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ABSTRACT

We develop MultiSTOP, a Reinforcement Learning framework for solving func-
tional equations in physics. This new methodology produces actual numerical
solutions instead of bounds on them. We extend the original BootSTOP algorithm
by adding multiple constraints derived from domain-specific knowledge, even in
integral form, to improve the accuracy of the solution. We investigate a particular
equation in a one-dimensional Conformal Field Theory.

1 INTRODUCTION

Functional equations appear in many scientific areas of study due to their ability to efficiently model
complex phenomena. Unfortunately, when analytical solutions are not available, finding approxi-
mate solutions using numerical methods such as semidefinite programming (Simmons-Duffin, 2015)
can often be computationally expensive. Although numerical methods can be quite effective, often
they only provide bounds on the parameters of the equation. Differential Equations (DEs) and Partial
Differential Equations (PDEs) can also be interpreted as functional equations and have been widely
studied with both numerical (Butcher, 2000) and Machine Learning methods (Raissi et al., 2017a;b).
We focus on a particular class of equations in the Conformal Field Theories (CFTs) of physics which
take the form h(z, z̄) +

∑
n C

2
nF∆n(z, z̄) = 0, with unknowns being the coefficients C2

n and the
functions’ parameters ∆n. Historical approaches (Simmons-Duffin, 2016; Poland et al., 2019) for
conformal bootstrap equations involve truncating the equation to all terms with ∆i ≤ ∆max and ap-
plying the aforementioned semidefinite programming. With this methodology, only bounds on the
unknowns are found (Kos et al., 2014).
Recently, Reinforcement Learning is emerging as a new paradigm to solve functional equations in
physics. A recent approach, called Bootstrap STochastic OPtimization, briefly BootSTOP (Kàntor
et al., 2022; 2023), has been used to find actual numerical solutions for the above equation.
Our main contributions are: (a) MultiSTOP, an extension of BootSTOP which enables the enforce-
ment of additional constraints derived from the physics of the model into the algorithm, in order
to increase the accuracy of the solutions. (b) A detailed empirical analysis on the effectiveness of
the proposed approach on a 1D defect CFT. (c) An analysis of the degeneracy problem that occurs
when two or more functions have similar parameters ∆n in two limiting cases for the model.

2 MULTISTOP

We start with the description of the functional equation we are interested in. We then introduce our
MultiSTOP (Multiple STochastic OPtimization) approach solving the conformal bootstrap equation
by introducing additional constraints on the unknowns derived from the physical domain.
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2.1 THE CONFORMAL BOOTSTRAP EQUATION

We focus on the conformal bootstrap equation of a Conformal Field Theory (CFT), the 1D defect
CFT defined by a straight 1

2 -BPS Wilson line in 4D N = 4 super Yang-Mills theory (Maldacena,
1998; Drukker & Kawamoto, 2006; Giombi et al., 2017). In this 1D setting, the equation reads:

h(x) +
∑
n

C2
nF∆n(x) = 0, (1)

and must hold for almost all the points x ∈ C. Function h(x) is known, while the F∆n
(x) are

analytical with respect to ∆n and are defined in terms of the so called conformal blocks f∆n
(x)

through the formula F∆n
(x) = x2f∆n

(1 − x) + (1 − x)2f∆n
(x) (see appendix A.1 for a review).

Our objective is to find solutions of equation 1 with unknowns given by the squared OPE coefficients
C2

n ≥ 0 and the scaling dimensions ∆n ≥ 0, which we indicate together as CFT data. In this model
of interest the CFT data depends on a parameter g called coupling constant. Previous studies were
able to identify the values of the scaling dimensions ∆n for the first 10 terms of equation 1 as a
function of the coupling constant with high precision for many values of g (see Grabner et al. (2020)
and references therein). For our purposes, we give these values as input to the MultiSTOP algorithm,
halving the number of unknowns we have to find and significantly reducing the search space.

In the specific model under investigation, the CFT data are further subject to the integral constraints
(equation 2), where RHSi are functions of g alone, while Inti are integrals of the conformal blocks
f∆ evaluated with respect to a certain measure1:

Constraint i: Ii =
∑
n

C2
nInti[f∆n ] + RHSi = 0, i = 1, 2. (2)

These constraints were derived in Cavaglià et al. (2022); Drukker et al. (2022) from the requirement
that deformations of the straight line parametrized by the CFT data appearing in equation 1 are
compatible with the constraints of supersymmetry, and have been shown to drastically improve the
bounds on the numerical determination of the CFT data.

2.2 BOOTSTOP

See section A.2 for a brief introduction to the main concepts of Reinforcement Learning (RL).
We start by making two approximations. (a) Since equation 1 consists of an infinite number of terms,
we truncate it up to a certain number of terms or to all functions with ∆n ≤ ∆max. In this case, we
consider the first 10 elements of the sum as their scaling dimensions ∆n are known with very high
precision (Grabner et al., 2020). For a discussion on how this truncation may affect the results or
how to mitigate it through the analysis of the tails see Niarchos et al. (2023). (b) Being equation 1
a functional equation, it has to be verified in a continuous space. In order to make it tractable, we
choose a set of 180 testing points in the complex plane where the equation is evaluated. While this
does not guarantee the CFT data found to hold for every x ∈ C, it has proven to be effective with
the specific points taken from Kàntor et al. (2023).

We now describe the BootSTOP algorithm, first introduced in Kàntor et al. (2022; 2023), which
constitutes the basis for our MultiSTOP approach. In order to apply RL to our framework we need
to define a suitable environment with states, actions and, most importantly, a reward signal that
guides the agent to find a solution to the equation.
States: a state is the current agent’s guess of the solution to the truncated version of equation 1, that
is the vector of CFT data St =

(
∆1, . . . ,∆10, C

2
1 , . . . , C

2
10

)
∈ [0,∆max]

10× [0, C2
max]

10. For the 1D
CFT of interest, it is safe to assume that ∆max = 10 and C2

max = 1. We indicate states as (∆,C2).
Actions: an action by the agent is the change of one couple of values in the current guess St. In
particular, the agent cycles from n = 1 to 10 and, at each step, selects the new values for (∆n, C

2
n)

obtaining St+1. Note that for this environment the state transitions are deterministic.
Rewards: the reward has to guide the agent towards a solution of the conformal bootstrap equation.
Evaluating the truncated equation on the aforementioned 180 complex points and with our current
guess of the CFT data, we obtain a vector of evaluations E(∆,C2). We want this to be as close as
possible to the null vector, in order for equation 1 to be satisfied. The closer the norm ∥E(∆,C2)∥2

1See appendix A.1 for a more detailed description.
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is to 0, the closer the state is to the actual solution and the higher has to be the reward for learning.
Possible choices are R1 = −∥E(∆,C2)∥2 as in Kàntor et al. (2022) and R2 = 1

∥E(∆,C2)∥2
as

in Kàntor et al. (2023). In this work, we consider the second formulation. The RL algorithm used
to optimize the agent’s policy is Soft Actor-Critic (SAC) (Haarnoja et al., 2018). For the complete
algorithm, implementation details and speed-up techniques applied, see appendix A.3.

2.3 MULTISTOP: ENFORCING ADDITIONAL PHYSICAL CONSTRAINTS

We now introduce our MultiSTOP, which extends the BootSTOP algorithm by including additional
physical constraints. This is an important feature as functional equations or, more generally, DEs
or PDEs can feature multiple constraints that must be satisfied, such as initial conditions. Since the
physical constraints in equation 2 have proven to be very effective in improving the accuracy of the
bounds on the first three values of C2

n of our model as in Cavaglià et al. (2022), we want to impose
these constraints into our RL framework. To do so, we first notice that equation 2 has the same
general form and the same unknowns as our objective 1. Hence, we can apply the same reasoning
from equation 1: we evaluate the physical constraints on our current guess (∆,C2), with a reward
that should be higher as I1 and I2 in equation 2 are closer to zero. With this in mind, we want to
include two terms similar to 1

|Ii| , i = 1, 2 into the reward formulation. We have two possibilities:

R1 =
1

∥E⃗t(∆⃗, C⃗2)∥
+ w1

1

|I1|
+ w2

1

|I2|
, R2 =

1

∥E⃗t(∆⃗, C⃗2)∥+ w1|I1|+ w2|I2|
(3)

where w1 and w2 are weights. After the initial experiments with both forms of reward, with the
objective of matching the known bounds for C2

1 , C
2
2 , C

2
3 with g = 1, we found that R2 produces

better and more stable results, with weights w1 = 104 and w2 = 105. While R2 forces all three
terms of the denominator to be small to improve the overall reward, when using R1 the agent was
sometimes able to optimize one term independently of the others, leading to poor optimization of
the total reward.

3 RESULTS

We assess the effectiveness of MultiSTOP by studying the 1D CFT described in section 2 in two
regimes: (a) weak coupling (g ≤ 1), where we investigate the behavior of C2

2 , C
2
3 as g → 0 and (b)

Strong coupling (g ≥ 1), where we focus on the behavior of C2
n, n ≥ 4 as g → 4. In each case, the

values for ∆n are given as input as they are known with high precision from Grabner et al. (2020).
We remark the effectiveness of MultiSTOP with respect to the baseline BootSTOP algorithm: when
trying to match the known values for C2

1 , C
3
2 , C

2
3 , integrating the constraints in equation 2 leads to a

reduction in relative error from 2x to 10x. This effect has already been observed in similar contexts
(Cavaglià et al., 2022; Chester et al., 2022; Chester, 2023). See appendix B.1 and C for further
details from a theoretical and experimental point of view.

3.1 WEAK COUPLING AND THE PROBLEM OF DEGENERACY

Since the numerical bounds on C2
1 from Cavaglià et al. (2022) are tight, we provided their middle

value as input to the algorithm to reduce the search space and help the agent. In figure 1 we plot
the results of the best 25 runs based on reward for the tested values of g and compare them with the
available bounds in literature. We notice that the results are less coherent when g → 0, but the values
for the coefficients are outside of the bounds in a symmetric way. Each value for C2

2 is below the
expected ones and the opposite happens for C2

3 . If we consider the sum C2
2 +C2

3 , most of the values
are in the green regions and therefore acceptable. We found that this is strictly related to the fact
that as g → 0, the scaling dimensions ∆2 and ∆3 converge to the same value of ∆ = 2 (Cavaglià
et al., 2022; Grabner et al., 2020). This is known as degeneracy and affects the ability of the agent
to find accurate values of both the coefficients at the same time (appendix B.2). Since the functions
F∆n(x) are analytical with respect to ∆n, up to terms of O(∆2 − ∆3) we can write equation 4,
showing that only C2

2 + C2
3 can be determined with good precision in the limit ∆2 −∆3 → 0.

C2
2F∆2

+ C2
3F∆3

≈ (C2
2 + C2

3 )F2. (4)

To solve this issue, more conformal bootstrap equations like 10 of the same CFT could be integrated.
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(a) C2
2 at weak coupling (b) C2

3 at weak coupling (c) C2
2 + C2

3 at weak coupling

Figure 1: Results on C2
2 , C

2
3 at weak coupling. Green regions represent the bounds from Cavaglià

et al. (2022). The blue dots are the results for the best 25 runs based on reward for some values of
g. Results have high precision, with a standard error of around 0.1%.

(a) C2
4 (b) C2

5 (c) C2
4 + C2

5 + C2
6 + C2

8

Figure 2: Strong coupling results for C2
4 , C

2
5 and C2

4 +C2
5 +C2

6 +C2
8 as a function of the coupling

constant g. Blue points represent the individual values for the best 25 runs based on reward, while red
points, lines and bars represent their means with standard deviation. Green lines represent theoretical
expectations. Standard error on C2

4 , C
2
5 is around 10−50% or worse and increases with g due to the

degeneracy problem. Standard error on C2
4 + C2

5 + C2
6 + C2

8 is calculated on the values of the sum
for each run. Standard error is always below 0.1%, making the vertical bars invisible in figure 2c.

3.2 STRONG COUPLING

Since at strong coupling all bounds are tight enough, the middle points for C2
1 , C

2
2 , C

2
3 are given as

input to reduce the search space. In this case, we expect a higher precision since our experiments
show that the best and average rewards increase monotonically with g and the results are stable with
multiple runs in parallel (see appendix A.4 for further results). Figures 2a and 2b show the results for
C2

4 , C
2
5 at strong coupling. We can see that we have a higher precision on C2

4 , which is in line with
the fact that the terms with higher ∆ have a greater influence in the equation and are more optimized.
However, the standard error for the best 25 runs seems to increase as g → 4. Again, this is due to
degeneracy as the scaling dimensions ∆4,∆5 (together with ∆6,∆8) converge to the same value of
∆ = 6 at infinity. Investigating on the sum C2

4 +C2
5 +C2

6 +C2
8 we found that our mean values are

very close to a theoretical result from Ferrero & Meneghelli (2021); Ferrero & Meneghelli (2023);
Ferrero & Meneghelli (2023), which indicates that the approach is working well (see figure 2c). We
also noticed that if the standard deviation on the sum C2

4 + C2
5 + C2

6 + C2
8 is calculated using error

propagation from the errors on the individual coefficients we obtain figure 6, with error between 1%
and 10%. If we instead calculate the sum C2

4 + C2
5 + C2

6 + C2
8 for each experiment and calculate

statistics directly on these values, the results are surprisingly precise with errors always below 0.1%
and the bars of one standard deviation being invisible as in figure 2c. This is another confirmation
of the effects of degeneracy: when two or more elements of the sum have similar values of ∆n, the
sums of the corresponding coefficients are more precise than individual values.

4 CONCLUSION

In this work, we developed MultiSTOP, an extension to the BootSTOP algorithm that is able impose
additional physical constraints into the framework. We experimented on a one-dimensional CFT
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where some values of ∆n and C2
n where known with enough precision to be given as input. At the

weak coupling regime, the individual coefficients found were outside of the expected bounds due
to the degeneracy problem. We found a similar issue at strong coupling, where the precision on
results decreases with g. In both cases, the sum is much more aligned with previous results and has
a higher precision. To solve this issue, we could include more equations into the same framework to
decouple the coefficients or provide additional physical constraints and information. In the future,
MultiSTOP can be applied on PDEs by using linear combinations of parametrized basis functions.
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A DETAILS ON THE MODEL AND THE ALGORITHM

A.1 DETAILS ON THE MODEL’S EQUATIONS AND CONSTRAINTS

We start by defining the hypergeometric function2F1(a, b, c; z) as

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (5)

solutions to the Euler’s hypergeometric differential equation

z(1− z)
d2f

dz2
+ [c− (a+ b+ 1)z]

df

dz
− abf = 0, (6)
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where we have introduced the symbol (q)n as

(q)n =

{
1, n = 0,

q(q + 1) · · · (q + n− 1), n > 0
(7)

We also introduce the Bessel functions of the first kind Iα as

Iα(x) =

∞∑
m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α

(8)

solutions to the differential equation

x2 d
2f

dx2
+ x

df

dx
+ (x2 − α2) = 0. (9)

Starting from Cavaglià et al. (2022), we now describe how the conformal bootstrap equation is
expressed and implemented within our framework. To define equation 1 we begin with

x2f(1− x) + (1− x)2f(x) = 0 (10)

where

f(x) = fI(x) + C2
BPSfB2(x) +

∞∑
n=1

C2
nf∆n(x). (11)

The individual terms of g defined as

fI(x) = x

fB2
(x) = x− x 2F1(1, 2, 4;x)

f∆(x) =
x∆+1

1−∆
2F1(∆ + 1,∆+ 2, 2∆ + 4;x)

(12)

while the constant C2
BPS is given by

F(g) =
3I1(4πg)((2π

2g2 + 1)I1(4πg)− 2gπI0(4πg))

2g2π2I2(4πg)2

C2
BPS(g) = F(g)− 1

(13)

Finally, the functions in equation 1 are defined as

F∆n
(x) = x2f∆n

(1− x) + (1− x)2f∆n
(x)

h(x) = x2(fI(1− x) + C2
BPSfB2(1− x)) + (1− x)2(fI(x) + C2

BPSfB2(x))
(14)

The integral constraints are defined as

Constraint 1: I1 =
∑
n

C2
nInt1[f∆n

] + RHS1 = 0,

Constraint 2: I2 =
∑
n

C2
nInt2[f∆n ] + RHS2 = 0.

(15)

where

Int1[f∆n
] = −

∫ 1
2

0

(x− 1− x2)
f∆n

x2
∂x log(x(1− x))dx

Int2[f∆n
] =

∫ 1
2

0

f∆n

x2
(2x− 1)dx

(16)

and the values RHSi, i = 1, 2 are expressed by

RHS1 =
B(g)− 3C(g)

8B(g)2
+

(
7 log 2− 41

8

)
(F(g)− 1) + log 2

RHS2 =
1− F(g)

6
+ (2− F(g)) log 2 + 1− C(g)

4B(g)2

(17)
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Figure 3: Values for the first 10 scaling dimensions ∆n in the 1D CFT of interest, from Cavaglià
et al. (2022).

where, finally,

B(g) =
g

π

I2(4πg)

I1(4πg)
(18)

and the curvature C(g) can be found in Cavaglià et al. (2022) as an expansion in terms of g.

Figure 3, taken from Cavaglià et al. (2022), shows the first 10 values of ∆n as a function of the
coupling constant g, which were used in our experiments.

A.2 A SHORT RL INTRODUCTION

Reinforcement Learning is a particular Machine Learning technique involving two interacting com-
ponents: an agent and the environment. At each time step, the agent has a state St, representing
the stage of interaction, and does an action At following a policy π(At|St), which expresses the
agent’s behavior based on the state. Then, the environment outputs a reward signal Rt+1 and
a new state St+1 is reached based on unknown dynamics p(St+1, Rt+1|St, At). The objective
of the agent is to find the optimal policy to maximize the expected discounted reward Ep[Gt]
where Gt =

∑∞
i=t γ

i−tRi and γ ∈ [0, 1] is the discount factor which expresses the impor-
tance of future rewards. RL techniques often involve studying objects such as the value function
vπ(s) = Eπ,p[Gt|St = s] and the action-value function qπ(s, a) = Eπ,p[Gt|St = s,At = a] which
are measures of the performance of the policy based on the current state and action.

A.3 ALGORITHM DETAILS

The complete algorothm description of Bootstop can be found in algorithm 1.

A.3.1 IMPLEMENTATION REMARKS

In order to improve the search and the precision of the final solution, two additional techniques are
adopted. First, if the agent does not improve the maximum reward ever obtained after a certain
number of steps, the Neural Networks of SAC are reset to start the search from scratch and try to
find other possible values for the CFT data. Second, after some re-initializations of the networks,
the search window is reduced around the previous best guess by a vertain factor to improve the
precision. These two processes are repeated iteratively until enough precision is reached.

In our experiments, to further improve the accuracy and the performance of the agent, we fixed the
numerical values for some parameters. In particular, the scaling dimensions ∆n, 1 ≤ n ≤ 10 are

8
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Algorithm 1 BootSTOP: Bootstrap STochastic OPtimization

Initialize parameters, best reward R∗ = 0
while number of windows reductions less than max windows exp do

while number of re-initializations less than pc max do
Initialize neural networks, agent and reset memory buffer.
for Each time step t do

Agent selects action (∆n, C
2
n) with n = t mod 10 + 1.

Update the state St = (∆,C2).
Calculate F∆n(x) and crossing equations Ot = E(∆,C2).
Calculate reward Rt =

1
∥E(∆,C2)∥ .

Agent receives reward Rt.
Update memory buffer with the last transition.
Update/learn parameters according to the main SAC algorithm
if Rt > R∗ then

Overwrite previous best reward R∗ and agent restart episode, t = 0.
end if
if number of steps without improving reaches faff max then

Exit For loop and reinitialize
end if

end for
end while
Reduce search windows size by a factor of window rate centered around the state corre-

spondent to R∗.
end while

known with high precision (Grabner et al., 2020) for all tested values of g and are all given as input
to the agent. Based on g, some values of the squared OPE coefficients C2

n are fixed beforehand as
well, in particular the first (weak coupling case) or the first three (strong coupling case).

Similarly to Kàntor et al. (2023), we applied the speed-up techniques described in appendix A.3.2. In
our case, the values of F∆n

(zk, z̄k) are not approximated on a grid of selected values for the scaling
dimensions ∆n but are calculated on the accurate values from Grabner et al. (2020). Similarly, this
lets us calculate beforehand the integrals in equation 2. This considerably increase the efficiency of
the method and any arbitrary precision can be used to calculate these values without any cost when
searching for the solution.

A.3.2 SPEED-UP TECHNIQUES

When applying BootSTOP, the original authors noticed that the most time demanding part was the
evaluations of the hypergeometric functions in the definition of the F∆n

(x) on the set of 180 points
and the current guess for the CFT data. To alleviate this, they considered a grid of points for ∆n

with configurable precision. The values for F∆n
(x) on these values of ∆n and x are calculated

beforehand and loaded into the algorithm for faster execution, at the cost of some precision.

A.3.3 PARAMETERS

We report here the specific parameters used in the algorithm:

• Reward scale r, corresponding to the inverse of α in Haarnoja et al. (2018): 10. The τ
parameter is set as 0.0005 and the discount factor is 0.99.

• The neural networks used in SAC are fully connected neural networks with 2 hidden layers
of 256 units each. These are implemented and trained with PyTorch (Paszke et al., 2019)
with the Adam optimizer and learning rate of 0.005.

• Number of steps without improvements in the maximum reward before re-initializing the
networks: 10000.

• Number of re-inizializations before reducing the search windows: 10.
• Number of window reductions: 25 with constant reduction factor 0.7.
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Figure 4: Experimental results on the values of the rewards as a function of the coupling constant g.
The green line represents reward of the best performing run only, blue line and region represent the
average of the best 25 runs and the standard deviation. The green line and blue region are almost
invisible, showing the stability of the method.

• Number of parallel runs for each experiment: 500. Statistics are calculated on the best 25
runs in terms of the maximum reward obtained.

A.4 FURTHER RESULTS

Figure 4 shows the best and averaged rewards on the best 25 runs as a function of the coupling
constant g. As we can see, apart near g = 1 where the setting changes a bit from only C2

1 to both
C2

i , i = 1, 2, 3 given as input, the reward monotonically increases. We also notice that the best
reward is almost indistinguishable from the average of the top 25 with an almost null standard devi-
ation. This shows the stability of the model under multiple runs. Figure 5 shows the experimental
results on coefficient C2

6 which have similar precision to the ones for C2
5 in figure 2b. Figure 6

shows the results on the sum C2
4 +C2

5 +C2
6 +C2

8 with the standard deviation calculated with error
propagation from the individual ones as described at the end of section 3.2.

B THEORETICAL BACKGROUND

B.1 ON THE IMPORTANCE OF ADDING THE INTEGRAL CONSTRAINTS

We briefly describe the theoretical and experimental motivations for the addition of the integral con-
straints in equation 2. The conformal bootstrap, which leads to the main equation 10, is a powerful
method that puts non-perturbative constraints on conformal field theory data (∆,C2). Previous
approaches produced only allowed regions for the CFT data (∆,C2). The fact that the inclusion of
the additional integral constraints in equation 2 significantly shrinks such regions, allowing in some
cases to identify the theory under investigation with great precision, has been already observed in
several papers in the physics literature, including the case that we study. We refer to Cavaglià et al.
(2022); Chester et al. (2022); Chester (2023) for further details. It is therefore important to inves-
tigate whether the integral constraints are useful as it has been in many other contexts. A clear
example of this is the improved precision between figures 6, 9, and 10 in Cavaglià et al. (2022). .
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Figure 5: Strong coupling results for C2
6 as a function of the coupling constant g. Blue points

represent the individual values for the best 25 runs based on reward, while red points and bars
represent their means with standard deviation. Standard error is around 10 − 50% or worse and
increases with g due to the degeneracy problem.

Figure 6: Experimental and theoretical results at strong coupling for the sum C2
4 + C2

5 + C2
6 + C2

8
as a function of the coupling constant g. Green lines represent the theoretical expectation and while
red lines represent the mean values for the best 25 rewards with their standard deviation. The total
standard deviation is obtained via error propagation on the standard deviations on the individual
coefficients C2

n.
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B.2 DEGENERACY

On a theoretical level, individual components of the conformal bootstrap equation 10 represent phys-
ical states of the theory. We refer to degeneracy as the situation where two states i and j have con-
formal dimensions ∆i and ∆j (which we recall are functions of g) which become similar, to the
point of being indistinguishable, for a certain value of g. This is the case at weak coupling (g = 0),
and this degeneracy of states is responsible for the fact that the terms with n = 2, 3 can no longer be
distinguished, so there is a significant loss in precision for the determination of their individual OPE
coefficients C2

2 and C2
3 . On the other hand, given the structure of the bootstrap equation, it is still

possible to determine with good precision their sum C2
2 +C2

3 . The fact that precision is lost at weak
coupling is visible from the plots in figures 6, 9, 10 of Cavaglià et al. (2022), which focus on the first
three states, while the OPE coefficients for other states are not shown. The fact that the degeneracy
is particularly high at weak coupling (much higher than at strong coupling) can be seen from table
5 and figure 1 of Ferrero & Meneghelli (2023). While their terms in the equation are very similar,
different states are physically different and can in theory be distinguished. This can be achieved by
adding more conformal bootstrap equations of the same CFT into the MultiSTOP framework, which
we leave for future works.

C IMPROVED ACCURACY WITH MULTISTOP

To show the improvements of MultiSTOP compared to its baseline BootSTOP also on from an
experimental point of view, we conducted experiments with g = 1 after the definitive weights were
found to be w1 = 104, w2 = 105. We gave as input the conformal dimensions ∆n and tried to
match the known values for C2

1 , C
2
2 , C

2
3 , defined as the middle point of the available tight bounds

from Cavaglià et al. (2022). In figure 7 we compare the most relevant metrics based on the number
of integral constraints applied (the best 10 runs in each case are considered): from ”no contstraints”,
the BootSTOP case, to ”one constraint” or ”two constraints” with MultiSTOP.

• The norm of the crossing equation 1 increases by a factor of two (figure 7a. This is most
probably due to the harder optimization problem given by the addition of the integral con-
straints.

• Most importantly, the absolute relative error with respect to the ground truth (figures
7b,7c,7d) decreases when the integral constraints are applied, most notably when both of
them are included. The reduction in error goes from a factor of at at least 2 for C2

2 and C2
3

to a factor of almost 10 in the case of C2
1 .

We can conclude that MultiSTOP is able to find more accurate solutions to the crossing equation
when compared to the baseline method.
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(a) ∥E(∆,C2)∥2 (b) Relative error on C2
1

(c) Relative error on C2
2 (d) Relative error on C2

3

Figure 7: Comparisons between the baseline BootSTOP algorithm (no constraints applied) and the
MultiSTOP methodology with one or two integral constraints applied. The norm of the crossing
equation increases by less than a factor of 2, while the relative errors with respect to the known
values for the first three coefficients is reduced by a factor between 2x and 10x on average with both
constraints applied.
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