11) - (2] + ) + ﬁoi) - h(z,m;)

k
-y (Bi) e
= Zz;Softmax((5;” ) (El ) + Bm) h(z,n}). (37)
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Due to the identifiability of the expert function h(-, ), the set {h(x,n}) : i € [K']}, where n)}, ..., 7},
are pair-wise different vectors for some k' € N, is linearly independent for almost every .

Additionally, note that if k # k., then there exists some index i € [k,] such that {; # n; for any

j € [k«]. This result implies that Softmax ( 4 BM||(+@f>)I\|$zu = T 50i> = 0 for almost every z,
which is a contradiction. Thus, we must have k = k... As a result, it follows that

{Softmax((ﬁli)Tx + 501-) i€ [k}} - {Softmax((ﬁfi)Ta: + ﬁ&) e [k*]},
for almost every x. WLOG, we may assume that

(Bli)—rx
(1Bl + 71) - (ll2]| + 72)

(53)—%
BT+ 70) - (2]l + 72)

Softmasx( + for ) = Softmax +55:).

(38)
for almost every z, for any i € [k.]. As the Softmax function is invariant to translations, then the
equation (38) indicates that

(Bri) "= _ (B5:) "=
UBuill + m0) - Uzl +72) (B3N +71) - (] + 72)°
Boi = Boi + vo,
for some vy € R. The first equation implies that 5,; = j7;, while the second equation together with
the assumption By, = B, = 0 lead to Bo; = B; for any i € [k,].

Let us consider x € Xy, where ¢ € [q] such that {¢1,...,¢{x} = {1,..., K}. Then, the equation
can be rewritten as

S (B1) T
2 explhiexp ((Hm ) (el T Tz>>h(“"’@‘)

i=1

3 (1)
- ;exp(ﬂm) op ((Hﬁf;” +71) - (=] + 72)>h(x, ) (39

for almost every = € X,. Next, we denote Py, Ps, ..., P,, as a partition of the index set [k.], where
m < k, such that exp(Bo;) = exp(fg,;/) for any i,7" € P; and j € [k.]. On the other hand, when
i and ¢’ do not belong to the same set P;, we let exp(8p;) # exp(Bo). Thus, we can represent

equation (39) as
3 ex i) ex (ﬂikz)TfE s
2 & oo ((Hﬂm ) - (Tl m))h( &)
-y exp(B,) ex G s
_ZZ p(BOz) p<(|ﬂﬁ”+7—1)($”+72)>h( ’771)7

j=1i€P;

for almost every z € AX). Recall that we have 51; = 7, and By; = G;, for any ¢ € [k.], then the
above result leads to

{ni:ie P} ={ni:ie b},
for any j € [m]. As a consequence, we obtain that

G= Z Z exp(B0i)0(81:,m) = Z Z exp(Boi)d(sr, mz) = G-

j=1ieP; j=1icP;

Hence, we reach the conclusion of this proposition. O

Bl

Lemma 3. Let F(x, 31) := exp (Hﬁ1|||96||

>. For any vector 31 € R™ and t € N, we have

O T L (40)
op; v ...08

Up,...,ue=1
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Proof of Lemma[3] We will prove the above result by using the induction method. In particular, we
first show that it holds for ¢ = 1. By taking the first derivative of F' w.r.t 81, we have

OF 7x'\\/31|\'||$\|—%'||$H'51T$
Tﬁl(x,ﬁﬁ) = TEAEEE - F(z,B1).

Then, it follows that

.
L OF Bla- 1Bl - ll=ll — T55 -l - BT

) = FAREE -0

or equivalently,

w)_OF
Zm : g @B =0

U= 1
Subsequently, assume that the equation @0) holds for ¢t — 1, i.e.
dy

R (AR s PR A G
W ap) .. aplm)

we will demonstrate that it also holds for ¢. Note that the above left-hand side can be decomposed as
dy

u1 Ut— at_lF u Wi 8t_1F
Z 5 )Bi 2 . (u) (wi—1) (xvﬁl) = Z § 1) § v ’ (u1) (ut—1)
UL,y Up—1=1 aﬂl aﬂl UL yeeny U —1 F Ut 851 851

t—1 (w2)  plurcr) gluc) IF
+ < ) Z 1B 1 “ u “ (z, B1)
1 Uznu,ut—l?ﬁUt 65§ 2) 6185 t_l)aﬂ§ t)

+...

(e 1) ut) =2, oF (ue)yt—1 ﬂ
( )Utz;#utﬁ ) 86£ut—1)a<ﬁ£u ) ( 61) ( ) 8(5%“‘))7&—1 (J},ﬁl),

where u; is some index in [d]. By taking the derivatives of both sides w.r.t Bi“‘), we get

D ol 9'F
o= > gy

w1 ap™) . apl)
+(t11> uuz#u (ua) | glue=a). FTy éatﬂzfl)aﬂ?‘)(z’ﬁl)
N I o e R e =)
+ ...
t—1
+(i > utéutﬁlut D (glunyt-3 %;ut_ia(?m)tz(x’ﬁl)
+<t—1)<ﬁ§“t>>t-2-m< B+ (B (ﬁf))tmm)

dy
u e O'F
= Z 6( ) ( 1) o o ( B1)
UpyeeyUp—1=1 8ﬂ 6
dy t—1
(w)  glur-). O F
+(t—-1) B " — (@, B1).
Z: op . op)
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Therefore, it follows that

i () i: (1) gluin) gluo) o'F
ﬁlut 0= 61UI B .ﬁllu—l ﬁlut . ﬁ(l‘aﬁl)
ur=1 Up,..,up=1 86£ v . aﬁi +)
u ol
+(t 1) Z B BBy (@B
i opy") .. op™
It is worth noting that
2 Ut — 4 atilF
Z gy gy yt)'ﬁ(m,ﬂﬁ
U,y U =1 651 . 851 )
d
- u e OIF
= Z § 1).,. 5 -1) o =y (.Z',ﬂﬁ =0
UpyeeUr—1=1 aﬂl ---8/31
Consequently, we deduce that
dy
u Ut — Ut 6fF
> B g ﬁ(xaﬁl) =0
ul,...,utzl /61 .. .6/81

Hence, we reach the conclusion in equation (40). O

E EXPERIMENTAL DETAILS

In this appendix, we provide the details for the numerical experiments on synthetic data, and the
experiments with real data on language modeling conducted in Section 3]

E.1 EXPERIMENTAL DETAILS FOR SYNTHETIC DATA

Model details. We now provide the details for the model parameters in model

K (Bik)Tx .
=2 5ot Y i) o (@) e+, @
) ; Otmax((”ﬁfi|+T),(||z|+7) +/302> ¢((az) T+ Z) 41)

The variance of Gaussian noise is specified as o> = 0.01. For simplicity, the perturbations for both
||| and || B5; || are considered identical, denoted by 71 = 75 = 7. The true parameters for the router,
(B1:: Be:) € RY xR, are drawn independently from an isotropic Gaussian distribution with zero mean
and variance 072, = 0.01/d for 1 < i < 6, and otherwise are set to zero. Similarly, the true parameters
of the experts, (a},b) € R? x R, are drawn independently of an isotropic Gaussian distribution
with zero mean and variance o2 = 1/d for all experts. These parameters remain unchanged for all
experiments.

Training procedure. For each sample size n, spanning from 10 to 10°, we perform 20 experiments.
In every experiment, the parameters initialization for the router’s and experts’ parameters are adjusted
to be near the true parameters, minimizing potential instabilities from the optimization process.
Subsequently, we execute SGD across 10 epochs, employing a learning rate of n = 0.1 to fit a model
to the synthetic data. All the numerical experiments are conducted on a MacBook Air equipped with
an M1 chip CPU.

E.2 EXPERIMENTAL DETAILS FOR LANGUAGE MODELING TASK

Datasets. We use the Enwik8 and Text8 datasets (Mahoney, |2011) for our character-level language
modeling task. The Enwik8 dataset comprises 100 million bytes of unprocessed Wikipedia text,
while the Text8 dataset contains 100 million processed Wikipedia characters. We further evaluate the
word-level language modeling task on the Wikitext-103 dataset (Merity et al., [2016)), which is the
largest available word-level language modeling benchmark with long-term dependency. It contains
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103M training tokens from 28K articles, with an average length of 3.6K tokens per article, which
allows us to test the ability of long-term dependency modeling.

Metrics. In the main paper, we employ the Bit per character (BPC) (Graves, [2013) metric to assess
the performance of character-level language modeling tasks. This metric measures the average
number of bits needed to encode each character in the dataset. It is calculated as follows:

T
1 N
BPC(X) = —7 E log, Py (x¢)
t=1

where T’ is the length of the input string X, P is the approximate distribution and x; is the character
in the input string at location .

Essentially, BPC quantifies the average number of bits required to encode each character in the text
using the probability distribution predicted by the model. This concept works as follows: characters
with high probability get a short bit sequence, while characters with low probability get a longer
sequence. Then, the next character is read from the input and encoded using the bit sequence
performance determined from the probability distribution. If the language model is good, the target
character will have been predicted with high probability, so the bit sequence will be short. This means
that a lower BPC indicates better compression, which in turn demonstrates the model’s superior
ability to predict the next character accurately.

For the word-level language modeling task on the Wikitext-103 dataset, we utilize Perplexity (PPL)
(Jelinek et al) [1977)) as our evaluation metric. It represents the exponentiated average negative
log-likelihood of a sequence and demonstrates how well the model predicts the next word in a
sequence. More specifically, if we have a tokenized sequence X = (xg, 21, ..., ¥¢), the perplexity of
X is:

PPL(X) = exp {~4 S20_, log pa(aifa<i) }

where pg(7;|r<;) is the log-likelihood of the i** token conditioned on the preceding tokens x;
according to our model. A lower perplexity score indicates better generalization performance.

We follow the implementation of (Pham et al.,2024) to use experts consisting of two linear layers: the
first with weights of shape input_dim x hidden_dim_experts and the second with weights of shape
hidden_dim_experts x input_dim, followed by ReLLU activations and Dropout layer with drop rate
p = 0.1. This architecture ensures the output has a shape of input_dim x input_dim while can flexibly
reduce parameters compared to a single linear layer with weights of shape input_dim x input_dim
when the number of hidden dimensions of experts chosen is smaller than dimensions of the input. We
consistently apply this architecture with our perturbed and vanilla cosine router across all datasets.

Training setup and hyperparameters. We consider two model configurations: the small and
medium setups. The small setup has a total of 15 million parameters with 6 SMoE layers (Dryden &
Hoefler, [2022)), and each layer can learn spatial structure in the input domain and routing experts at a
fine-grained level to utilize it. Similarly, the medium setup consists of 36 million parameters with
8 SMoE layers (Dryden & Hoefler,[2022). For SMoE layers in both configurations, we employ 16
experts with fop-2 gating in both cosine and perturbed cosine routers. To mitigate the representation
collapse issue, we adopt the method proposed by |Chi et al.|(2022). Specifically, this approach involves
parameterizing the experts using lower-dimensional embeddings e; € R% and applying a linear
projection to map token vectors into this compact space, rather than the original high-dimensional
hidden space d. Furthermore, we follow (Chi et al.|(2022)) to set d. = 8, which is half the number of
experts in our implementation for the language modeling task.

During training, we use Adam optimizer (Kingma & Ba,|2017) with default parameters. We set the
number of training steps to 60000 and 80000 for small and medium configurations, respectively. The
results are averaged over three runs for fair comparisons.

All language modeling experiments are conducted on NVIDIA A100 GPUs. Training the small
configuration of the Text8 and Enwik8 datasets takes 11 hours, whereas Wikitext-103 requires 5
hours. Training Text8 and Enwik8 for medium configurations takes 17 hours, while Wikitext-103
training takes 8 hours.
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E.3 EXPERIMENTAL DETAILS FOR DOMAIN GENERALIZATION

Expert types. Similarly, following (Li et al.| [2023), the experts utilized in the domain generalization
experiments are two-layer feedforward networks, featuring a GELU activation and a Dropout layer
with a drop rate of 0.1 positioned between the two linear layers. The dimensions of the two linear
layers are input_dim x hidden_dim_experts and hidden_dim_experts x input_dim, respectively,
where hidden_dim_experts = input_dim x 4.

Training procedure. All DG experiments are run on NVIDIA A100 GPUs with 15,000 iterations.
The training time on PACS, VLCS, OfficeHome, and Terralncognita is 2 hours, while the training
time for DomainNet is 7 hours.

F ADDITIONAL EXPERIMENTS

In this appendix, we carry out additional experiments on the synthetic data to compare the sample
efficiency of the perturbed cosine router to that of the cosine router and the linear router (Nguyen
et al.| 2024c) under the settings where the data are generated from the same regression framework.

F.1 COSINE ROUTER VS. PERTURBED COSINE ROUTER

Experimental setup. We generate the data by first sampling X; ~ Uniform([—1,1]¢) for i =
1,...,n. Then, we generate Y; according to the following model:

Yi =56, (Xi) + e,
where the regression function s¢, (+) takes the form of a linear router MoE (Nguyen et al., 2024c):

ko
> Softmax((8;;) "z + 85,) - ReLU ((a}) "2 + b}) .
i=1
All other experimental details remain the same as specified in Section[5.1]and Appendix [E.T}

Results. We calculate the Voronoi losses and report the mean values for each sample size in Figure [2a]
Error bars representing two standard deviations are also shown. In Figure [2a] the Voronoi losses
associated with the cosine router vanish at the rate of O(n~°-1%), which is very slow and roughly
matches our theoretical results. Meanwhile, those associated with the perturbed cosine router converge
to zero at significantly faster rate of O(n~%4%). This empirically shows that the perturbed cosine
router is more sample efficient than the vanilla cosine router.

F.2 LINEAR ROUTER VS. PERTURBED COSINE ROUTER

Experimental setup. From Table [I] we see that the perturbed cosine router outperforms the
linear router when the experts are of polynomial forms (a'x + b)2. Thus, we will incorporate
polynomial experts in both fitted models. Additionally, we generate the data by first sampling
X; ~ Uniform([—1,1]?) fori = 1,...,n. Then, we generate Y; according to the following model:

Yi = sq.(Xs) + €,

where the regression function s¢, (+) takes the form of a linear router MoE with polynomial experts
(Nguyen et al.| [2024c)):

K
Z Softmax((85;) "z + B%;) - ((GT)TI + bf)Z .

i1
All other experimental details remain the same as specified in Section[5.1]and Appendix

Results. We calculate the Voronoi losses and report the mean values for each sample size in
Figure 2b] Error bars representing two standard deviations are also shown. In Figure [2b] the Voronoi
losses associated with the linear router vanish at a very slow rate of O(n~"13). By contrast, the
convergence rate of those associated with the perturbed cosine router are of order O(n~47), which
are substantially faster. Thus, we can claim that the perturbed cosine router is more sample efficient
than the linear router both theoretically and empirically.
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(a) Cosine router vs. Perturbed cosine router

Figure 2: Log-log scaled plots displaying the empirical convergence rates. Figure [2al depicts the
empirical averages of the Voronoi losses when using the cosine router (green line) versus when
using the perturbed cosine router (blue line). The red dash-dotted lines illustrate the fitted lines for
determining the empirical convergence rates. Similarly, Figure 2b]depicts the empirical averages of
the Voronoi losses when using the linear router (green line) versus when using the perturbed cosine

—$— Linear Router
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(b) Linear router vs. Perturbed cosine router

router (blue line). We use the same data samples for those experiments.
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