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A PROOF

A.1 BUILDING THE HARD FUNCTION G

For any r ∈ R with |r| < 1, by mapping x 7→ rx and using homogeneity of sλ and V , we define G
via the generating function identity:

G :=
C√
N !

∑
λ doubly even

r(|λ|+
N(N−1)

2 )sλ · V = C
√
N ! ·

∏
i<j

1

1− r4x2ix
2
j

· A(ϕ
(r)
1 ⊗ · · · ⊗ ϕ

(r)
N ) ,

(21)

where

ϕ
(r)
j (xi) =

{
rxi((rxi)

2)N/2−j(1 + (rxi)
4)j−1 if 1 ≤ j ≤ N/2

((rxi)
2)N−j(1 + (rxi)

4)j−1−N/2 if N/2 + 1 ≤ j ≤ N
(22)

where C is chosen to normalize G.

Note that from the RHS, it is clear that G is written in the form of a Jastrow ansatz. We will discuss
efficiency of computing G further below.

It remains to choose r and C such that ∥G∥ = 1. Note that, if p(k) denotes the number of partitions
of k, and and p′(k) denotes the number of doubly even partitions of k , it’s easy to see that

p′(k) =

{
p(k/4) k ≡ 0 mod 4

0 else
(23)

So we calculate by orthogonality:

∥G∥2 =
C2

N !

〈 ∑
λ doubly even

r(|λ|+
N(N−1)

2 )sλ · V,
∑

µ doubly even

r(|µ|+
N(N−1)

2 )sµ · V

〉
(24)

= C2rN(N−1)
∑

λ doubly even

r2|λ| (25)

= C2rN(N−1)
∞∑
k=0

r2kp′(k) (26)

= C2rN(N−1)
∞∑
k=0

r8kp(k) (27)

= C2rN(N−1)
∞∏
k=1

1

1− r8k
(28)

where in the last line we employ the generating function for partition numbers. Then setting C =(
r−N(N−1)

∏∞
k=1 1− r8k

)1/2
gives ∥G∥ = 1.

A.2 FROM TENSORS TO MATRICES

The point of choosing G in this way, is it enables a simple flattening argument, where we can reduce
comparing tensors to comparing matrices.

Note again that terms of the form xα for α ∈ NN are orthonormal. Hence, we derive an initial lower
bound by Bessel’s inequality:

∥F −G∥2 ≥
∑

α∈NN

(⟨F, xα⟩ − ⟨G, xα⟩)2 . (29)
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Note that by antisymmetry of F and G, if α doesn’t have distinct elements then

⟨F, xα⟩ = ⟨G, xα⟩ = 0 . (30)

To see this, suppose α1 = α2, and let P12 be the permutation operator defined by

P12F (x1, x2, x3, . . . ) = F (x2, x1, x3, . . . ) (31)

It’s easy to seeP12 is a symmetric operator with respect to ⟨·, ·⟩. Then for any antisymmetric function
H ,

⟨H,xα⟩ = ⟨H,P12x
α⟩ (32)

= ⟨P12H,x
α⟩ (33)

= −⟨H,xα⟩ (34)

which implies ⟨H,xα⟩ = 0.

Furthermore, let us define the equivalence class ∼ as via α ∼ α′ if there exists a permutation π such
that α = π ◦ α′. Then by similar reasoning, α ∼ α′ implies:

⟨F, xα⟩ = (−1)π
〈
F, xα

′
〉

(35)

⟨G, xα⟩ = (−1)π
〈
G, xα

′
〉

(36)

So define NN
≥ to be the set of strictly decreasing non-negative integer vectors of length N , then we

have:

∥F −G∥2 ≥ N ! ·
∑

α∈NN
≥

(⟨F, xα⟩ − ⟨G, xα⟩)2 (37)

Now, we can consider a flattening argument, by passing from tensors to matrices. Define

A1 = {β ∈ NN/2
≥ : βi ≡ 1 mod 2} (38)

A2 = {γ ∈ NN/2
≥ : γi ≡ 0 mod 2} (39)

For β ∈ A1 and γ ∈ A2, let β ∪ γ ∈ NN be the concatenation of β and γ.

Then given a function acting on N particles such as G, we can map G to a (infinite-dimensional)
matrix M indexed by the sets A1 and A2:

M(G) =
[
⟨G, xβ∪γ⟩

]
β,γ

(40)

Let us calculate the entries of this matrix. Let δ = (N − 1, N − 2, . . . , 1, 0), and observe that:

⟨sλ · V, xβ∪γ⟩ =
{
±1 λ+ δ ∼ β ∪ γ ,
0 otherwise.

(41)

Note that ambiguity in sign depends on the sign of the permutation that maps λ+ δ to β ∪ γ.

By definition, G is a sum of terms of the form sλ · V where λ is doubly even. This implies that
λ+ δ = (2a1+1, 2a1, 2a2+1, 2a2, . . . ) with ai > ai+1. In other words, λ+ δ ∼ (γ+1)∪ γ with
γ + 1 ∈ A1 and γ ∈ A2, where 1 is the all-ones vector. See Figure 2 for an example.

It follows that we may write:

⟨G, xβ∪γ⟩ =

{
± C√

N !
r(|λ|+

N(N−1)
2 ) β = (γ + 1), λ+ δ ∼ (γ + 1) ∪ γ ,

0 otherwise.
(42)

Suppose we index M(G) such that the ith column is indexed by γ(i), and the ith row is indexed by
γ(i) +1. Then M(G) is in fact a diagonal matrix. And given the functional form of G, we have that
the diagonal terms will include:
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• ± C√
N !
r(0+

N(N−1)
2 ) repeated p(0) times,

• ± C√
N !
r(4+

N(N−1)
2 ) repeated p(1) times,

• ± C√
N !
r(8+

N(N−1)
2 ) repeated p(2) times,

• . . .

• ± C√
N !
r(4k+

N(N−1)
2 ) repeated p(k) times.

Second, let us considerM(f1⊗· · ·⊗fN ). We can calculate the inner product of a rank-one function
as the product of orbital inner products:

⟨f1 ⊗ · · · ⊗ fN , x
β∪γ⟩ =

N/2∏
n=1

⟨fn, yβn⟩
N/2∏
n=1

⟨fN/2+n, y
γn⟩ (43)

where we introduce y ∈ C as a one-dimensional dummy variable for integration.

Define vectors u ∈ C|A1| and v ∈ C|A2| such that

uβ =

N/2∏
n=1

⟨fn, yβn⟩ , (44)

vγ =

N/2∏
n=1

⟨fN/2+n, y
γn⟩ . (45)

Then it’s clear that M(f1 ⊗ · · · ⊗ fN ) = uvT , i.e. it is rank-one. Consequently, because F is the
sum of L ·N ! rank-one tensors, M(F ) will be rank at most L ·N !.

So we finally pass from tensors to matrices, and lower bound via the Frobenius norm ∥ · ∥F :

∥F −G∥2 ≥ N ! ·
∑

α∈NN
≥

(⟨F, xα⟩ − ⟨G, xα⟩)2 (46)

≥ N ! · ∥M(F )−M(G)∥2F (47)

Thus, because M(F ) is low-rank and M(G) is chosen to be diagonal, we have an approachable
infinite-dimensional matrix low-rank approximation problem.

A.3 DERIVING THE BOUND

By SVD, the optimal choice for F is to produce a diagonal matrix M(F ) of rank L · N ! with the
maximal singular values of G along the diagonal. So it only remains to calculate these terms, and
lower bound the approximation.

So suppose we choose L ≤ eN
2

. Noting that NN ≤ eN
2

/14 for N ≥ 3:

L ·N ! ≤ eN
2

NN (48)

≤ e2N
2

/14 (49)

≤ p(N4) (50)

where the last line follows from Corollary 3.1 in Maróti (2003).

So clearly L ≤ eN
2

guarantees that L ·N ! ≤
∑N4

k=0 p(k).
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Thus, since M(F ) is constrained to have rank ≤ L · N !, it will be diagonal with ≤
∑N4

k=0 p(k)
terms, so that:

∥F −G∥2 ≥ N ! · ∥M(F )−M(G)∥2F (51)

≥ N ! ·
∞∑

k=N4+1

(
± C√

N !
r(4k+

N(N−1)
2 )

)2

p(k) (52)

= C2rN(N−1)
∞∑

k=N4+1

r8kp(k) (53)

= 1− C2rN(N−1)
N4∑
k=0

r8kp(k) (54)

where the last line follows as C was chosen so that C2rN(N−1)
∑∞

k=0 r
8kp(k) = 1.

Note that
N4∑
k=0

r8kp(k) ≤
N4∏
k=1

1

1− r8k
(55)

as the LHS is the generating function for partitions λ with |λ| ≤ N4, and the RHS is the generating
function for partitions with all parts ≤ N4, which clearly dominates the LHS termwise.

So plugging back in the definition of C =
(
r−N(N−1)

∏∞
k=1 1− r8k

)1/2
:

∥F −G∥2 ≥ 1− C2rN(N−1)
N4∏
k=1

1

1− r8k
(56)

= 1−
∞∏

k=N4+1

1− r8k . (57)

Finally, by choosing r = 1− 1
8N4+8 , we have:

1−
∞∏

k=N4+1

1− r8k ≥ 1−
(
1− r8N

4+8
)

(58)

=

(
1− 1

8N4 + 8

)8N4+8

(59)

≥
(
1− 1

16

)16

(60)

≥ 3

10
, (61)

where we use that the limit
(
1− 1

n

)n
increases monotonically in n. Hence, we conclude:

∥F −G∥2 ≥ 3

10
. (62)

A.4 EFFICIENCY OF REPRESENTING G

We remind the representation, where with r = 1− 1
8N4+8 we have:

G = C
√
N ! ·

∏
i<j

1

1− r4x2ix
2
j

· A(ϕ
(r)
1 ⊗ · · · ⊗ ϕ

(r)
N ) (63)
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with

ϕ
(r)
j (xi) =

{
rxi((rxi)

2)N/2−j(1 + (rxi)
4)j−1 1 ≤ j ≤ N/2 ,

((rxi)
2)N−j(1 + (rxi)

4)j−1−N/2 N/2 + 1 ≤ j ≤ N .
(64)

So it remains to characterize some Ĝ in the Jastrow ansatz, parameterized with neural networks, that
approximates G.

First, we make mention that, for very specific activations, this function G may be written exactly in
the Jastrow ansatz.

After fixing the value of r, we can consider each ϕi := ϕ
(r)
i as an activation function acting on a

one-dimensional input. Consider also the “activation” ψ(xi, xj) = 1
1−r4x2

ix
2
j

. ThenG can be clearly
written exactly in the Jastrow ansatz (where the Jastrow term J is given as a symmetric network with
product pooling) as

G = C
√
N ! · J(x) · A(ϕ1 ⊗ · · · ⊗ ϕN ) (65)

= C
√
N ! ·

∏
i<j

ψ(xi, xj) · A(ϕ1 ⊗ · · · ⊗ ϕN ) (66)

We know consider approximation error under a more typical choice of activation function. We will
use the modReLU Arjovsky et al. (2016):

σ(z) =

{
0 |z| ≤ 1

z − z
|z| |z| ≥ 1

(67)

We consider first the Jastrow factor. We will approximate it in Ĝ using a Relational Network (San-
toro et al., 2017) with multiplication pooling.

Note that on our domain (S1)N , we have 1/2 < 1
|1−r4x2

ix
2
j |
< 8N4 + 8. The Lipschitz norm of

this function is also polynomially bounded, and therefore from Theorem 1 in Caragea et al. (2022)
it is standard to approximate this function with a complex neural network g with width, depth, and
weights all in O(poly(N, 1/ϵ)), such that ∥g∥∞ ≤ 8N4 + 8 + ϵ and∥∥∥∥∥ 1

1− r4x2ix
2
j

− g(xi, xj)

∥∥∥∥∥
∞

≤ ϵ . (68)

Assuming ϵ < 1, it follows from routine calculation that∥∥∥∥∥∥
∏
i<j

1

1− r4x2ix
2
j

−
∏
i<j

g(xi, xj)

∥∥∥∥∥∥
∞

≤ NO(N)ϵ . (69)

Consider second the antisymmetric factor. Following the row transforms given in the proof of
Lemma 3.4 in Ishikawa et al. (2006), the antisymmetric term may be equivalently written as:

A(ϕ
(r)
1 ⊗ · · · ⊗ ϕ

(r)
N ) = A(ψ

(r)
1 ⊗ · · · ⊗ ψ

(r)
N ) (70)

with

ψ
(r)
j (xi) =

{
rxi((rxi)

2)N/2−j(1 + (rxi)
4(j−1)) 1 ≤ j ≤ N/2 ,

((rxi)
2)N−j(1 + (rxi)

4(j−1−N/2)) N/2 + 1 ≤ j ≤ N .
(71)
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It’s easy to confirm that restricted to S1, ∥ψ(r)∥∞ ≤ 2, and Lip(ψ(r)) = O(poly(N)). Therefore,
it is routine again by Theorem 1 in Caragea et al. (2022) to approximate any ψ(r) with a neural
network ψ̂ parameterized with width, depth and weights O (poly(N, 1/ϵ)) such that

∥ψ(r) − ψ̂∥∞ ≤ ϵ . (72)

.

We also clearly have that ∥ψ̂∥∞ ≤ 2 + ϵ. Now, we calculate:∥∥∥A(ψ
(r)
1 ⊗ · · · ⊗ ψ

(r)
N )−A(ψ̂1 ⊗ · · · ⊗ ψ̂N )

∥∥∥
∞

=

∥∥∥∥∥ 1

N !

∑
σ

(−1)σ
(
ψ

(r)

σ(1) ⊗ · · · ⊗ ψ
(r)

σ(N) − ψ̂σ(1) ⊗ · · · ⊗ ψ̂σ(N)

)∥∥∥∥∥
∞

(73)

≤ 1

N !

∑
σ

∥∥∥(ψ(r)

σ(1) ⊗ · · · ⊗ ψ
(r)

σ(N) − ψ̂σ(1) ⊗ · · · ⊗ ψ̂σ(N)

)∥∥∥
∞

(74)

< N3N−1ϵ (75)

Finally, we combine the Jastrow factor and antisymmetric component. Let

Ĝ(x) = C
√
N !

∏
i<j

g(xi, xj)A(ψ̂1 ⊗ · · · ⊗ ψ̂N )(x) . (76)

Then we calculate:

∥G− Ĝ∥∞ = C
√
N !

∥∥∥∥∥∥
∏
i<j

1

1− r4x2ix
2
j

· A(ϕ
(r)
1 ⊗ · · · ⊗ ϕ

(r)
N )−

∏
i<j

g(xi, xj) · A(ψ̂1 ⊗ · · · ⊗ ψ̂N )

∥∥∥∥∥∥
∞

(77)

≤ NO(N)ϵ . (78)

So it remains to rescale ϵ→ ϵ
NO(N) , which yields the expected bounds on width. □

16


