
Supplementary Information: Tracking Without
Re-recognition in Humans and Machines

Drew Linsley∗1, Girik Malik∗2, Junkyung Kim3,

Lakshmi N Govindarajan1, Ennio Mingolla†2, Thomas Serre†1
drew_linsley@brown.edu and malik.gi@northeastern.edu

1 Limitations

In this work we tested a relatively small number of PathTracker versions. We mostly focused
on small variations to the number of distractors and video length, but in future work we hope
to incorporate other variations like speed and velocity manipulations, and generalization across
temporal variations [1]. Another limitation is that appearance-free strategies confer relatively modest
gains over the state of the art. One potential issue is determining when a visual system should
rely on appearance-based vs. appearance-free features for tracking. Our solution is two-pronged
and potentially insufficient. The first strategy is for top-down feedback from the TransT into the
InT, which we aligns tracks between the two models. The second strategy is potentially naive, in
that we gate the InT modulation to the TransT based on its agreement with the prior TransT query,
and the confidence of the TransT query. Additional work is needed to identify better approaches.
Meta-cognition work from Cognitive Neuroscience is one possible resource [2].

2 Extended Discussion

Societal impacts The basic goal of our study is for understanding how biological brains work.
PathTracker helps us screen models against humans on a simple visual task which tests visual
strategies for tracking without “re-recognition”, or appearance cues. The fact that we developed a
circuit that explains human performance is primarily important because it makes predictions about the
types of neural circuit mechanisms that we might ultimately find in the brain in future Neuroscience
work. Our extension to natural videos achieves new state-of-the-art because it is able to implement
visual strategies that build tolerance to visual nuisances in way that resembles humans. It must be
recognized the further development of this model has potential for misuse. One possible nefarious
application is for surveillance. On the other hand, such a technology could be essential for ecology,
sports, self-driving cars, robotics, and other real-world applications of machine vision. We open
source our code and data to promote research towards such beneficial applications.

3 Human benchmark

For our benchmark experiments we recruited 180 participants. Every participant was compensated
with $8 through MTurk on successful completion of all test trials by pasting a unique code generated
by the system into their MTurk account. The decision regarding this amount was reached upon by
prorating the minimum wage. An additional overhead fee of 40% per participant was paid to MTurk.
Collectively, we spent $1,440 on these benchmark experiments.

The experiment was not time bound and participants could complete it at their own pace, taking
around 25 minutes to complete. Videos with 32-, 64- and 128-frames were of duration 4, 8 and 14
seconds respectively. The videos played at 10 frames per second. Participant reaction times were

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: An experimental trial screen.

also recorded on every trial and we include these in our data release. After every trial participants
were redirected to a screen confirming successful submission of their response. They could start the
next trial by clicking the “Continue” button or by pressing spacebar. If not, they were automatically
redirected to the next trial after 3000 ms. Participants were also shown a “rest screen” with a progress
bar after every 10 trials where they could take additional and longer breaks if needed. The timer was
turned off for the rest screen.

Experiment design At the beginning of the experiment, we collected participant consent using a
consent form approved by Brown University’s Institutional Review Board (IRB). Our experiment
was completed on a computer via Chrome browser. Once consented, we provided a demonstration
clearly stating the instructions with an example video to the participants. We also provided them with
an option to revisit the instructions, if needed, from the top right corner of the navigation bar at any
point during the experiment.

Participants were asked to classify the video as “positive” (the dot leaving the red marker entered the
blue marker) or “negative” (the dot leaving the red marker did not enter the blue marker) using the
right and left arrow keys respectively. The choice for keys and their corresponding instances were
mentioned below the video on every screen, along with a small instruction paragraph above the video.
See Fig 1. Participants were given feedback on their response (correct/incorrect) after every practice
trial, but not after the test trials.

Setup The experiment was written in Python Flask, including the server side script and logic. The
frontend templates were written in HTML with Bootstrap CSS framework. We used javascript for
form submission with keys and redirections, done on the end-user side. The server was run with
nginx on 1 Intel(R) Xeon(R) CPU E5-2695 v3 at 2.30GHz, 4GB RAM, Red Hat Enterprise Linux
Server.

Video frames for each experiment were generated at 32×32 resolution. Before writing them to the
mp4 videos displayed to human participants in the experiment, the frames were resized through
nearest-neighbor interpolation to 256×256. In order to allow time for users to prepare for each trial,
the first frame of each video was repeated 10 times before the rest of the video played.

Filtering criteria Amazon Mechanical Turk data is notoriously noisy. Because of this, we adopted
a simple and bias-free approach to filter participants who were inattentive or did not understand
the task (these users were still paid for their time). For the main benchmark described in §3 in the
main text, participants completed one of two experiments, where they were trained and tested on
videos with 32 or 64 frames. No participant viewed both lengths of PathTracker. Participants were
trained with 14 distractor videos, then tested on videos with 1, 14, or 25 distractors. We filtered

2

0

5

0 20 40 60 80 100

C
ha

ng
e

in
 a

cc
ur

ac
y

Training set size (in thousands)

0

1

2

3

4

5

32 64 128

M
ea

n
nu

m
be

r o
f c

ro
ss

in
gs

Video length

Distractors
1

14
25

(c)

5 to 10

80

85

90

0 20 40 60 80 100

Te
st

 s
et

 a
cc

ur
ac

y

Training set size (in thousands)

(a)

10 to 15
15 to 20
20 to 40

40 to 80

(b)

Figure 2: Our approach for selecting training set size on PathTracker, and a proxy for difficulty across
the versions of the challenge. (a) We plot I3D performance as a function of training set size. The
dotted line denotes the point at which the derivative of accuracy w.r.t. training set size is smallest (b).
We take this change performance as a function of training set size as evidence that I3D has learned a
strategy that is sufficient for the task. We suspected this size would make the PathTracker challenging
but still solvable for the models we discuss in the main text. (c) The number of average crossings in
PathTracker videos as a function of distractors and video length. Lines depict exponential fits for
each number of distractors across lengths.

participants according to their performance on the training videos for a particular experiment, which
were otherwise not used for any analysis in this study. We removed participants who did not exceed
2 median absolute deviations below the median median(X) − 2 ∗MAD(X) (MAD = median
absolute deviation [3]; this is a robust alternative to using the mean and standard deviation to find
outliers). The threshold was approximately 40% training accuracy for each experiment (chance is
50%). This procedure filtered 74/180 participants in the benchmark.

Statistical testing We assessed the difference between human performance and chance using
randomization tests [4]. We computed human accuracy on each test dataset, then over 10,000 steps,
we shuffled video labels, and then recomputed and stored the resulting accuracy. We computed
p−values as the proportion of shuffled accuracies that exceed the real accuracy. We also used linear
models for significance testing of trends in human accuracy as we increased the number of distractors.
From these models we computed t-tests and p-values.

Using an I3D [5] to select PathTracker training set sizes As mentioned in the main text, we
selected PathTracker training set size for models reported in the main text by investigating sample
efficiency of the standard but not state-of-the-art I3D [5]. We were specifically interested in identifying
a “pareto principle” in learning dynamics where additional training samples began to yield smaller
gains in accuracy, potentially signifying a point at which I3D had learned a viable strategy (SI Fig. 2).
At this point, we suspected that the task would remain challenging – but still solvable – across the
variety of PathTracker conditions we discuss in the main text. We focus on basic 32 frame and 14
distractor training and find an inflection point at 20K examples. We plot I3D performance on this
condition in SI Fig. 2a and performance slopes in SI Fig. 2b. The first and lowest slope corresponds
to 20K samples, and hence may reflect an inflection in the model’s visual strategy. Our experiments
in the main text demonstrate that this strategy is a viable one for calibrating the difficulty of synthetic
challenges.

Target-distractor crossings We compute the number of average crossings between the target
object and distractors in PathTracker. Increasing video length monotonically increases the number of
crossings. Length further interacts with the number of distractors to yield more crossings (SI Fig. 2c).

4 Solving the Pathtracker challenge

State-of-the-art model details We trained a variety of models on our benchmark. This included
an R3D without any strides or downsampling. Because this manipulation caused an explosion in
memory usage, we reduced the number of features per-residual block of this “No Stride R3D” from
64/128/256/512 to 32/32/32/32. We also included two forms of TimeSformers [6], one with distinct
applications of temporal and spatial attention that we include in our main analyses, and another with
join temporal and spatial attention (SI Fig. 3).

3

100%

80%

100%

80%
Ac

cu
ra

cy

(a)

(e)

Ac
cu

ra
cy

60%

40%

60%

40%

Train: 14 distractors and 32 frames
Test: 1 distractors and 32 frames Test: 14 distractors and 32 frames Test: 25 distractors and 32 frames

Train: 14 distractors and 64 frames
Test: 1 distractors and 64 frames Test: 14 distractors and 64 frames Test: 25 distractors and 64 frames

(b)

Mean human acc.

No Strid
e R3D

ImageNet R
(2+1)D

InT Circuit
R(2+1)

ImageNet R
3D

R3D

R3D Optic
Flow

Conv-G
RU

ImageNet TimeSformer Jo
int

TimeSformer

ImageNet TimeSformer S
eparate

InT Softm
ax C

ircu
it

No Strid
e R3D

ImageNet R
(2+1)D

InT Circuit
R(2+1)

ImageNet R
3D

R3D

R3D Optic
Flow

Conv-G
RU

ImageNet TimeSformer Jo
int

TimeSformer

ImageNet TimeSformer S
eparate

InT Softm
ax C

ircu
it

No Strid
e R3D

ImageNet R
(2+1)D

InT Circuit
R(2+1)

ImageNet R
3D

R3D

R3D Optic
Flow

Conv-G
RU

ImageNet TimeSformer Jo
int

TimeSformer

ImageNet TimeSformer S
eparate

InT Softm
ax C

ircu
it

Figure 3: An extended benchmark of state-of-the-art models on PathTracker with (a) 32 and (b) 64
frame versions of the task.

Optic Flow We followed the method of [5] to compute optic flow encodings of PathTracker datasets.
We used OpenCV’s implementation of the TV-L1 algorithm [7]. We extracted two channels from
the output given by the algorithm, and appended a channel-averaged version of the corresponding
PathTracker image, similar to the approach of [5].

5 InT circuit description

Our InT circuit has two recurrent neural populations, I andE. These populations evolve over time and
receive a dynamic “feedforward” drive via Z. This feedforward drive is derived from a convolution
between each frame of the PathTracker videos a kernel Wz ∈ R1,1,3,32. This activity is then rectified
by a softplus pointwise nonlinearity. InT hidden states are initialized with 0.6931 = softplus(0).
The InT circuit also includes Batch Normalization [8] applied to the outputs of its recurrent kernels
Wie,Wei, with scales (α) and intercepts (η) shared across timesteps of processing. We initialize the
scale parameters to 0.1 following prior work [9]. We do not store Batch Normalization moments
during training. InT gain control (i.e., its divisive normalization) is expected to emerge at steady
state [10, 11] in similar dynamical systems formulations, although our formulation relaxes some of
these constraints.

The final activity of E[T] in the InT for a PathTracker video is passed to a readout that renders a
binary decisions for the task. This readout begins by convolving E[T] with a kernel Wr1 ∈ R1,1,32,1.
The output is channel-wise concatenated with the channel of the first frame containing the location
of the goal marker. This activity is then convolved with another kernel Wr2 ∈ R5,5,2,1, which is
designed to capture overlap between the goal marker and the putative target object/dot. The resulting
activity is “global” average pooled and entered into binary crossentropy for model optimization. On
PathTracker, all versions of the InT and the ConvGRU used this input transformation. All versions of
the InT, the ConvGRU, and the “No Stride R3D’ used this readout.

Spatiotemporal filtering through recurrent connections An open question is whether recurrent
neural networks with convolutional connections are capable of learning tuned spatiotemporal feature
selectivity. That is, the ability to learn to detect a specific visual feature moving in a certain direction.
Adelson and Bergen [12] laid out a plausible solution, in which spatial filters offset by phase are
combined over time through positive or negative weights. The success of our InT on PathTracker
indicates that it might have adopted a similar solution, using its horizontal connection kernels
Wi,e,We,i to learn spatial filters offset in phase (e.g., an on-center off-surround and an off-center
on-surround filter), which are combined via learned gates to yield spatiotemporal tuning. We leave an
analysis of the InT “connectome” as it relates to spatiotemporal feature learning to future work.

4

32

Frame number
64321

Frame number
64321

Frame number
128641 32 96

tanh InT Circuit
Attention per-frame

32

Frame number
64321

Frame number
64321

Frame number
128641 32 96

Complete InT Circuit
Attention per-frame

(a)

(b)

(c)
Figure 4: A comparison of attention between the complete InT and one where its softplus rectifications
are replaced by tanh.

Deriving the InT For the sake of clarity and succinctness, we focus the derivation of the InT
circuit’s update equations to reflect that of generic single neurons, which without loss of generality
applies to the each spatial/feature dimension. The InT circuit model is built on top of two recurrent
populations (E/I) of neurons (serving excitatory/ inhibitory roles respectively), and a state-less
population of neurons (A) that serves as an attentional controller. We denote these populations as
follows:

E =
[
e(c)
xy

]
; I =

[
i(c)xy

]
;A =

[
a(c)
xy

]
(1)

Here, the x, y subscripts denote spatial tuning, and the c superscript denotes feature tuning. Moving
forward, we reference generic units from these populations with e, i, and a respectively. In essence,
the circuit can be expressed as a continuous first-order coupled differential system of this form.

τinh
di

dt
= −i+ [z − (γia+ β)m]+

τexc
de

dt
= −e+ [i+ (νi+ µ)n]+

(2)

In Eq. 2, γ, β, ν, and µ are model hyperparameters, while m and n are themselves functions of e, i,
and a. The exact functional form of m and n is detailed in Fig. 4b in the main text. z is an external
input to the system.

5

For the purposes of simulating and training this model with gradient descent, we use a first-order
Euler approximation with time step ∆t. Assuming we choose g = ∆t

τinb
and h = ∆t

τexc
, the discretized

version of Eq. 2 can be written as follows.

it = (1− g) it−1 + g [zt − (γitat + β)mt]+
et = (1− h) et−1 + h [it + (νit + µ)nt]+

(3)

Tuning the time constants τexc, and τinh and choosing an appropriate ∆t can often prove to be tedious
and challenging. To alleviate this, we introduce a “learnable" integration step, where g and h are
modeled as neural gates. These are computed as specified in Eq. 4. σ(.) is the sigmoidal function,
which squashes activities in the range [0, 1]. Wg, Ug, Wh, and Uh are convolutional kernels of size
1× 1× 32× 32.

G =
[
g(c)
xy

]
= σ(Wg ∗ I + Ug ∗ Z)

H =
[
h(c)
xy

]
= σ(Wh ∗ E + Uh ∗ I) (4)

6 Analyzing InT on PathTracker

We visualize InT A attention units on PathTracker by simply binarizing the logits, where values
greater than mean(A[t]) + stddev(A[t]) are set to 1 and units below that threshold are set to 0.
When applying the same strategy to versions of the InT other than the complete circuit, we found
attention that was far more diffuse. For this lesioned InT circuits, adjusting this threshold to be more
conservative, choosing two or three or even four standard deviations above the mean, never yielded
attention that looked like the complete model. For instance, the closest competitor to the complete InT
is one in which its Softplus rectifications are changed to hyperbolic tangents, which remove model
constraints for separate and competing forms of Inhibition and Excitation. This model’s attention
was subsequently diffuse and it also performed worse in generalization than the complete circuit (SI
Fig. 4).

We also developed a version of the InT with attention that was biased against multi-object tracking.
In the normal formulation, InT attention A is transformed with a sigmoid pointwise nonlinearity.
This independently transforms every unit in A to be in [0, 1], giving them the capacity to attend to
multiple objects at once. In our version biased against multi-object tracking we replaced the sigmoid
with a spatial softmax, which normalized the sum of units in each channel of A to 1. This model
performed worse than the CNNs or TimeSformer on Pathtracker (SI Fig. 3)

7 Extended PathTracker Decision Analyses

While the best performing 3D CNNs and Transformers we tested did not come close to human
performance on 64-frame Pathtracker datasets, they were on par with humans on 32-frame Pathtracker
datasets. To understand how well model decisions aligned with humans on these 32-frame Pathtracker
datasets, we ran psychophysics on a set of 30 participants using the setup detailed in §3 of the main
text. Participants were trained on 8 videos from the 14 distractor and 32 frame PathTracker and tested
on 72 videos from the (i) 14 distractor and 32 frame dataset, (ii) 1 distractor and 32 frame dataset, or
(iii) 25 distractor and 32 frame dataset. Like with the psychophysics used for Fig. 5 in the main text,
all participants viewing a given test set saw the same videos so that we could compare their decision
strategies with models.

We computed decision correlations between participants and the best-performing models on the
32-frame PathTracker videos: the R3D, Timesformer, and complete InT circuit (SI Table 1). We also
computed 95% confidence intervals of inter-rater reliability for human participants, indicating their
agreement for PathTracker videos. We did this by taking random split-half groups of the participants,
computing the average decision for each video, then constructing distributions of decision correlations
between the groups. Next, we computed the correlation between each model’s sigmoidal decision

6

output and the average decision of humans. Only the InT’s decision correlation with humans fell
within the human confidence interval for all three versions of the 32-frame PathTracker dataset
tested here. The R3D decision correlation also fell within the human confidence interval on the
1-distractor 32-frame PathTracker dataset, but not the 14- or 25-distractor versions. These results
indicate that state-of-the-art video analysis models like the R3D and TimeSformer adopt different
decision strategies than humans even when they achieve performance rivaling humans. The failure of
these models to solve the 64-frame PathTracker datasets may reflect their bias away from learning
visual strategies that are aligned with humans.

Observer 14 dist acc 14 dist ρ 1 dist acc 1 dist ρ 25 dist acc 25 dist ρ
Human 95.83% 0.93 92.19% 0.92 100.00% 0.96
InT 79.17% 0.76† 95.83% 0.94† 95.83% 0.91†

R3D 75% 0.62 100.00% 0.95† 87.50% 0.72
TimeSformer 83.33% 0.68 79.17% 0.63 83.33% 0.69

Table 1: Performance and decision correlations between humans and models on the 32-frame
PathTracker datasets. Models and humans were trained on a 14-distractor (“dist”) version of the
dataset and tested on 14-, 1- and 25-distractor videos. Model pearson correlations (ρ) falling within
the 95%-bootstrapped confidence interval of human-to-human correlations are denoted by †. Only
the InT falls within the human confidence interval on all versions of the dataset.

8 InT+TransT

We modify a state-of-the-art tracker, TransT, with our InT circuit, to promote alternative visual
strategies for object tracking (Fig. 5). We note that our InT+TransT model beats almost every
benchmark metric on the LaSOT, TrackingNet, and GOT-10K object tracking challenges (SI Table 2).

Method Source LaSOT TrackingNet GOT-10K
AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

InT+TransT Ours 65.0 74.0 69.3 81.94 87.48 80.94 72.2 82.2 68.2
TransT CVPR2021 64.9 73.8 69.0 81.4 86.7 80.3 72.3 82.4 68.2

TransT-GOT CVPR2021 - - - - - - 67.1 76.8 60.9
SiamR-CNN CVPR2020 64.8 72.2 - 81.2 85.4 80.0 64.9 72.8 59.7

Ocean ECCV2020 56.0 65.1 56.6 - - - 61.1 72.1 47.3
KYS ECCV2020 55.4 63.3 - 74.0 80.0 68.8 63.6 75.1 51.5

DCFST ECCV2020 - - - 75.2 80.9 70.0 63.8 75.3 49.8
SiamFC++ AAAI2020 54.4 62.3 54.7 75.4 80.0 70.5 59.5 69.5 47.9

PrDiMP CVPR2020 59.8 68.8 60.8 75.8 81.6 70.4 63.4 73.8 54.3
CGACD CVPR2020 51.8 62.6 - 71.1 80.0 69.3 - - -
SiamAttn CVPR2020 56.0 64.8 - 75.2 81.7 - - - -
MAML CVPR2020 52.3 - - 75.7 82.2 72.5 - - -

D3S CVPR2020 - - - 72.8 76.8 66.4 59.7 67.6 46.2
SiamCAR CVPR2020 50.7 60.0 51.0 - - - 56.9 67.0 41.5
SiamBAN CVPR2020 51.4 59.8 52.1 - - - - - -

DiMP ICCV2019 56.9 65.0 56.7 74.0 80.1 68.7 61.1 71.7 49.2
SiamPRN++ CVPR2019 49.6 56.9 49.1 73.3 80.0 69.4 51.7 61.6 32.5

ATOM CVPR2019 51.5 57.6 50.5 70.3 77.1 64.8 55.6 63.4 40.2
ECO ICCV2017 32.4 33.8 30.1 55.4 61.8 49.2 31.6 30.9 11.1

MDNet CVPR2016 39.7 46.0 37.3 60.6 70.5 56.5 29.9 30.3 9.9
SiamFC ECCVW2016 33.6 42.0 33.9 57.1 66.3 53.3 34.8 35.3 9.8

Table 2: Object tracking results on the LaSOT [13], TrackingNet [14], and GOT-10K [15] benchmarks.
First place is in red and second place is in blue. Our InT+TransT model beats all others except for
two benchmark GOT-10K scores.

InT+TransT We add two InT modules (InT1 and InT2) to the TransT architecture (Fig. 5).
The key difference between these modules and the ones used on PathTracker is that they used
LayerNorm [16] instead of Batch Normalization. This was done because object tracking in natural
images is memory intensive and forces smaller batch sizes than what we used for PathTracker, which
can lead to poor results with Batch Normalization.

7

ResNet50
(shared)

128x128x3

256x256x3
Se

ar
ch

 im
ag

e
Ta

rg
et

 im
ag

e
1x1 conv

(shared)

1x1 conv
(shared)

3C to 1024C 1024C to 256C

Reshape
H,W,C

to
H*W,C

Feature extraction TransT

Transformer

TransT
readout

Cross-feature
attention (CFA)

K,V

Q

1x1 conv

Q[t-1]

1024C to 32C

InT1

InT2
E[t-1]

I[t-1]

E[t]

I[t-1]

1x1
ConvNet

3x3
ConvNet32C to 256C

E[t-1]⊗
Gate

1025C to 1C

InT
readout

(only during
training)

Transformer
ResNet50

(shared)

32C to 32C

32C to 32C

E[t]

All transformations: 256C to 256C

Activity at [t]

Activity at [t-1]

InT

(a)

(b)

E[t]

"

Figure 5: The (a) TransT and (b) InT addition to create our the InT+TransT. The InT additively
modulate the TransT query (Q) in its CFA, which corresponds to its encoding of the search image
which is compared to its encoding of the target. The InT activity is recurrent, and itself modulated by
a “gate” which captures the similarity of InT activity and the TransT query from the prior step, along
with the TransT query entropy. This gate shunts InT activity unless the TransT is low-confidence and
the InT and TransT render different predictions, at which point the InT can adjust TransT queries.
The InT is further supervised on each step of a video to predict target object bounding boxes.

InT1 (Fig. 5b) has the same dimensionality as the one described for PathTracker in the main text.
ResNet50 features y ∈ R1024×32×32 are reduced to z ∈ R32×32×32 by virtue of convolution with
a kernel Win ∈ R1×1×1024×32, i.e., z = y ∗ Win. As input, InT1 received z. A binary mask
B ∈ R1×32×32 that specified the location of the target object in the very first frame was used to
initialize the recurrent excitatory/inhibitory units of InT1. They took values Et=0 = B ∗WE1

and
It=0 = B ∗WI1 respectively, where kernels WE1

,WI1 ∈ R1×1×1×32, and Et, It ∈ R32×32×32. The
subscript t for the recurrent population activities represent an arbitrary time point w.r.t. steps of
processing.

To coregister the representations of InT1 and TransT , we treat the excitatory units, Et, of InT1 by
a transformation fφ parameterized by three-layer convolutional neural network consisting of 1× 1
kernels. fφ essentially inflates dimensionality, i.e., fφ(Et) ∈ R256×32×32. The network fφ had
softplus activation functions applied to the output of the first and second layers, and used kernels
of dimensions 1 × 1 × 32 × 256, 1 × 1 × 256 × 256 and 1 × 1 × 256 × 256 in the three layers
respectively. For notational convenience, we refer to fφ(Et) as Xt in this discussion subsequently.

The “search frame” query (Qt) for the TransT cross-feature attention (CFA) component was computed
as a function of Xt and Qt−1 as described here. Qt−1 was first subject to a transformation fψ,
parameterized as another convnet, this time to register the query representation to the latent activities
of the InT modules. fψ(Qt−1) ∈ R32×32×32 is used to compute two quantities: (a) a measure of
spatial certainty in Qt−1, and (b) a measure of spatial agreement between Qt−1 and Et. For spatial
certainty we compute the channel wise L2 norm of fψ(Qt−1), yielding tensor H(1) ∈ R1×32×32. For
the spatial agreement measure, we compute the feature-wise outer product H(2) = fψ(Qt−1)⊗Et ∈
R1024×32×32. The mix-gate Gmix was then a convolution on H =

[
H(1)H(2)

]
, with a kernel

Wmix ∈ R1×1×1025×1, followed by a sigmoidal non-linearity. The final TransT query Qt was then
constructed as the sum of the original Qt and Gmix � Xt. Functionally, this mix-gate helps the
InT+TransT compose a hybrid of appearance-free and appearance-based tracker query based on the
intrinsic uncertainty of a video frame at a given moment in time. See SI Fig. 5 for a schematic.

The final step in the InT+TransT pipeline is “top-down” feedback from the TransT back to InT1.
This was done to encourage the two modules to align their object tracks and correct mistakes that
emerged in one or the other resource [9]. fψ(Qt=0), computed as described above, was used for
initializing the excitatory units of InT2 (InT2 Fig. 5)b). The inhibitory units of InT2 was initialized
with fψ(Qt=0) ∗WI2 , where WI2 ∈ R1,1,32,32. Et from InT1 served as the input drive to InT2 at

8

every time step t. To complete the loop, the recurrent excitatory state of InT2 served as feedback
for InT1. We evaluated our InT+TransT on TrackingNet (published under the Apache License 2.0),
LaSOT (published under the Apache License 2.0), and GOT-10K (published under CC BY-NC-SA
4.0). See SI Table 2 for a full comparison between our InT+TransT and other state-of-the-art models.

Object tracking training and evaluation The InT+TransT is trained with the same procedure as
the original TransT, except that its InTs are given the intervening frames between the target and
search images, as described in the main text. Otherwise, we refer the reader to training details in the
TransT paper [17]. Evaluation was identical to the TransT, including the use of temporal smoothing
for postprocessing (“Online Tracking”). As was the case for TransT, this involved interpolating the
TransT bounding box predictions with a 32× 32 Hanning window that penalized predictions on the
current step t which greatly diverged from previous steps. See [17] for details.

InT+TransT error analysis on LaSOT To systematically investigate object tracking errors of the
InT+TransT vs. the Transt, we turned to the LaSOT object tracking dataset, which has annotations
for different types of object transformations. According to LaSOT AUC, the InT+TransT is more
tolerant than the TransT to appearance-perturbing transformations like clutter (0.588 InT vs. 0.579
TransT), object deformation (0.680 InT vs. 0.670 TransT), and illumination variations (0.663 InT vs.
0.652 TransT). In contrast, the TransT is more tolerant than the InT+TransT to fast motion (0.510
TransT vs. 0.492 InT), cases in which objects move off-screen and out-of-view (0.582 TransT vs.
0.574 InT), and is also slightly more tolerant to partial occlusion (0.620 TransT vs. 0.616 InT). Fast
motion is an outlier quality that is more successfully handled by the TransT’s pure appearance-based
strategy than the InT’s motion-based strategy. Partial occlusion is also a case where the InT’s working
memory-based tracking (see Fig. 6 in the main text and http://bit.ly/intcircuit for gifs) can be beaten
by the TransT’s appearance-based correspondence finding. Overall, these results suggest that there’s
further room for improvement of the InT+TransT – both in increasing its overall performance gap
with the TransT and resolving the areas in which it performs worse. One possible path forward
is to simply increase the depth of the InT that we include in the InT+TransT. Another possibility
for improvement is to increase the granularity of the dynamics that the InT+TransT operates on.
Achieving either of these goals will require extremely large-GPU memory nodes, or advances to
recurrent learning algorithms with better memory complexity than standard backpropagation through
time.

References
[1] Malik, G., Linsley, D., Serre, T., Mingolla, E.: The challenge of appearance-free object tracking with

feedforward neural networks. CVPR Workshop on Dynamic Neural Networks Meet Computer Vision
(2021)

[2] Shimamura, A.P.: Toward a cognitive neuroscience of metacognition. Conscious. Cogn. 9(2 Pt 1) (June
2000) 313–23; discussion 324–6

[3] Rousseeuw, P.J., Croux, C.: Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88(424)
(December 1993) 1273–1283

[4] Edgington, E.S.: RANDOMIZATION TESTS. J. Psychol. 57 (April 1964) 445–449

[5] Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (July 2017)

[6] Bertasius, G., Wang, H., Torresani, L.: Is Space-Time attention all you need for video understanding?
ICML (2021)

[7] Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow.
In: Statistical and Geometrical Approaches to Visual Motion Analysis, Springer Berlin Heidelberg (2009)
23–45

[8] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal
covariate shift. In: Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, JMLR.org (July 2015) 448–456

[9] Linsley, D., Kim, J., Ashok, A., Serre, T.: Recurrent neural circuits for contour detection. International
Conference on Learning Representations (2020)

[10] Mély, D.A., Linsley, D., Serre, T.: Complementary surrounds explain diverse contextual phenomena across
visual modalities. Psychol. Rev. 125(5) (October 2018) 769–784

9

[11] Grossberg, S., Mingolla, E.: Neural dynamics of perceptual grouping: textures, boundaries, and emergent
segmentations. Percept. Psychophys. 38(2) (August 1985) 141–171

[12] Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am.
A, JOSAA 2(2) (February 1985) 284–299

[13] Fan, H., Ling, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C.: LaSOT: A high-
quality benchmark for large-scale single object tracking. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE (June 2019)

[14] Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: A Large-Scale dataset and
benchmark for object tracking in the wild. In: Computer Vision – ECCV 2018, Springer International
Publishing (2018) 310–327

[15] Huang, L., Zhao, X., Huang, K.: GOT-10k: A large High-Diversity benchmark for generic object tracking
in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5) (May 2021) 1562–1577

[16] Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. (July 2016)

[17] Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: Exploiting temporal context for robust
visual tracking. (March 2021)

10

	Limitations
	Extended Discussion
	Human benchmark
	Solving the Pathtracker challenge
	InT circuit description
	Analyzing InT on PathTracker
	Extended PathTracker Decision Analyses
	InT+TransT

