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A  PROOF

A.1 BUILDING THE HARD FUNCTION GG

For any r € R with |r| < 1, by mapping = — rz and using homogeneity of sy and V', we define G
via the generating function identity:

C N(N-1) 1 . .
G::ﬁ Z r(l/\H‘ 2 )S/\V:CVN'HWA((ﬁg)@@(bEV))?
A doubly even i<j L

(21)

where
oy [raere)))NP 4 (ra) )T i1 < G < NJ2
d)j (wz) = ((Txi)2)N_j(1 + (Tmi)‘l)j_l_N/Q ifN/2 F1<j<N

where C is chosen to normalize G.

(22)

Note that from the RHS, it is clear that GG is written in the form of a Jastrow ansatz. We will discuss
efficiency of computing G further below.

It remains to choose  and C' such that ||G|| = 1. Note that, if p(k) denotes the number of partitions
of k, and and p’(k) denotes the number of doubly even partitions of k , it’s easy to see that

k/4) k=0 mod4
/ k — p(

pk) {0 else

So we calculate by orthogonality:

2 N(N—1 N(N—1
a2 =< < S PRy ST e ))5,,V> (24)

(23)

T N!
A doubly even w1 doubly even

— CQTN(N_I) Z 742|)\\ (25)
A doubly even

— CZTN(Nfl) Z ,,,2kpl(k) (26)
k=0

= C?pNIN-1) Z & p(k) 27)
k=0
|

_ 2, N(N-1

= %N >H1_T8k (28)
k=1

where in the last line we employ the generating function for partition numbers. Then setting C' =
(rNWV=D ] 1= 80) Y2 gives (G = 1.

A.2 FROM TENSORS TO MATRICES

The point of choosing G in this way, is it enables a simple flattening argument, where we can reduce
comparing tensors to comparing matrices.

Note again that terms of the form 2® for « € N¥ are orthonormal. Hence, we derive an initial lower
bound by Bessel’s inequality:

IF=GI* = Y (Fa®) = (Ga%)” . (29)

aENN
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Note that by antisymmetry of F' and G, if o doesn’t have distinct elements then

(F,x%) = (G,z%) =0. (30)
To see this, suppose a1 = a2, and let P;5 be the permutation operator defined by
}ﬁglj(xl,xg,xg,...) ::]7($2,$1,$3,...) (31)

It’s easy to see P is a symmetric operator with respect to (-, -). Then for any antisymmetric function
H’

(H,z%) = (H, Piaz®) (32)
= (PioH,z%) (33)
= —(H,z) (34)

which implies (H, z%) = 0.

Furthermore, let us define the equivalence class ~ as via o ~ o/ if there exists a permutation 7 such
that « = 7 o ’. Then by similar reasoning, & ~ o/ implies:

(F,z%) = (—1)" <F xa'> (35)
(G,2%) = (~1)7 (G2 (36)

So define N¥ to be the set of strictly decreasing non-negative integer vectors of length N, then we
have: B

IF = G|> > Nt- > ((Fa%) — (G,a))? (37)

aeNQ

Now, we can consider a flattening argument, by passing from tensors to matrices. Define

A ={eNI?:8,=1 mod 2} (38)
Ay = {7 eNY?: 9, =0 mod 2} (39)

For 3 € 2; and v € Ay, let U~ € NV be the concatenation of 3 and 7.

Then given a function acting on N particles such as G, we can map G to a (infinite-dimensional)
matrix M indexed by the sets 2; and 2A5:

M(G) = [(G,2"7)], (40)
Let us calculate the entries of this matrix. Let § = (N — 1, N —2,...,1,0), and observe that:
1 A+6~pUy
SV, 2Py = ’ 41
(ox - V,2™) {O otherwise. “h

Note that ambiguity in sign depends on the sign of the permutation that maps A + d to S U 7.

By definition, G is a sum of terms of the form sy - V where A is doubly even. This implies that
A48 = (2a1 +1,2a1,2a2+ 1, 2as, ... ) with a; > a;41. In other words, A+ ~ (v+ 1) U~ with
v+ 1 € Uy and v € Ay, where 1 is the all-ones vector. See Figure [2]for an example.

It follows that we may write:

PN+ E=2)

<G,xﬁuv>{i¢% F=(+1), Atd~(y+Ur,

0 otherwise.

Suppose we index M (G) such that the ith column is indexed by ~() and the ith row is indexed by
7 4 1. Then M(G) is in fact a diagonal matrix. And given the functional form of G, we have that
the diagonal terms will include:
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o (042051

repeated p(0) times,

° 3

(s 20520)

T repeated p(1) times,

° 3

(84+28=D

+
.+
t—=r ) repeated p(2) times,

3

N(N—1)
I

) repeated p(k) times.

e

Second, let us consider M (f1 ®---® fn). We can calculate the inner product of a rank-one function
as the product of orbital inner products:

N/2 N/2
(@@ fa, 2?0 = [ v®) T] Fnjzn o) (43)
n=1 n=1

where we introduce y € C as a one-dimensional dummy variable for integration.

Define vectors u € C?1l and v € C!¥2! such that
N/2

ug = [T (Fnrv™) (44)
n=1
N/2

vy =[] (fnj2my™) - (45)

n=1

Then it’s clear that M (f; ® -+ ® fn) = wvT, i.e. it is rank-one. Consequently, because F is the
sum of L - N! rank-one tensors, M (F') will be rank at most L - N,

So we finally pass from tensors to matrices, and lower bound via the Frobenius norm || - || :
IF=GI* = Nt Y (Fa®) = (G,2%))” (46)
aeNy
> N1 [M(F) - M(G) |3 (47)

Thus, because M (F') is low-rank and M (G) is chosen to be diagonal, we have an approachable
infinite-dimensional matrix low-rank approximation problem.

A.3 DERIVING THE BOUND

By SVD, the optimal choice for F' is to produce a diagonal matrix M (F') of rank L - N'! with the
maximal singular values of G along the diagonal. So it only remains to calculate these terms, and
lower bound the approximation.

So suppose we choose L < eN?, Noting that NV < eN2/14 for N > 3:

L-N!<eN'NN (48)
< 2N /14 (49)
< p(N*) (50)

where the last line follows from Corollary 3.1 in Maroti| (2003)).

So clearly L < eN” guarantees that L - N! < ZQZO p(k).
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Thus, since M (F’) is constrained to have rank < L - N!, it will be diagonal with < Zi\zo p(k)
terms, so that:

|F =G> > Nt | M(F) = M(G)[3 (51)
> C Nev-ny ) 2
>Ny <j: PS50 ) (k) (52)
- VNI
k=N4+41

=2 NI=D N Skp(k) (53)

k=N441

N4
=1-C%NW-Y Z r8*p(k) (54)

k=0

where the last line follows as C' was chosen so that C2rN (V=1 572 p8kp(f) = 1.

Note that
N* N* 1
> k) < [ —= (55)
k=0 k=1

as the LHS is the generating function for partitions A with |A\| < N*, and the RHS is the generating
function for partitions with all parts < N*, which clearly dominates the LHS termwise.

So plugging back in the definition of C' = (r~ VW=D T[> 1 — p8k) 12,

N4
_ 1
IF—G|* >1-C>NV-UT] % (56)
k=1
=1- H 1— 8k, (57)
k=N441
Finally, by choosing r =1 — Wi-s-s’ we have:
- [ t-=1- (1 — r8N4+8) (58)
k=N441
1 8N*+8
=|1-—— 59
( 8N* + 8) (59)
> (1 L)" (60)
- 16
3
> — 61
215" (61)
where we use that the limit (1 — %)n increases monotonically in . Hence, we conclude:
3
F-G|?>—. 62
IF-GI? > (©)
A.4 EFFICIENCY OF REPRESENTING GG
We remind the representation, where with r = 1 — m we have:
1 T T
i<j L
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with
" (3) = {”i“m DN (rag)t T 1< < NJ2, (64)

((rz) NI (A + (rag) ) N2 N/2+1<j<N.

So it remains to characterize some (' in the Jastrow ansatz, parameterized with neural networks, that
approximates G.

First, we make mention that, for very specific activations, this function G may be written exactly in
the Jastrow ansatz.

After fixing the value of r, we can consider each ¢; := (ZSET) as an activation function acting on a
one-dimensional input. Consider also the “activation” (z;, :cj) = W Then G can be clearly

written exactly in the Jastrow ansatz (where the Jastrow term J is given as a symmetrlc network with
product pooling) as

G=CVN! J(z) - Al ® - ® dn) (65)
= CVN! [ v(@i,z)) - Al @ -~ @ ) (66)
1<J

We know consider approximation error under a more typical choice of activation function. We will
use the modReL.U |Arjovsky et al.|(2016):

0 <1
o(2) ={ - Ii - (67)

We consider first the Jastrow factor. We will approximate it in G using a Relational Network (San-
toro et al., 2017)) with multiplication pooling.

Note that on our domain (S')¥, we have 1/2 < %2' < 8N* + 8. The Lipschitz norm of

[1—rdz2z

this function is also polynomially bounded, and therefore from Theorem 1 in|Caragea et al.| (2022)
it is standard to approximate this function with a complex neural network g with width, depth, and
weights all in O(poly(N, 1/€)), such that ||g||cc < 8N* + 8 + € and

1
T a2 9@zl <e. 68)
(2] oo
Assuming € < 1, it follows from routine calculation that
H]. 4 Hg x“xj SNO(N)E (69)
i<j -r i<j -

Consider second the antisymmetric factor. Following the row transforms given in the proof of
Lemma 3.4 in Ishikawa et al.| (2006)), the antisymmetric term may be equivalently written as:

A" @2 =AW © - @) (70)

with

w(r)( ) {TIZ((T$1)2)N/2j(1 + (Txi)4(j71)) 1 S ] S N/2 ) (71)

((rz))N=I(1 + (ra;)*0-1=N2) N/241<j<N.
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It’s easy to confirm that restricted to S*, ||¢)(" ||, < 2, and Lip(x)(")) = O(poly(N)). Therefore,
it is routine again by Theorem 1 in [Caragea et al|(2022) to approximate any (") with a neural
network 1) parameterized with width, depth and weights O (poly(N, 1/¢)) such that

) — o < €. (72)

We also clearly have that ||¢)||o < 2 + e. Now, we calculate:

HA Ng . @p)— AW ® - ® Pn HOO N'Z ( (1)® ®¢((72)N)_7$0'(1)®-..®7/30-(N)>
(73) b
1 R . N
S MZH( Er()l)® 7/)5(1\1) w0(1)®"'®¢o(N))Hoo
(74)
< N3V te (75)
Finally, we combine the Jastrow factor and antisymmetric component. Let
G(z) = CVN [ 9(wi, 2)) A @ - - @ ) () - (76)
1<J
Then we calculate:
R 1 ., .
|G = Glloo = CVN! HW'AW’P@' ng’%% AW ® - @ Py)
1<j L i<j oo
(17
< NOW)e (78)

So it remains to rescale € — which yields the expected bounds on width. [J

€
NON) »
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