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ABSTRACT

In this paper, we introduce the ℓpp-error metric (for p ≥ 2) when answering linear
queries under the constraint of differential privacy. We characterize such an error
under (ε, δ)-differential privacy in the natural add/remove model. Before this
paper, tight characterization in the hardness of privately answering linear queries
was known under ℓ22-error metric (Edmonds et al. (2020)) and ℓ2p-error metric for
unbiased mechanisms in the substitution model (Nikolov & Tang (2024)). As a
direct consequence of our results, we give tight bounds on answering prefix sum
and parity queries under differential privacy for all constant p in terms of the ℓpp
error, generalizing the bounds in Henzinger et al. (2023) for p = 2.

1 INTRODUCTION

Analysis or learning with sensitive datasets under privacy has garnered increasing attention in
recent years. In this paper, we study the most fundamental question of answering linear queries
on confidential dataset x ∈ Rn while preserving differential privacy (DP) (Dwork et al., 2016).
Informally speaking, differential privacy captures the property of a randomized algorithm that its
output distribution is relatively stable when executed on two neighboring datasets, i.e., datasets that
can be formed by changing one data point. More formally,

Definition 1.1 Let M : X → R be a randomized algorithm, where R is the output domain. For fixed
ε > 0 and δ ∈ [0, 1), we say that M preserves (ε, δ)-differential privacy if, for any measurable set
S ⊆ R and any pair of neighboring datasets x, y ∈ X , Pr[M(x) ∈ S] ≤ Pr[M(y) ∈ S] · eε + δ.
If δ = 0, we say A preserves pure differential privacy (denoted by ε-DP).

Many fundamental analyses can be cast as a set of linear queries (Dwork & Roth, 2014; Vadhan,
2017): given an input x ∈ Rn, a set of m linear queries can be represented as the rows of a
matrix A ∈ Rm×n. The answer to the set of queries is simply the matrix-vector product Ax. Here,
x, x′ ∈ Rn are neighboring if ∥x− x′∥1 ≤ 1 (known as add/remove model of privacy). When these
queries are answered using a privacy-preserving algorithm, M, the performance of the algorithm is
usually measured in terms of its absolute error or mean squared error (eq. (13)).
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In this paper, we initiate the study of ℓpp-error metric that seamlessly interpolate1 between p = 2
(squared error) to p = ∞ (absolute error):

errℓpp(M, A) := max
x∈Rn

(
E
[
∥M(x)−Ax∥pp

])1/p
. (1)

The error metric defined above has a natural and intuitive interpretation for data analysis. To elaborate
on this, consider the most natural mechanism that adds i.i.d. noise to each answer of a set of linear
queries, and let vi be the error in answering the i-th query. Then our error metric captures the p-th
moment of the error, which is a random vector v ∈ Rm. By considering all p, one can identify the
exact nature of the probability distribution of the error.

One popular mechanism for privately answering linear queries under different error metrics is the
matrix mechanism (Li et al., 2015), also known as the factorization mechanism. In the matrix
mechanism, given a set of m linear queries represented by a workload matrix A ∈ Rm×n, we
compute a factorization LR = A (where L ∈ Rm×k, R ∈ Rk×n) and output L(Rx + z) for any
input x ∈ Rn with an appropriately scaled Gaussian random vector z ∈ Rk. This mechanism is both
unbiased (i.e., E[z] = 0) and oblivious, i.e., the distribution of z is stochastically independent of x.
In this paper, we show that the optimal matrix mechanism is also optimal among all differentially
private mechanisms with respect to the ℓpp metric, up to logarithmic factors:

Theorem 1.2 (Informal statement of Theorem 1.4 and Theorem D.1) Fix A ∈ Rm×n be a ma-
trix representing m linear queries, and let M : Rn → Rm be any (ε, δ)-DP algorithm. Then, there
exists a factorization of A = LR such that Mmatrix(x) = L(Rx + z) with z ∼ N (0, ∥R∥21→2Ik)
preserves (ε, δ)-DP and that errℓpp(Mmatrix, A) ≲ errℓpp(M, A) · polylog(1/δ,m). Here, Ik ∈ Rk×k

is the identity matrix.

To prove this, we characterize the ℓpp-error for answering linear queries under (ε, δ)-differential
privacy generalizing Edmonds et al. (2020), and also obtain a characterization of errℓpp(Mmatrix, A)
that is tight up to log factors, for every query matrix A and p ≥ 2. For the convenience of use, we
start by stating a weaker form of our lower bound. We will see that this is an immediate corollary of
our main theorem.

Theorem 1.3 Let A ∈ Rm×n be a matrix representing m linear queries. Then for any (ε, δ)-DP
algorithm M, errℓpp(M, A) = Ωε,δ(m

1/p−1/2∥A∥1/
√
n). Here, ∥A∥1 is the Schatten-1 norm of A

and Ωε,δ(·) hides the dependency on the privacy parameters.

To demonstrate the power of the above results, we obtain tight bounds for privately answering prefix
sum and parity queries. These are two important classes of queries: for example, prefix sum is used as
a subroutine in private learning (Kairouz et al., 2021) and parity queries2 are often used for hardness
results (Kasiviswanathan et al., 2011).

1. (Prefix sum) In this problem, the data curator outputs
∑

i≤t xi of a vector x =

(x1, x2, · · · , xn) in a differentially private manner for all t ≤ n. This is equivalent to
asking linear queries with Aprefix ∈ {0, 1}n×n where Aprefix is a lower-triangular matrix
with non-zero entry equal to one. In Theorem 1.5, we show that, for all constant p, the
ℓpp-error of prefix sum under (ε, δ)-differential privacy is Θε,δ(n

1/p log(n)) and can be
achieved by the same mechanism for all p = O(1); for p = ω(1), the gap between the upper
and lower bound is of factor

√
log(n). This generalizes the result of Dwork et al. (2010)

and Henzinger et al. (2023).
2. (Parity Queries). Let QP

d,w = {qP (x) =
∏

i∈P xi : P ⊂ [d], |P | = w} be the class of
parity queries over the input domain {−1, 1}d. In Theorem 1.6, we show that for any
(ε, δ)-differentially private mechanism M that takes as input d and w,

errℓpp
(
M,QP

d,w

)
= Ωε,δ

(
m1/2+1/p

)
1Interpolation plays a key role in functional analysis (Riesz, 1927; Thorin, 1948), and it is one of the

primary reasons for the initial support for Riesz (1910; 1913)’s study of ℓp-norm despite Minkowski’s skepti-
cism (Minkowski, 1913).

2Depending on which parity queries are made, the workload matrix would consist of a subset of rows of a
normalized n× n Hadamard matrix
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for m =
(
d
w

)
. Since Oε,δ

(
m1/2+1/p min{p, log(m)}

)
is the ℓpp error of the trivial Gaussian

mechanism, this is optimal whenever min{p, log(m)} = O(1).

Our study is motivated and inspired by recent elegant work by Nikolov & Tang (2024), who proved
the instance optimality of the matrix mechanism instantiated using correlated Gaussian noise for
unbiased mean estimation. They considered the following error metric3:

errNT (M, A) := max
x∈Rn

(
E
[
∥M(x)−Ax∥2p

])1/2
. (2)

Nikolov & Tang (2024) showed that, with the privacy notion where ∥x − x′∥1 ≤ O(1) and that∑
i∈[n](xi − x′

i) = 0 (commonly known as the substitution model of privacy), matrix mechanism is
instance-optimal for any unbiased mechanism under the metric defined in eq. (2)4. Our work instead
focuses on obliviousness of the matrix mechanism, a more natural ℓpp metric and a different (stronger)
privacy notion, i.e., it differs both in the error metric and the results:

1. To understand the difference between these two error metrics, consider the error vector
v ∈ Rm. The metric used in Nikolov & Tang (2024) amounts to estimating E[(|v1|p + · · ·+
|vm|p)2/p] instead of a more natural E[vp1 + · · ·+ vpm] in eq. (1). In other words, it does not
explain the behavior of the error even in the case of the naive additive noise mechanisms.
This is one of the primary reasons we believe our error metric is more natural.

2. They focused on instance optimality of unbiased mean estimation. While this is a well-
studied problem, it does not cover the question of the ℓp-optimality of general linear queries
under the error metric defined by eq. (1) for general mechanisms. We answer this question
broadly and prove equivalent results for a more natural error metric.

3. Differential privacy in the add/remove model (i.e., ∥x − x′∥1 ≤ 1) is usually the most
natural notion considered in literature of answering linear queries ( Edmonds et al. (2020);
Nikolov et al. (2013); Bhaskara et al. (2012)). In contrast, Nikolov & Tang (2024) considered
the substitution model for unbiased mean estimation over some convex polytopes. The
sensitivity polytope related to the substitution model can be substantially smaller than that
of the add/remove model (see also Appendix B.3 for a more detailed discussion). As a result,
deriving a new lower bound for the stronger add/remove model is needed.

From a pure analysis perspective (and as is often the case in mathematics) as well, one prefers a
metric respecting the symmetry as shown in our choice of metric, the ℓp-norm, and Fp moments
studied in the streaming literature. While both of the error metrics (eq. (1) and eq. (2)) converge to
the same metric as p → ∞ and when p → 2, the mathematical object the sequence captures as a
function of p is vastly different. That is, our results complement that of Nikolov & Tang (2024).

1.1 OUR CONTRIBUTIONS

Our main result is a lower bound on general (ε, δ)-differentially private mechanisms for answering
linear queries in high privacy regimes in terms of certain factorization norms Nikolov & Tang (2024)
defined below5 :

γ(p)(A) := min
LR=A

{√
trp/2(LL⊤)∥R∥1→2

}
, where trp(U) :=


(∑d

i=1 U
p
ii

)1/p
p < ∞

maxi∈[d] |Uii| p = ∞

is the p-trace. Equipped with this definition, we state our lower bound:

3Nikolov and Tang confirmed with us that they did not consider the metric considered in this paper.
4We note that a Gaussian distribution is entirely characterized by its first two moments and, at a high level,

eq. (2) captures the variance of the ℓp norm of the zero mean vector representing the additive error.
5Let ∥B∥p→q = min∥x∥p=1 ∥Bx∥q . Then two commonly studied factorization norms in privacy and

functional analysis denoted by γ2(A) and γF (A) are defined as γ2(A) = minLR=A{∥L∥2→∞∥R∥1→2} and
γF (A) = minLR=A{∥L∥F ∥R∥1→2}. Both these norms are special cases of γ(p)(·) because when p = 2,
trp/2(LL

⊤) = ∥L∥2F and when p → ∞, then tr∞(LL⊤) = maxi∈[d](LL
⊤)ii = ∥L∥22→∞.
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Theorem 1.4 (Lower bound for (ε, δ)-DP) Fix any n,m ∈ N, ε ∈ (0, 1
2 ), 0 ≤ δ ≤ 1 and p ∈

[2,∞). For any query matrix A ∈ Rm×n, if a mechanism M : Rn → Rm preserves (ε, δ)-
differential privacy, then there exists a universal constant C ′,

errℓpp(M, A) ≥
(1− δ̃)γ(p)(A)

C ′ε
, where δ̃ =

2e2ε(e1/2 − 1)

eε − 1
δ.

Theorem 1.4 generalizes the result of Edmonds et al. (2020) for p = 2 to all p ≥ 2. Our result can also
be contrasted with the lower bound which uses discrepancy methods. It is known that the ℓ∞-error
of an (ε, δ)-differentially private algorithm for linear queries is lower bounded by the hereditary
discrepancy of the corresponding matrix A ∈ Rm×n (Muthukrishnan & Nikolov, 2012), which
in turn is lower bounded by γ(∞)/

√
log(m) using its characterization in terms of a semidefinite

program (Matoušek et al., 2020). Our result shows that we can get a
√
log(m) better lower bound. We

complement this lower-bound with a tight upper bound in Appendix D (see Theorem D.1) matching it
up to an O(log(1/δ) ·min{p, log(2m)}) factor, combining this and Theorem 1.4 gives Theorem 1.2.

The meaning of γ(p)(A) in Theorem 1.4 is not immediately apparent. Thus, as one of its applications,
we study explicit lower bound (with respect to n instead of γ(p)(A)) for some special types of queries
that are widely used in the community of privacy. We first characterize the accuracy of prefix sum, i.e.,
when the query matrix Aprefix is a lower-triangular all-one matrix. The upper bound in Theorem 1.5
follows from the binary tree mechanism (Chan et al., 2011; Dwork et al., 2010) while the lower
bound uses Theorem 1.4. Notably, we can extend the lower bound for prefix sum queries to all ε > 0,
rather than limiting it to a high privacy regime of ε < 1/2 as in Theorem 1.4.

Theorem 1.5 For any n ∈ N and any p ∈ [2,∞), the matrix mechanism, Mfact, achieves the
following error guarantee while preserving (ε, δ)-differential privacy:

errℓpp(Mfact, Aprefix, n) = O

(
n1/p log(n)

√
log(1/δ) ·min{p, log(n)}

ε

)
Further, there is no (ε, δ)-differentially private mechanism M that achieves

errℓpp(M, Aprefix, n) = o

(
(1− δ)n1/p log(n)

e3ε − 1

)
for δ ≤ min

{
1

16
, ε2,Θ

(
εn

2−p
2p

ln(n)

)}
.

We note that e3ε− 1 = O(ε) in a high privacy regime where ε = O(1), so the lower and upper bound
match in such a regime. Theorem 1.5 recovers the result in Henzinger et al. (2023) for p = 2 as a
special case. Moreover, it exactly characterizes the error of prefix sum with respect to any ℓpp metric
for all constant p. One can obtain an Ω(log(n)) lower bound on ℓ∞-error using a slight modification
of the packing argument in Dwork et al. (2010) for δ = o(1/n). Our bound extends the packing-based
lower bound to larger values of δ and all p ∈ [2,∞).

As another application, in Theorem 1.6 (shown in Appendix C), we characterize the lower bound on
privately answering parity queries. The theorem recovers the lower bound in Section 8 of Henzinger
et al. (2023) for p = 2 and Section 3.6 of Edmonds et al. (2020) when p → ∞.

Theorem 1.6 Let QP
d,w be the collection of parity queries. For any (ε, δ)-differentially private

mechanism M for answering queries in QP
d,w, the worst case ℓpp error

errℓpp

(
M,QP

d,w,

(
d

w

))
= Ω

(
(1− δ)

e3ε − 1

(
d

w

)1/2+1/p
)
.

Organization of the proof. In Section 2.1, we first develop the lower bound for additive noise
mechanism on arbitrary matrix with linearly independent rows. For general matrix, in Section
2.2, we remove the linear independency assumption in the start of Section 2, and then with the
help of the back-box reduction from additive noise mechanism to general mechanism, we give a
(ε, δ)-DP lower bound with respect to general matrix A ∈ Rm×n in only high privacy regime, which
establishes Theorem 1.4. Next, in Section 2.3, we prove our easy-to-use bound Theorem 1.3 based on
Theorem 1.4. We derive Theorem 1.5 as a corollary of previous sections. The proof of Theorem 1.6
follows a similar reasoning and we defer it in Section C.
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2 LOWER BOUND FOR (ε, δ)-DP AND ITS APPLICATION

In this section, we prove our lower bound and its applications in proving lower bounds of prefix sum
and parity queries in ℓpp metric. Throughout this paper, we write a ≳ b if there exists some universal
constant c such that a ≥ 1

c b. For proving the lower bound in terms of (ε, δ)-differential privacy, we
first consider a special class of mechanisms that adds noise sampled from an appropriate distribution
to the real answer of the queries (a high-level idea of our proof is presented in Appendix B). We call
such a class of mechanisms the additive noise mechanisms. Unlike Nikolov & Tang (2024), we do
not assume that the mechanism is unbiased which makes our analysis more subtle.

Before stating the result, we fix some notations. Let Bn
p := {x ∈ Rd : ∥x∥p ≤ 1} denote the

n-dimensional ℓp-ball and ABn
1 := {Ax : x ∈ Bn

1 } denote the sensitivity polytope. To describe the
lower bound, for any matrix A ∈ Rm×n, we define the map, κ : Rm×n → R, that computes the
width of the sensitivity polytope with respect to the most “narrow” direction:

κ(A) := min
∥θ∥2=1

wABn
1
(θ) where wABn

1
(θ) := max

∥x∥1≤1
θ⊤Ax− min

∥x∥1≤1
θ⊤Ax. (3)

To prove Theorem 1.4, we first show a lower bound for additive noise mechanisms when A has
linearly independent rows. We then remove this assumption in a high privacy regime (ε < 1/2) in
Section 2.2; Theorem 1.4 then follows by using a general reduction of Bhaskara et al. (2012).

2.1 LOWER BOUND ON ADDITIVE NOISE MECHANISMS

Theorem 2.1 (Lower bound for additive noise mechanisms) Fix any ε > 0, p ∈ [2,∞) and

query matrix A ∈ Rm×n. There exists a δ(A, ε, n) := min
{

1
16 , ε

2, ε·κ(A)n1−2/p

12γ(p)(A)

}
such that for any

δ ≤ δ(A, ε, n), if M is a (ε, δ)-differentially private additive noise mechanism, then for any x ∈ Rn,(
E
[
∥M(x)−Ax∥pp

])1/p ≥
(1− δ′)γ(p)(A)

8(e3ε − 1)
, where δ′ =

2δ

1− e−ε
.

The above theorem implies an almost tight lower bound in a high privacy regime. For example, when
0 ≤ ε ≤ 1

3 , since 3ε ≤ e3ε − 1 ≤ 6ε, it directly implies that(
E
[
∥M(x)−Ax∥pp

])1/p ≥
(1− δ′)γ(p)(A)

48ε
.

This matches the upper bound given in Theorem D.1. For additive noise mechanisms, Theorem 2.1
is naturally instance-optimal on any x ∈ Rn. We note that the range of δ in Theorem 2.1 depends
on κ(A), and it is easy to verify that κ(A) > 0 if and only if A has linearly independent rows (see
Lemma 2.5 for details). While special linear queries such as prefix sum and parity queries inherently
possess linearly independent rows, there are many interesting matrices without linearly independent
rows. In the high privacy regime, which was the setting considered in Edmonds et al. (2020), we
remove the full rank assumption (see Theorem 2.8 in Section 2.2). This underpins Theorem 1.4.

The main technical obstacle of Theorem 2.1 lies in making explicit all the intricate dependencies on
the width of the sensitivity polytope, and how to handle the bias in lower bound proofs. We note that
Edmonds et al. (2020) only studies ℓ22 error. Therefore, without loss of generality, it can be assumed
that the bias is 0. Nikolov & Tang (2024) studies an unbiased setting and their approximate DP lower
bound depends on the minimum width of the polytope (w0 in Nikolov & Tang (2024)). Our lower
bound does not assume unbiasedness, and our lower bound in Theorem 2.1 does not depend on the
minimum width in the bound itself. Instead, the minimum width is only required in Theorem 2.1 for
the applicable range of δ. This means that our bound remains non-trivial even if the minimum width
is like 1/n. In proving the new lower bound, we also adapt geometric characterizations in Nikolov &
Tang (2024) to handle bias of an additive noise mechanism. We also give a more detailed discussion
in Appendix B.3.

To prove Theorem 2.1, we consider mechanisms of the form M(x) = Ax+z, where z is stochastically
independent of x. For any input x ∈ Rn, we define the covariance matrix of M(x) to be

ΣM(x) = E[(M(x)− E[M(x)])(M(x)− E[M(x)])⊤].
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Since an additive noise mechanism can be biased, E[M(x)] is not necessarily Ax. We prove in
Appendix E.1 the following relationship between the ℓpp error and the p-trace of the covariance matrix.

Lemma 2.2 Fix any p ∈ [2,∞) and any additive noise mechanism M : Rn → Rm. It holds that

∀ ∈ Rn,
(
E
[
∥M(x)−Ax∥pp

])1/p ≥
√
trp/2(ΣM(x)).

Therefore to prove Theorem 2.1, it suffices to prove a lower bound on trp/2(ΣM(x)) for any additive
noise private mechanism M(·). To start with, we give a statement bounding the bias of an additive
noise mechanism. In particular, using the Hölder’s inequality, for p ≥ 2, we have

∥Ez∥22 =
∑
i∈[n]

(Ezi)2 ≤

(∑
i∈n

(Ezi)p
) 2

p

· n(p−2)/p ≤
(
E[∥z∥pp]

)2/p · n(p−2)/p.

Taking the square root of both sides gives the following result.

Lemma 2.3 Fix p ≥ 2. Let M(x) = Ax+ z be an additive noise mechanism with z ∈ Rm, then(
E[∥M(x)−Ax∥pp]

)1/p ≥ ∥Ez∥2 · n(1/p−1/2).

Therefore, we can assume ∥E[z]∥2 ≤ γ(p)(A)n(p−2)/2p

ε . Otherwise, due to Lemma 2.3, for all x ∈ Rn,(
E
[
∥M(x)−Ax∥pp

])1/p ≥ ∥E[z]∥2
n(p−2)/2p

>
γ(p)(A)n(p−2)/2p

εn(p−2)/2p
=

γ(p)(A)

ε
>

(1− δ′)γ(p)(A)

ε
.

So, it suffices to prove a lower bound on trp/2(ΣM(x)) for additive noise mechanisms with small
bias. For this, we use a folklore trick (Smith, 2016) that has been used frequently in the literature
of differential privacy. It consists of the following steps: For distributions D and D̄ corresponding
to the output distribution of a privacy-preserving mechanism on the neighboring dataset, we first
define the support on which the privacy loss variable with respect to D and D̄ is bounded. Then
we update the probability distribution D such that the privacy loss random variable with respect
to the new distribution and D̄ is still bounded and the measure of the new distribution is close
in some metric to D. In more details, for any two distributions P and Q over Ω and ε > 0, let
SP,Q,ε :=

{
ω ∈ Ω : e−ε ≤ P (ω)

Q(ω) ≤ eε
}

be the subset of the ground set Ω in which P and Q are
ε-indistinguishable. Note that this is the same as Bad0 in Kasiviswanathan & Smith (2014b). As in
Nikolov & Tang (2024), define

P̂ =
Q(SP,Q,2ε)

P (SP,Q,2ε)
P (T ∩ SP,Q,2ε) +Q(T\SP,Q,2ε) (4)

where T ⊆ Ω. This allows us to reduce differential privacy to χ2-divergence (eq. (10)) using Lemma
46 in Nikolov & Tang (2024) (see Lemma A.18). The following lemma (proven in Appendix E.2)
states that, for a small bias additive noise mechanism, if Ω ⊆ R and P ,Q are distributions of some
additive noise mechanism on neighboring datasets, then |EX∼P̂ [X]− EX∼Q[X]| cannot be small.

Lemma 2.4 Suppose the additive noise mechanism M(x) = Ax+ z is (ε, δ)-differentially private.
Fix any θ ∈ Rm. Let Mθ(x) : Rn → R such that Mθ(x) := θ⊤Ax + θ⊤z where ∥E[z]∥2 ≤
γ(p)(A)

ε n(p−2)/2p. Let ε, δ be such that δ′ = 2δ
1−e−ε ≤ min{ 1

16 ,
ε·κ(A)·n

p−2
2p

12γ(p)(A) , 1− e−ε}. Then, for any
x ∈ Rn, there exists a neighboring dataset x′ such that if P,Q are the distributions of Mθ(x) and
Mθ(x

′) respectively, and let P̂ be the distribution defined in eq. (4), we have

|EX∼P̂ [X]− EX∼Q[X]| ≥
(
1

2
− 2δ′

)
·
wABn

1
(θ)

2
− 17

8

√
δ′Var[θ⊤M(x)].

We will use Lemma 2.4 to prove Theorem 2.1. To do so, we need to study the applicable range of
δ′ in Lemma 2.4. Fix any θ ∈ Rm. Given any ε ∈ (0, 1

2 ), let δ(A, ε, n) be the maximum value of δ
such that

δ′ =
2δ

1− e−ε
≤ min

{
1

16
, 1− e−ε,

ε · κ(A) · n
2−p
2p

12γ(p)(A)

}
.

6
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Note that δ′ > 0 iff κ(A) > 0 as other quantities are positive. We characterize when κ(A) > 0 in
Appendix F.2 that ensures δ′ > 0 through the following lemma:

Lemma 2.5 κ(A) > 0 if and only if A has linearly independent rows.

We will also need two geometric lemmas inspired by Nikolov & Tang (2024), that connect ℓ1
geometry and ℓ2 geometry, and also to the factorization norm. For K,L ⊆ Rm, denote by K ⊆↔
L ⇔ ∃v ∈ Rm,K + v ⊆ L. That is, K ⊆↔ L means that K is covered by L in terms of translation.
We define

Λp(A) := inf
W∈Rm×m

{√
trp/2(WW⊤) : ABn

1 ⊆↔ WBm
2

}
.

The first lemma is similar to the one in Nikolov & Tang (2024), but for a general mechanism (instead
of only for unbiased mechanisms). This lemma shows that if the variance of one way marginal of
an additive noise mechanism M(·) is lower bounded by the square of the width of the sensitivity
polytope ABn

1 , then ABn
1 can be covered by C

√
ΣM(x)Bm

2 in terms of translation with proper C.

Lemma 2.6 (Nikolov & Tang (2024)) Let M : Rn → Rm be any randomized mechanism and
A ∈ Rm×n be any matrix. If there exists some universal constant C such that for any input x ∈ Rn

and any θ ∈ Rm, it satisfies Var[θ⊤M(x)] ≥
(

wθ(ABn
1 )

C

)2
, then ABn

1 ⊆↔ C
√
ΣM(x)Bm

2 .

The original lemma in Nikolov & Tang (2024) is only stated for unbiased mechanisms instead
of general mechanisms. Thus, we include a proof in Appendix F (restated as Lemma F.4) for
completeness.

The final piece we need is a lemma implicit in Nikolov & Tang (2024) that connects Λp(A) and the
factorization norm γ(p)(A).

Lemma 2.7 (Nikolov & Tang (2024)) For any p ∈ [2,∞] and A ∈ Rm×n, Λp(A) ≥ γ(p)(A).

Now we are ready to prove Theorem 2.1.

Proof: [Proof of Theorem 2.1]. Let ε̃ = 2ε − log(1 − δ′). Note that, for every ε > 0, we have
δ′ ≤ 1− e−ε, and thus ε̃ ≤ 2ε+ ε ≤ 3ε. Finally n1−2/p ≥ n−1. For any x and x′ chosen in Lemma
2.4, we consider two cases based on the variance, Var[θ⊤M(x)]:

1. When Var[θ⊤M(x)] <

(
wABn

1
(θ)

)2

256δ′ . By Lemma 2.4, |EX∼P̂ [X]− EX∼Q[X]| is at least(
1

2
− 2δ′

)
wABn

1
(θ)

2
− 17

8

√
δ′Var[θ⊤M(x)] ≥ 1− 8δ′

8
wABn

1
(θ).

Note that Q is the distribution of θ⊤M(x′), and Var[θ⊤M(x)] = Var[θ⊤M(x′)] since the
oblivious noise θ⊤z is independent of the input. Then, by the Hammersley-Chapman-Robins
bound (Lemma A.14), we have that for such a pair of datasets (x, x′):

Var[θ⊤M(x)] = Var[θ⊤M(x′)] ≥
∣∣EX∼P̂ [X]− EX∼Q[X]

∣∣2
χ2(P̂ , θ⊤M(x′))

≥
(1− 8δ′)2

(
wABn

1
(θ)
)2

64χ2(P̂ , Q)

≥
(1− 8δ′)2

(
wABn

1
(θ)
)2

64e−ε̃(eε̃ − 1)2
. (5)

Here, we used Lemma A.18 that shows that P̂ and Q are ε̃-indistinguishable (Defini-
tion A.17). Thus χ2(P̂ , Q) ≤ e−ε̃(eε̃ − 1)2 by Lemma 39 in Nikolov & Tang (2024) (also
see Lemma A.13).

2. When Var[θ⊤M(x)] ≥
(
wABn

1
(θ)

)2

256δ′ . First note that, when δ′ ≤ ε2 ≤ ε̃2, we have
1−8δ′

16ε̃ ≤ 1
16

√
δ′

. Therefore, for every θ ∈ Rm, as in the other case, for any x,

Var[θ⊤M(x)] ≥
(1− 8δ′)2

(
wABn

1
(θ)
)2

64e−3ε(e3ε − 1)2
. (6)

7



Published as a conference paper at ICLR 2025

Lemma 2.6 with eq. (5) and eq. (6) implies that ABn
1 ⊆↔ C

√
ΣM(x)Bm

2 where C = 16ε̃
1−8δ′ . So

C2 · trp/2(ΣM(x)) ≥ inf
W∈Rm×m

{
trp/2(WW⊤) : ABn

1 ⊆↔ WBm
2

}
= (Λp(A))2 (7)

for all p ≥ 2. That is, trp/2(ΣM(x)) ≥
(

(1−8δ′)Λp(A)
16ε̃

)2
.

Combining Lemma 2.2, Lemma 2.7, and eq. (7) therefore gives us the result:(
E
[
∥M(x)−Ax∥pp

])1/p ≥
√
trp/2(ΣM (X)) ≥

(1− 8δ′)γ(p)(A)

16ε̃
.

The proof of Theorem 2.1 is complete after replacing ε̃ by ε. □

2.2 PROOF OF THEOREM 1.4

Theorem 2.1 assumes that rows of the linear query matrix is linearly independent (i.e., κ(A) > 0),
otherwise the lower bound reduces to the one for pure differential privacy. We next show that for
additive noise mechanisms, this assumption can be removed in the most natural high privacy regime:

Theorem 2.8 Fix any 0 < ε < 1
2 , 0 ≤ δ ≤ 1, p ∈ [2,∞] and query matrix A ∈ Rm×n. If M(·) is

an additive noise mechanism such that M(x) = Ax+ z for any dataset x ∈ Rn and M(·) preserves
(ε, δ)-differential privacy, then for every x ∈ Rn, we have that there exists a universal constant C,(

E
[
∥M(x)−Ax∥pp

])1/p ≥
(1− δ′)γ(p)(A)

Cε
, where δ′ =

e1/2 − 1

1− e−ε
δ.

Unlike the proof of Theorem 2.1, we prove the above result using Lemma F.5, in which some of the
technical ingredients are implicit in (Kasiviswanathan et al., 2010, Lemma 4.12). Then we combine it
with (Nikolov & Tang, 2024, Lemma 35). We defer the proof of Theorem 2.8 to Section F. Note that
for general ε > 0, the analysis of Theorem 2.1 also naturally gives an Ω(γ(p)(A)/(e3ε − 1)) lower
bound when A has full rank rows, while Theorem 2.8 only works for high privacy regime.

To obtain a lower bound for general (ε, δ)-differentially private algorithm, we recall that the reduction
in Bhaskara et al. (2012) does not rely on the error metric. In particular, Theorem 1.4 follows by
combining Theorem 2.8 and the reduction given by the following theorem to get a worst-case lower
bound for arbitrary mechanisms.

Theorem 2.9 (Theorem 4.3 in Bhaskara et al. (2012)) Fix any A ∈ Rm×n. Let M : Rn → Rm

be a (ε, δ)-differentially private algorithm. Then there exists a (2ε, eεδ)-differentially private algo-
rithm M′ := Ax+ z with oblivious z such that errℓpp(M′, A) ≤ errℓpp(M, A).

2.3 CONNECTING γ(p)(·) AND SCHATTEN-1 NORM: PROOF OF THEOREM 1.3

In previous sections, we established the connection between the hardness of privately answering linear
queries defined by A and the generalized factorization norm of A, denoted as γ(p)(A). However,
expressing γ(p)(A) analytically for a general matrix A can be difficult. To provide a more practical
lower bound and facilitate potential applications, in the following lemma, we give a lower bound of
γ(p) in terms of the Schatten-1 norm of A, which is simply the sum of singular values of A.

Lemma 2.10 Let A ∈ Rm×n be any real matrix. It holds that

γ(p)(A) ≥ m1/p∥A∥1/
√
mn.

Proof: By (Nikolov & Tang, 2023, Theorem 23) and Lemma 27 in Nikolov & Tang (2024), for any
p > 2, the γ(p)-norm of A can be rewritten as the following optimization problem:

γ(p)(A) = max{γ(2)(DA) : D is diagonal , D ⪰ 0,Trq(D
2) = 1}

where q = p
p−2 . Let D = m

1
p−

1
2 I , then D is a diagonal PSD matrix and Trq(D

2) = m
2
p−1·m

1
q = 1.

Using (Henzinger et al., 2023, Lemma 1.1), we therefore have

γ(p)(A) ≥ m1/p−1/2 · γ(2)(I ·A) = m1/p−1/2 · γ(2)(A) ≥ m1/p−1/2∥A∥1√
n

,

8
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completing the proof. □

Theorem 1.3 directly follows from Lemma 2.10 and Theorem 1.4.

2.4 APPLICATION I: TIGHT LOWER BOUND FOR PRIVATE PREFIX SUM WITH ℓpp ERROR

So far, we have seen that the lower bounds on privately answering linear queries depend on γ(p)(A).
In this section, we focus on a fundamental type of query: prefix sum and establish an explicit bound
that underpins Theorem 1.5 by giving tight upper and lower bounds of γ(p)(A) and κ(A) for such a
specific A. In particular, given n ∈ N+, we consider the prefix sum (i.e., continual counting) matrix
Aprefix, whose (i, j)-th entry is

Aprefix[i, j] =

{
1 i ≥ j

0 otherwise
(8)

be the matrix computing prefix sum of the dataset x ∈ Rn. We first give the following lower bound
on private prefix sum:

Theorem 2.11 Fix any ε ∈ (0, 1
6 ) and p ∈ [2,∞]. Then, for any δ ≤ Cεn

1/p−1/2 where

Cε = min

{
1

12

ε(1− e−ε)e−ε

(1 + ln(4n/5)/π)
,
ε2e−ε(1− e−ε)

2

}
,

if M : Rn → Rm preserves (ε, δ)-differential privacy, then

max
x∈Rn

(
E
[
∥M(x)−Aprefixx∥pp

])1/p ≥ (1− δ̃) · n
1/p log n

96ε
where δ̃ =

2δeε

(1− e−ε)
.

Next, we show that there exists a factorization of Aprefix such that the ℓpp-error of the matrix mechanism
is bounded by O(n1/p log(n)) implying the lower bound in Theorem 2.11 is optimal for p = O(1)
proving Theorem 1.5. If p = Ω(1), then this lower bound is near optimal with only a Θ(

√
log n) gap.

Theorem 2.12 Fix parameters ε > 0 and 0 < δ < 1. Given any x ∈ Rn, there exists a (ε, δ)-
differentially private matrix mechanism M such that(

E[∥M(x)−Aprefixx∥pp]
)1/p ≤ 3n1/p log n

ε

√
log(1/δ) ·min{p, log(n)}

2
.

The upper and lower bound in Theorem 1.5 directly follows from Theorem 2.11 and Theorem 2.12.
We defer the proof of Theorem 2.12 to Appendix G.2.

2.4.1 PROOF OF THEOREM 2.11

To prove this theorem for all ε > 0, we need two things: firstly, a lower bound on the factorization
norm γ(p)(Aprefix); secondly, in order to determine δ′, we show that κ(Aprefix) is lower bounded by a
constant (Lemma 2.14). Such a geometric property of Aprefix could also be of independent interest.
Then, the explicit lower bound on privately computing Aprefixx is obtained by applying Theorem 2.1
and the black-box reduction given in Theorem 2.9 (Theorem 4.3 in Bhaskara et al. (2012)).

Lemma 2.13 Let Aprefix be the matrix defined in Equation (8). Then, γ(p)(Aprefix) ≳ n1/p log n.

Proof: Recall that for any p > 2, the ℓp factorization norm of Aprefix can be rewritten as:

γ(p)(Aprefix) = max{γ(2)(DAprefix) : D is diagonal , D ⪰ 0,Trq(D
2) = 1}

where q = p
p−2 . Let D = n1/p−1/2I , then D is a diagonal PSD matrix and Trq(D

2) = n2/p−1 ·
n1/q = 1. Using (Henzinger et al., 2023, equation (5.30)),

γ(p)(Aprefix) ≥ n1/p−1/2 · γ(2)(I ·Aprefix) ≳ n1/p log n

completing the proof. □

Next, we compute κ(Aprefix). The proof of Lemma 2.14 is given in Section G.1.

9
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Lemma 2.14 Let κ(·) be as defined in eq. (3). Then κ(Aprefix) = 2.

Now we are ready to complete the proof of Theorem 2.11, which is a lower bound for private continual
releasing of the prefix sum on arbitrary ℓpp metric with 2 ≤ p < ∞.

Recalling Theorem 2.1, it remains to show δ′(Aprefix, ε, n) ≥ Cεn
1/p−1/2. In particular, we have the

following:

δ′(Aprefix, ε, n) =
2(eε − 1)

e2ε
·min

{
1

16
,
ε · κ(Aprefix) · n

2−p
2p

12γ(p)(Aprefix)
, ε2

}
≥ 2(eε − 1)

e2ε
min

{
ε · n

2−p
2p

6γF (Aprefix)
, ε2

}

≥ n
2−p
2p ·min

{
1

12

ε(1− e−ε)e−ε

(1 + ln(4n/5)/π)
,
ε2e−ε(1− e−ε)

2

}
=

Cε

n1/2−1/p
,

where the first inequality comes from that γ(p)(A) ≤ γ(2)(A) = γF (A) for any A and p ≥ 2, the
second inequality follows from Henzinger et al. (2023). This completes the proof.

3 DISCUSSION

In this paper, we established lower bounds on approximating the linear query Ax with respect to
approximate differential privacy under ℓpp error, so we can study the optimality of matrix mechanisms
not only in expectation but also with respect to probability tail bounds. For limitations, we note
that we only give a worst case lower bound over all x ∈ Rn by the definition of ℓpp error metric (see
also eq. (1)). To understand why we cannot get a instance-optimal lower bound, consider a trivial
mechanism Mx0 such that for any x ∈ Rn, it always outputs Ax0 where x0 ∈ Rn is any given dataset.
Clearly Mx0 is not an oblivious additive noise mechanism, and it preserves perfect differential privacy,
i.e., ε = 0, and perfect accuracy on the input x0, which explains why an instance-optimal lower
bound is unrealistic for general mechanisms.

In Nikolov & Tang (2024), the authors study unbiased mechanism, and show that the Gaussian
mechanism is indeed instance-optimal over all such unbiased mechanisms, by giving an asymmetric
lower bound saying that if an unbiased mechanism performs well in an input x0, then it must perform
worse in some other inputs x′ where x′ neighboring x0. It is still open if such an asymmetric lower
bound exists for general linear queries over all general mechanisms.
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A BASIC DEFINITIONS AND PRELIMINARIES

Matrix theory and Convex Geometry We first introduce several definitions regarding the matrix
norms and geometric properties of the query matrix A.

Definition A.1 (Schatten-1 norm) Let s1, · · · , sm be the singular values of A, we define the
Schatten-1 norm to be

∥A∥1 =

m∑
i=1

si.

Definition A.2 (p-trace) Fix any d ∈ N+. Let U ∈ Rd×d be a positive semi-definite matrix, we
define the p-trace norm to be

trp(U) :=

(
d∑

i=1

Up
ii

)1/p

Naturally, we define tr∞(U) = maxi∈[d] |Uii|. The following definition for generalized factorization
norm was firstly pointed out by Nikolov and Tang Nikolov & Tang (2024):

Definition A.3 For any 2 ≤ p ≤ ∞ and A ∈ Rm×n, we define

γ(p)(A) := min
LR=A

{√
trp/2(LL⊤)∥R∥1→2

}
.

It can be verified that γ(2)(A) = γF (A) and γ(∞)(A) = γ2(A). This is because when p = 2,
trp/2(LL

⊤) = ∥L∥2F and when p → ∞, then tr∞(LL⊤) = maxi∈[d](LL
⊤)ii = ∥L∥22→∞. We use

the following result to connect the factorization norm and the Schatten-1 norm:

Lemma A.4 (Henzinger et al. (2023) and Li & Miklau (2013)) Let A ∈ Cm×n be a complex ma-
trix. Then

γ(2)(A) ≥ ∥A∥1√
n

Using Theorem A.4, Henzinger et al. Henzinger et al. (2023) showed the following bound:

Theorem A.5 (Henzinger et al. (2023)) For any n ∈ N, let Mcount be a lower triangular matrix
with all ones. Then

γ(2)(Mcount) ≥
√
n

π

(
2 + ln

(
2n+ 1

5

)
+

ln(2n+ 1)

2n

)
Definition A.6 (Parity Query) Let d and w be integer parameters and let the domain be X =
{±1}d. Then a parity query is a query that belongs to the family of queries

Qd,w =

{
qP (x) =

∏
i∈P

xi : P ⊂ {1, · · · , d}, |P | = w

}
. (9)

Definition A.7 (Hadamard matrix) Fix any integer d ≥ 1, the d-th Hadamard matrix Hd is a
2d × 2d matrix [

Hd−1 Hd−1

Hd−1 −Hd−1

]
.

When d = 0, H0 = [1].

The following definitions are related to the geometry property of a query matrix.

Definition A.8 Fix any d ∈ N. For any K,L ⊂ Rd, we write

K ⊆↔ L ⇔ ∃v ∈ Rd,K + v ⊆ L.

13
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This is saying that if K ⊆↔ L, then K can be covered by L by “relocating” the center of K. Next,
we define the width of a convex body.

Definition A.9 (Width of a convex body) Given any vector θ ∈ Rm, we define the width of any
convex body K ⊆ Rm with respect to θ be

wK(θ) := max
x∈K

θ⊤x−min
x∈K

θ⊤x.

We use Bd
p to denote the unit ball of dimension d with respect to the ℓp norm. Formally,

Bd
p = {x ∈ Rd : ∥x∥p ≤ 1}.

For matrix W with d columns, we also write WBd
p = {Wx : x ∈ Bd

p} to denote the sensitivity
polytope of W with respect to the p-th norm.

Definition A.10 (Nikolov & Tang (2024)) For any query matrix A ∈ Rm×n and p ∈ [2,∞], we
define

Λp(A) := inf
W∈Rm×m

{√
trp/2(WW⊤) : ABn

1 ⊆↔ WBm
2

}
.

Here, we give some insights about why Λp(A) in Definition A.10 is useful for establishing the lower
bound. Geometrically, ABn

1 is exactly the convex body comprising differences between the ground
truth output of any pair of neighboring datasets, A(x − x′) where ∥x − x′∥ ≤ 1. Since Λp(A) is
the minimum trace norm of WW⊤ where WBm

2 covers the sensitivity polytope ABn
1 , then, Λp(A)

can be interpreted as a specific kind of measurements on the volume of the body WBm
2 that “covers”

A(x− x′) over all pair of neighboring datasets.

Intuitively, if this volume gets larger, it is harder to preserve utility because the outputs of neighboring
datasets will be far apart. Therefore, it gives a way to prove the lower bound by establishing a
connection between the ℓpp error and Λp(A). The following lemma also reveals the relationship
between Λp(A) and the factorization norm γ(p)(A):

Lemma A.11 (Nikolov & Tang (2024)) For any p ∈ [2,∞] and A ∈ Rm×n, Λp(A) ≥ γ(p)(A).

Basically speaking, for any matrix A ∈ Rm×n, one can always find a factorization of A = LR
such that ∥R∥1→2 is smaller than 1 and that ABn

1 ⊆↔ LBm
2 . Then, taking the L that minimizes√

trp/2(LL⊤) yields the above lemma.

Differential privacy. Here, we first introduce Gaussian mechanism, which is the main component
of the upper bound proof in this paper.

Lemma A.12 (Gaussian mechanism) Fix any 0 ≤ ε, δ ≤ 1. Let f : X → Y be any deterministic
function. If for all neighboring dataset x, x′, ∥f(x)− f(x′)∥2 ≤ ∆, then M(x) = f(x) + z where
z ∼ N (0, σ2I) satisfies (ε, δ)-differential privacy as long as σ2 ≥ 9∆2 log(1/δ)

2ε2 .

As in Nikolov & Tang (2024), one of the necessary conditions of DP algorithms that we will consider
is that DP algorithms preserve the χ2-divergence between neighboring datasets. For two distribution
P and Q, the χ2 divergence between them is

χ2(P,Q) := Ex∼Q

[(
P (x)

Q(x)
− 1

)2
]
. (10)

It is not hard to verify (perhaps it is also well-known) the following lemma:

Lemma A.13 (Lemma 39 in Nikolov & Tang (2024)) Suppose M is an ε-differentially private al-
gorithm and x, x′ be two neighboring datasets such that ∥x − x′∥1 ≤ 1. Let P and Q be the
distributions of M(x) and M(x′) respectively. Then

χ2(P,Q) ≤ e−ε(eε − 1)2.
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The reason why we consider χ2 distribution is that the lower bound of the variance of a real random
variable can be characterized by its χ2 divergence between another arbitrary random variable. This is
the classical Hammersley-Chapman-Robins bound stated in the following lemma:

Lemma A.14 (Hammersley-Chapman-Robins bound) For any two distributions P , Q over real
numbers and for X , Y distributed, respectively, according to P and Q, we have√

Var(Y ) ≥ |E[X]− E[Y ]|√
χ2(P,Q)

.

We also need the following lemma in this paper:

Lemma A.15 (Lemma 4.4 in Kasiviswanathan et al. (2010)) Let w ∈ Rn be any single query and
M ′(x) := w⊤x+ z′ (z′ ∈ R) be any additive noise mechanism that is (ε, 0)-differentially private
for any 0 < ε < 1, then E[z2] ≳ 1

ε2 for some universal constant C.

Lemma A.16 (Kasiviswanathan & Smith (2014b)) Let M be any (ε, δ)-differentially private
mechanism, let P be the distribution of M(x) and Q be the distribution of M(x′). Let

SP,Q,ε :=

{
ω ∈ Ω : e−ε ≤ P (ω)

Q(ω)
≤ eε

}
. (11)

Then
max {Pr[P /∈ S],Pr[Q /∈ S]} ≤ δ′ =

2δ

1− e−ε
.

Given two distribution P and Q and set defined by eq. (11), Nikolov & Tang (2024) defined a a
distribution P̂ such that for any T ⊂ Ω,

P̂ =
Q(SP,Q,2ε)

P (SP,Q,2ε)
P (T ∩ SP,Q,2ε) +Q(T\SP,Q,2ε) (12)

Here we define (ε, δ)-indistinguishability:

Definition A.17 (Kasiviswanathan & Smith (2014b)) Let Ω be a ground set and µ1, µ2 be two
distributions with support Ω1 ⊆ Ω, Ω2 ⊆ Ω respectively. We say that µ1 and µ2 are (ε, δ)-
indistinguishable for ε > 0 and δ ∈ (0, 1) if for any S ⊆ Ω, it holds that

µ1(S) ≤ µ2(S) · eε + δ and µ2(S) ≤ µ1(S) · eε + δ.

If δ = 0, we also say µ1 and µ2 are ε-indistinguishable.

We use the following lemma to characterize the relation between P̂ and Q:

Lemma A.18 (Lemma 46 in Nikolov & Tang (2024)) Let P,Q be a pair of (ε, δ)-
indistinguishable distributions over Ω and P̂ be the distribution defined in eq. (12), then∣∣∣∣∣log P̂ (ω)

Q(ω)

∣∣∣∣∣ ≤ 2ε− log(1− δ′) = ε̃

for all ω ∈ Ω. Here, δ′ = 2δ
1−e−ε . That is to say, P̂ and Q are ε̃-indistinguishable.

Error Metric. Two of the normally used metrics for a private mechanism M are the squared error
(denoted by errMSE) and absolute error (denoted by errℓ∞ ), respectively:

errMSE(M, A, n) := max
x∈Rn

E
[
1

n
∥M(x)−Ax∥22

]
errℓ∞(M, A, n) := max

x∈Rn
E [∥M(x)−Ax∥∞] .

(13)

B HIGH-LEVEL OVERVIEW OF OUR TECHNIQUES

In this section, we briefly discuss some techniques and ideas that underpin our proof.
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B.1 UPPER BOUND ON MATRIX MECHANISM IN ℓpp METRIC.

To find an upper bound on answering linear queries, we use the Gaussian mechanism that adds
correlated noise based on a factorization of the query matrix A. Specifically, given a query matrix
A ∈ Rm×n, we consider the additive noise mechanism M(x) = Ax + z. For any factorization
of A = LR where L ∈ Rm×k and R ∈ Rk×n, such a mechanism can be rewritten as M(x) =
L(Rx+ z′) where Lz′ has the same distribution as z. Finally, we show that minimizing the ℓpp error
on such mechanism is equivalent to finding an “optimal” factorization of A, and the optimal error can
be characterized by the generalized factorization norm γ(p)(A).

B.2 LOWER BOUND ON OBLIVIOUS ADDITIVE NOISE APPROXIMATE DP MECHANISMS IN ℓpp
METRIC.

To prove a lower bound on mechanisms that add oblivious additive noise, we consider the convex
sensitivity polytope ABn

1 = {Ay : y ∈ Rn and ∥y∥1 ≤ 1} of the query matrix A ∈ Rm×n. We use
the following measurement introduced by Nikolov & Tang (2024):

inf
W∈Rm×m

{√
trp/2(WW⊤) : ∃v ∈ Rm, ABn

1 + v ⊆ WBm
2

}
(14)

to bound the minimum scale of the variance needed for the noise to achieve differential privacy.

Intuitively, if the measure of the sensitivity polytope ABn
1 is larger (in terms of

√
trp/2(WW⊤)),

then it is harder to make two points in ABn
1 indistinguishable. To formulate such intuition, we

first establish a bridge between ℓpp error and the covariance matrix ΣM(x) ∈ Rm×m of the output
distribution (Lemma 2.2). Next, a direct approach is to show that if an oblivious mechanism M is
(ε, δ)-differentially private, then by a standard lower bound in Kasiviswanathan et al. (2010), the
square root of the covariance matrix ΣM(x) satisfies that

ABn
1 + v ⊆

√
ΣM(x)Bm

2

for some v ∈ Rm, which establishes a relationship between the infimum value in eq. (14) and the ℓpp
error. Finally, we apply Lemma 20 in Nikolov and Tang Nikolov & Tang (2024) to lower bound such
infimum value by the general factorization norm γ(p)(A).

However, the lower bound in Kasiviswanathan et al. (2010) works in only high privacy regime. To get
a lower bound for approximate DP algorithms for all ε > 0, we use the fact that output distributions
of differentially private mechanisms under two adjacent datasets must be close under χ2-divergence.
Consequently, we employ the χ2-divergence to set a lower bound on the minimum variance of the
oblivious noise that must be introduced to achieve differential privacy. Since we do not assume
the unbiasedness as inNikolov & Tang (2024), we have to consider the bias of the oblivious noise.
However, we show that such a pipeline still works if the oblivious noise has a small bias. On the
other hand, if the noise has a large enough bias, then one can show that the ℓpp error is already large.
Combined, we establish a lower bound that the 1

p -root of the ℓpp error is at least Ω((1− δ)γ(p)(A)/ε)

for any oblivious (ε, δ)-DP mechanisms on any query matrix A ∈ Rm×n with κ(A) > 0.

With the lower bounds on oblivious mechanisms, we use the standard reduction in Bhaskara et al.
(2012) to obtain a worst case (in terms of the input x ∈ Rn) lower bound for general (ε, δ)-DP
mechanisms that might be data-dependent.

B.3 COMPARISON OF TECHNIQUES

As alluded to in the introduction, the focus of Nikolov and Tang Nikolov & Tang (2023) is the ℓ2p
instance optimality of matrix mechanisms among unbiased mechanisms, while we instead focus on
the worst case ℓpp optimality of matrix mechanisms among any differentially private mechanisms.
Here, we highlight key departures between this paper and previous works.

Add/remove model v.s. Substitution model. Our main departure compared to Nikolov & Tang
(2024) lies in a different privacy notion, leading to different choice of sensitivity polytopes for the
geometric arguments of lower bound. To elaborate, we recall a natural way to view linear query as a
mean estimation task as suggested in Nikolov & Tang (2024):
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Let X be the domain of data points, X = (x1, x2, · · · , xk) be the dataset, and Q : X → Rm be
the query workload. Then, answering Q(X) is equivalent to doing mean estimation in the polytope
KQ = {Q(x) : x ∈ X}. The authors in Nikolov & Tang (2024) considered a substitution DP model,
where a data point can be replaced by another within the domain. If we further let h ∈ RX (where
|X | = n in the notation of our paper) be the histogram of the dataset, then the substitution DP model
corresponds to the neighboring notion where ∥h−h′∥1 ≤ 2 and

∑
x∈X (hx −h′

x) = 0 (i.e., bounded
DP). This differs from the commonly used privacy notion for linear queries (as used in Bhaskara et al.
(2012), Edmonds et al. (2020) etc.) where we only ask ∥h− h′∥1 = O(1), representing a natural ℓ1
sensitivity, and is more like the add/remove DP model when translated back to mean estimation. 6

Even if we restrict our discussion to the substitution DP model, the lowerbound for mean estimation
from Nikolov and Tang would be in terms of Γp(KQ) := inf

{√
Trp/2(AA⊤) : KQ ⊆↔ ABd

2

}
. In

contrast, our lowerbound for linear queries is in terms of the factorization norm of the workload
matrix A associated with the query Q. These two are not comparable: imagine when the workload
matrix consists of vectors that are very far from the origin, but are close to each other; then we have
small Γp(KQ) but a substantially larger factorization norm of the workload matrix A. Therefore, a
lower bound in terms of Γp(KQ) does not imply a lower bound in terms of the factorization norm
γ(p)(A) as ours. Essentially, this is due to the fact that the most suitable choice for "sensitivity
polytope" is different for mean estimation and linear queries.

Technical comparisons. Our departure in analysis and its complication compared to previous works
stems from the fact that we do not assume unbiased mechanisms. Our different approach also means
that our dependency on κ appears only in the applicable range of the privacy parameter δ, instead of
showing up in the lower bound itself. We elaborate it next.

The lower bound of Nikolov & Tang (2024) combined techniques from Edmonds et al. (2020) for
oblivious mechanisms with the classical results for unbiased estimators, i.e., they crucially rely on
the estimator being unbiased. We first explain at a high level why they need the assumption of an
unbiased mechanism.

Edmonds et al. (2020) showed that the variance of the one-dimensional private mechanism is lower
bounded by the width of the underlying sensitivity polytope. For a data oblivious mechanism, as
considered in Edmonds et al. (2020) in their first step, this almost immediately implies a lower bound.
However, this might not always be true for an unbiased mechanism. In fact, since Edmonds et al.
(2020) consider the ℓ2 error metric, they can assume without any loss of generality that the bias is 0.
This is not the case for ℓ2p error considered in Nikolov & Tang (2024) or ℓp-error as considered in this
paper.

This causes the departure of our proof technique from Edmonds et al. (2020) and Nikolov & Tang
(2024) since we cannot assume that the bias is 0 either by an assumption of unbiased mechanism
or because of the choice of metric (i.e., ℓ2 error metric). We first show in Lemma 2.3 that the error
would be large if the bias is large enough. So, the rest of our proof has to deal with the setting when
the bias is small. In fact, using a case analysis based on the magnitude of bias is also helpful from
another perspective: our lower bound depends only on γ(p)(·) norm while the effect of minimum
width of sensitivity polytope is reflected in the applicable range of δ when we consider any ε > 0
(including the low privacy regime). In general, the width of the sensitivity polytope can be 0 as
shown in Lemma 2.5, but as we show it is lower bounded by a constant for two important linear query
matrices. Further, for general linear query matrices whose sensitivity polytope has a small minimum
width, say 1/n, our lower bound remains non-trivial, while Nikolov & Tang (2024) only provided a
very weak lower bound (that is, dependent inversely on the dimension). We discuss it next.

For approximate differential privacy, Nikolov & Tang (2024) proved that any mechanism would
have a large error either on the input x or one of its neighbor x′. This is because they rely on a
classical result from statistics, known as Hammersley-Chapman-Robins bound (Lemma A.14). To
apply this bound, they need to prove that the χ2-divergence between the mechanism’s output on two
neighboring datasets is bounded. However, while this is true for ε-differential privacy, this is not true
for (ε, δ)-differential privacy because the support of the two mechanisms might differ. To ensure that

6We have also confirmed with the authors of Nikolov & Tang (2024) that if using add/remove DP as in our
setting, a lot of results in their paper need to be modified. Consequently, there is no black-box reduction and it
does not appear to simplify our current proof.
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the two distributions have the same support, they use the general trick used in differential privacy
(and, to our knowledge, first appeared in Kasiviswanathan & Smith (2014a)) and define a set as we
defined in eq. (4). This set serves two purposes: (i) the χ2-divergence between both distributions
is bounded, and (ii) the difference of the expectation of either of the two distributions restricted
over the set is close to the original unrestricted distribution unless one of the two distributions has a
large variance. We can now do the case analysis. In case 1, if the expectation of neither of the two
distributions changes much, we can restrict our attention to the defined set. Otherwise, we are in
case 2, where we just pick the distribution whose expectation changed by a lot and for which we are
in the case where the variance is high. As a result, one can only prove that either Munbiased(x) or
Munbiased(x

′) have a large error.

There is another price with this analysis. If we are in case 2, then their technique gives a lower
bound on the variance that depends on the minimum width (κ(·) in our paper and w0(·) in Nikolov &
Tang (2024)). Due to Lemma 2.5, their result by itself is vacuous if the query matrix A has linearly
dependent rows. They alleviate this concern using the following trick: one can always find a random
subspace, so the minimum width is at least the inverse of the dimension of the original sensitivity
polytope under the projection onto that subspace. In other words, in case 2, we can only prove a
lower bound with inverse dependence on the dimension. As a result, the lower bound is less useful as
the dimension increases.

Since the reduction from the class of oblivious additive noise differentially private mechanism to
the class of general differentially private mechanism follows from Bhaskar et al. Bhaskara et al.
(2012), we only focus on the class of oblivious additive noise differentially private mechanism in
the following exposition. Since the large bias case is easy to deal with (and already implies a lower
bound on the error as shown in Lemma 2.3), we need to deal with the case when the mechanism has
a small bias.

Dealing with the possibility of bias results in an extra term of E[θ⊤z]
∣∣∣1− Q

P

∣∣∣ in eq. (17), where P

and Q are the distribution of the output of the mechanism on two neighboring datasets, θ ∈ Rd and z
is the noise which is stochastically independent of the input. Since E[θ⊤z] is not identically zero,
this term finally results in an extra term of δ′E[θ⊤z] term. For a non-vacuous lower bound, this term
has to be o(wABn

1
(θ)) in all directions θ. Using the fact that we are in the low bias case, we have an

upper bound on E[θ⊤z]; this gives us an applicable range of δ′, i.e., the value of δ for which the term
E[θ⊤z] ∈ o(wABn

1
(θ)), which in turn depends on the narrowest direction of wABn

1
. This narrowest

direction is κ(A) by definition.

C PROOF OF THEOREM 1.6

We use the observation made in Edmonds et al. (2020). Let Q = Qd,w be the corresponding matrix of
the w-way parity queries on the domain {−1, 1}d. Then, Q is the sub-matrix of a 2d × 2d Hadamard
matrix H (see also Definition A.7) produced by selecting

(
d
w

)
rows of H . We have the following

lemma that gives the lower bound on κ(Q). This allows us to set the range of δ and combined with
the worst case lower bound Theorem 1.4 give an (ε, δ)-DP lower bound for general mechanisms on
answering parity queries.

Lemma C.1 κ(Q) ≥ 2.

Proof: Let ℓ =
(
d
w

)
and let q⊤1 , q

⊤
2 · · · , q⊤ℓ be the rows of Q. We first note that since Q contains ℓ

rows of a Hardamard matrix, then each row of Q is orthogonal to each other, and the ℓ2 norm of each
row q⊤i is 2d/2 where 1 ≤ i ≤ ℓ. We recall that

κ(Q) := min
θ⊤θ=1

(
max

∥x∥1≤1
θ⊤Qx− min

∥x∥1≤1
θ⊤Qx

)
. (15)

First note that for any fixed unit vector θ = (θ1, θ2, · · · , θℓ)⊤ ∈ Rℓ,

∥θ⊤Q∥22 = (θ1q
⊤
1 + · · ·+ θℓq

⊤
ℓ )(θ1q1 + · · ·+ θℓqℓ) =

ℓ∑
i=1

θ2i q
⊤
i qi = 2d

ℓ∑
i=1

θ2i = 2d,

18



Published as a conference paper at ICLR 2025

where the second equality comes from that q⊤i qj = 0 for any i ̸= j. Then, we choose x+ ∈ R2d be
the vector such that ∥x+∥1 = 1 and θ⊤Q = cx+ for some scalar c > 0, and x− = −x+. Finally,
observe that

θ⊤Qx+ − θ⊤Qx− = 2θ⊤Qx+ = 2∥θ⊤Q∥2 · ∥x+∥2 ≥ 2
∥θ⊤Q∥2√

2d
= 2,

where the inequality comes from the fact that ∥x+∥2 ≥ ∥x1∥1/
√
2d. Since for any θ we can always

find such a pair of x+ and x−, then we have κ(Q) ≥ 2 by eq. (15). □

Lemma C.2 ∥Q∥1 =
(
d
w

)
2d/2.

Proof: As noted in Edmonds et al. (2020), the parity query matrix, Q, is the submatrix formed by
choosing the appropriate

(
d
w

)
rows of a 2d × 2d unnormalized Hadamard matrix. In other words,

n = 2d and m =
(
d
w

)
. Since the Hadamard matrix is orthogonal, the rows of Q are linearly

independent. Furthermore, there are
(
d
w

)
singular values, all of which are 2d/2. Since ∥Q∥1 is just

the sum of the singular values of Q, we have the result. □

Setting n = 2d and m =
(
d
w

)
gives us the required bound and proof of Theorem 1.6.

D PROOF OF THE UPPER BOUND

We first state the theorem in its full generality for the ease of the readers.

Theorem D.1 Fix any 0 < ε, δ < 1 and 2 ≤ p < ∞. For any query matrix A ∈ Rm×n and dataset
x ∈ Rn, there exists a factorization of A = LR and a parameter σ = σ(ε, δ, R) such that the
mechanism

M(x) := L(Rx+ z)

where each entry in z is i.i.d sampled from N
(
0, σ2

)
preserves (ε, δ)-differential privacy. Moreover,(

E
[
∥M(x)−Ax∥pp

])1/p ≤ 3γ(p)(A) ·
√

log(1/δ)min{p, log(2m)}
2ε2

.

Proof: Let ρ = ε

3
√

log(1/δ)
. Note that the factorization of query matrix A is independent of x. Thus,

the mechanism M(·) can be considered as the post-processing of Rx+ z. The ℓ2 sensitivity of Rx
can be bounded by

∥Rx−Rx′∥2 ≤ max
∥y∥1=1

∥Ry∥2 = ∥R∥1→2,

since ∥x − x′∥1 ≤ 1 if (x, x′) is a pair of neighboring datasets. Then, let σ2 = ∆2

2ρ2 where
∆ = ∥R∥1→2, by Lemma A.12, Rx+ z preserves (ε, δ)-DP as well as M(x). For the utility part,
we consider the Gaussian variable z′ = Lz and thus z′ ∼ N (0, σ2LL⊤). Then, the ℓpp error can be
formulated as(

E
[
∥M(x)−Ax∥pp

])1/p
=
(
E
[
∥LRx+ Lz −Ax∥Pp

])1/p
=
(
E
[
∥Ax+ z′ −Ax∥Pp

])1/p
=
(
E
[
∥z′∥pp

])1/p
=

(∑
i∈n

E[|z′i|p]

)1/p

≤
√
min{p, log(2m)}

(∑
i∈n

(Var[z′i])
p
2

) 2
p ·

1
2

=
√
min{p, log(2m)} · σ

√
trp/2(LL⊤)

=
1√
2ρ

√
min{p, log(2m)}

√
trp/2(LL⊤)∥R∥1→2.

Letting L and R be the optimal factorization of A yields the desired result. Here, the inequality
comes from the standard bound on the p-th moment of the Gaussian variable (Proposition 2.5.2 in
Vershynin Vershynin (2018)) and the union bound over all coordinates respectively. □

19



Published as a conference paper at ICLR 2025

E MISSING PROOFS FROM SECTION 2.1

Recall that
ΣM(x) = E[(M(x)− E[M(x)])(M(x)− E[M(x)])⊤]

is the covariance matrix of M(x).

E.1 PROOF OF LEMMA 2.2

The proof follows from the following set of derivation.

(
E
[
∥M(x)−Ax∥pp

])2/p ≥ E∥M(x)−Ax∥2p = E

( d∑
i=1

(M(x)i − (Ax)i)
2· p2

) 2
p


≥

(
d∑

i=1

(
E
[
(M(x)i − (Ax)i)

2
]) p

2

) 2
p

=

(
d∑

i=1

(
E
[
z2i
]) p

2

) 2
p

≥

(
d∑

i=1

(
E
[
z2i
]
− (Ezi)2

) p
2

) 2
p

=

(
d∑

i=1

Var[M(x)i]
p
2

) 2
p

= trp/2(ΣM(x)).

E.2 PROOF OF LEMMA 2.4

Note that θ⊤M(x) preserves (ε, δ)-differential privacy for any θ if M(·) is (ε, δ)-differentially
private. Further, wABn

1
(θ) = maxv∈ABn

1
θ⊤v −minv∈ABn

1
θ⊤v. For any proposition P , we let

1{P} =

{
1 if P is true
0 otherwise

.

Let S = SP,Q,2ε. By the definition of P̂ , similar to Nikolov & Tang (2024), we have

|EX∼P̂ [X]− EX∼Q[X]| =

∣∣∣∣∣∣
∫
R

xP̂ (x)−
∫
R

xQ(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

R\S

(
xP̂ (x)− xQ(x)

)
+

∫
S

xP̂ (x)−
∫
S

xQ(x)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣Q(S)

P (S)

∫
S

xP (x)−
∫
S

xQ(x)

∣∣∣∣∣∣
=

∣∣∣∣Q(S)

P (S)
EX∼P [X1{X ∈ S}]− EX∼Q[X1{X ∈ S}]

∣∣∣∣
≥
∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣︸ ︷︷ ︸
S1

−
∣∣∣∣Q(S)

P (S)
EX∼Q[X1{X /∈ S}]− EX∼Q[X1{X /∈ S}]

∣∣∣∣︸ ︷︷ ︸
S2

.

(16)
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We now bound the above two terms separately. Recall that P and Q are distributions of Mθ(x) =
θ⊤(Ax+ z) and Mθ(x

′) = θ⊤(Ax′ + z) respectively, then

S1 :=

∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣ ≥ ∣∣∣∣θ⊤A(Q(S)

P (S)
x− x′

)∣∣∣∣− |E[θ⊤z]|
∣∣∣∣1− Q(S)

P (S)

∣∣∣∣ . (17)

By Lemma A.16, 1− δ′ ≤ P (S) ≤ 1 and 1− δ′ ≤ Q(S) ≤ 1. Further, if we chose ε and δ such that
δ′ = 2δ

1−e−ε < 1
2 , then

1− δ′ ≤ Q(S)

P (S)
≤ 1

1− δ′
≤ 1 + 2δ′. (18)

Now we consider the term

f(x, y) :=

∣∣∣∣θ⊤A(Q(S)

P (S)
x− y

)∣∣∣∣ .
We do a case analysis based on the ratio Q(S)

P (S) .

• When Q(S)
P (S) ≥ 1, then

ABn
1 ⊆ KP,Q :=

{
A

(
Q(S)

P (S)
x− y

)
: ∥x− y∥1

}
.

Therefore, there exists a pair of (x+, x
′
+) with (x+ − y+) ∈ Bn

1 such that

f(x+, y+) =

∣∣∣∣θ⊤A(Q(S)

P (S)
x+ − y+

)∣∣∣∣ = wABn
1
(θ)

2
.

• When Q(S)
P (S) < 1, then the set

K ′
P,Q =

{
P (S)

Q(S)
·A
(
Q(S)

P (S)
x− y

)
: ∥x− y∥1

}
=

{
A

(
x− P (S)

Q(S)
y

)
: ∥x− y∥1

}
contains ABn

1 . In this case, there also exists a pair of (x−, y−) with (x− − y−) ∈ Bn
1 such

that ∣∣∣∣θ⊤A(Q(S)

P (S)
x− − y−

)∣∣∣∣ = Q(S)

P (S)

wABn
1
(θ)

2
≥ (1− δ′)

wABn
1
(θ)

2
.

Finally, we have that∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣ ≥ (1− δ′) ·
wABn

1 (θ)

2
− 2δ′Eθ⊤z. (19)

Next, we try to bound the second term in eq. (16):

S2 =

∣∣∣∣Q(S)

P (S)
EX∼P [X1{X /∈ S}]− EX∼Q[X1{X /∈ S}]

∣∣∣∣
≤
∣∣∣∣Q(S)

P (S)
EX∼P [(X − EP [X])1{X /∈ S}]− EX∼Q[(X − EQ[X])1{X /∈ S}]

∣∣∣∣
+

∣∣∣∣Q(S)

P (S)
EP [X] · EP [1{X /∈ S}]− EQ[X] · EQ[1{X /∈ S}]

∣∣∣∣
≤
∣∣∣∣Q(S)

P (S)
EX∼P [(X − EP [X])1{X /∈ S}]

∣∣∣∣︸ ︷︷ ︸
S21

+ |EX∼Q[(X − EQ[X])1{X /∈ S}]|︸ ︷︷ ︸
S22

+ δ′
∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣︸ ︷︷ ︸
S23

.

(20)

We bound each of these terms separately.

21



Published as a conference paper at ICLR 2025

Bounding S21 and S22 Using Q(S)
P (S) ≤ 1 + 2δ′, we have

S21 =
Q(S)

P (S)
|EX∼P [(X − EP [X])1{X /∈ S}]| ≤ (1 + 2δ′) |EX∼P [(X − EP [X])1{X /∈ S}]|

≤ (1 + 2δ′)
√
EX∼P [(X − EP [X])2]E[1{X /∈ S}]

≤ (1 + 2δ′)
√
δ′ · EX∼P [(X − EP [X])2] ≤ (1 + 2δ′)

√
δ′Var[θ⊤M(x)].

Similarly, we see that

S22 = |EX∼Q[(X − EQ[X])1{X /∈ S}]| ≤
√
δ′Var[θ⊤M(x′)].

Therefore,

S21 + S22 =
Q(S)

P (S)
|EX∼P [(X − EP [X])1{X /∈ S}]|+ |EX∼Q[(X − EQ[X])1{X /∈ S}]|

≤ Q(S)

P (S)

√
δ′Var[θ⊤M(x)] +

√
δ′Var[θ⊤M(x′)]

≤ (1 + 2δ′)
√
δ′Var[θ⊤M(x)] +

√
δ′Var[θ⊤M(x′)],

(21)

where the last inequality is due to eq. (18).

Bounding S23 With a similar argument as in S1, we have

S23 = δ′
∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣ ≤ δ′
∣∣∣∣θ⊤A(Q(S)

P (S)
x− y

)∣∣∣∣+ δ′|E[θ⊤z]| ·
∣∣∣∣1− Q(S)

P (S)

∣∣∣∣
≤ δ′

(
wABn

1
(θ)

2
+ 2δ′Eθ⊤z

)
, (22)

where the last inequality can be achieved under the same choice of x and y as in eq. (19).

Plugging the bound in eq. (21) and eq. (22) in to eq. (20), we get

S2 ≤ S21 + S22 + S23

≤ δ′
(
wABn

1
(θ)

2
+ 2δ′Eθ⊤z

)
+ (1 + 2δ′)

√
δ′Var[θ⊤M(x)] +

√
δ′Var[θ⊤M(x′)]

(23)

Plugging eq. (17) and eq. (23) in eq. (16) and setting (ε, δ) such that

δ′ ≤ min{ 1

16
,
ε · κ(A) · n

p−2
2p

12γ(p)(A)
, ε2} ≤ 1

2
,

for any fix θ, we have that for every x ∈ Rn, there exists an x′ such that ∥x− x′∥1 ≤ 1 and

|EX∼P̂ [X]− EX∼Q[X]| ≥
∣∣∣∣Q(S)

P (S)
EX∼P [X]− EX∼Q[X]

∣∣∣∣
−
∣∣∣∣Q(S)

P (S)
EX∼Q[X1{X /∈ S}]− EX∼Q[X1{X /∈ S}]

∣∣∣∣
≥ (1− 2δ′) ·

wABn
1
(θ)

2
− 3δ′Eθ⊤z − (1 + 2δ′)

√
δ′Var[θ⊤M(x)]−

√
δ′Var[θ⊤M(x′)]

≥
(1− 2δ′) · wABn

1
(θ)

2
− ε · κ(A)

4γ(p)(A)
·
γ(p)(A)

ε
− (2 + 2δ′)

√
δ′Var[θ⊤M(x)]

≥
(
1

2
− 2δ′

)
·
wABn

1
(θ)

2
− 17

8

√
δ′Var[θ⊤M(x)],

which completes the proof of Lemma 2.4. Here, the second last inequality comes from that M(·)
adds oblivious noise and thus Var[θ⊤M(x)] = Var[θ⊤M(x′)].
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F MISSING PROOFS IN SECTION 2.2

F.1 PROOF OF THEOREM 2.8

The key step in proving Theorem 2.8 is applying Lemma 4.12 in Kasivishwanathan et al. Ka-
siviswanathan et al. (2010).

Lemma F.1 (Kasiviswanathan et al. (2010)) Suppose X,Y are real-valued random variables with
statistical difference at most e1/2 − 1 + δ. Then, for all a ∈ R, at least one of E[X2] or E[(Y − a)2]
is Ω(a2(1− δ)2).

The following lemma introduced ε into the above lower bound.

Lemma F.2 (Dwork and Roth Dwork & Roth (2014)) Fix any 0 < ε ≤ 1
2 and δ > 0. Let

A(x) : Rn → R be any randomized algorithm. If A is (ε, δ)-differentially private, then A
(

1
2εx
)

is

(1/2, e1/2−1
eε−1 δ)-DP.

We first prove the following lemma based on Lemma F.1, which has also been claimed in Edmonds
et al. (2020) (Lemma 26) but without a proof.

Lemma F.3 Let w ∈ Rn be any single query and M(x) := w⊤x + z (z ∈ R) be any data-
independent mechanism that is (ε, δ)-differentially private for 0 < ε ≤ 1

2 and 0 ≤ δ ≤ 1, then

(E[z2])1/2 ≥ 1−δ′

Cε ∥w∥∞ for some universal constant C. Here, δ′ = e1/2−1
eε−1 δ.

Proof: We consider the mechanism M ′(x) = 2εM( 1
2εx) = w⊤x + 2εz. Let δ′ = e1/2−1

eε−1 δ,
then M ′ is ( 12 , δ

′)-differentially private. Fix any pair of neighboring dataset x and x′ such that
∥x− x′∥1 ≤ 1. Let X = M ′(x) and Y = M ′(x′) respectively. Then, it is easy to verify that

dTV (X,Y ) = max
S⊆R

|Pr[X ∈ S]− Pr[Y ∈ S]| ≤ e1/2 − 1 + δ′

since M ′ is ( 12 , δ
′)-differentially private and thus Pr[X ∈ S] ≤ e1/2Pr[Y ∈ S] + δ′ for any S.

Next, let X ′ = X − w⊤x = 2εz, Y ′ = Y − w⊤x = 2εz + w⊤(x′ − x) and a = w⊤(x′ − x).
Then dTV (X

′, Y ′) = e1/2 − 1 + δ′ and thus by Lemma F.1 (Lemma 4.12 in Kasiviswanathan et al.
(2010)), we have

E[z2] =
1

4ε2
E[X ′2] =

1

4ε2
E[(Y ′ − a)2] ≥ (w⊤(x− x′))2

Cε2
(1− δ′)2

for some universal constant C. Finally, choose the pair of neighboring datasets x and x′ that
maximizes w⊤(x− x′) completes the proof. □

Now, we are ready to start the proof of Theorem 2.8.

Proof: (Of Theorem 2.8.) This proof can be considered as a complementary version of the proof in
Nikolov & Tang (2024) and Edmonds et al. (2020) since they only focus on unbiased mean estimation
or linear queries in ℓ22 metric. We recall the reader the notation K ⊆↔ L for K,L ⊂ Rm. The
notations means that there exists a v ∈ Rm such that K + v ⊆ L. We now restate Lemma 2.6 and
give a proof here:

Lemma F.4 (Restatement of Lemma 2.6 in (Nikolov & Tang, 2024)) Let M : Rn → Rm be any
randomized mechanism and A ∈ Rm×n be any matrix. If there exists some universal constant C
such that for any input x ∈ Rn and any θ ∈ Rm, it satisfies

Var[θ⊤M(x)] ≥
(
wθ(ABn

1 )

C

)2

, (24)

then ABn
1 ⊆↔ C

√
ΣM(x)Bm

2 .
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Proof: Recall that

ΣM(x) = E[(M(x)− E[M(x)])(M(x)− E[M(x)])⊤]

is the covariance matrix of M(x). Therefore, Var[θ⊤M(x)] can be written as√
Var[θ⊤M(x)] =

√
θ⊤ΣM(x)θ.

Note that
∥∥∥√ΣM(x)θ

∥∥∥
2
=
∥∥∥√ΣM(x)θ

∥∥∥
2
· ∥u∥2 for any u ∈ Bm

2 . Therefore, by Cauchy-Schwarz
inequality, we have that∥∥∥√ΣM(x)θ

∥∥∥
2
≥ max

u∈Bm
2

θ⊤
√

ΣM(x)u = max
v∈E

θ⊤v

for E =
√

ΣM(x)Bm
2 . In the above, the equality can be achieved if u = θ/∥θ∥2.

Now, for any v ∈ ABn
1 , let Kv = {u− v : u ∈ ABn

1 } be a convex body. Since v ∈ ABn
1 , for any

θ ∈ Rm,
max
u∈Kv

θ⊤u = max
w∈ABn

1

{θ⊤w} − θ⊤v ≥ 0.

This implies the following set of inequalities:

max
u∈Kv

θ⊤u ≤ max
u∈Kv

θ⊤u+ max
u∈Kv

−θ⊤u = max
u∈Kv

θ⊤u− min
u∈Kv

θ⊤u = wθ(Kv) = wθ(ABn
1 ).

Finally, the assumption in Lemma F.4 is equivalent to the following: for any θ ∈ Rm,

cmax
w∈E

θ⊤w ≥ max
u∈Kv

θ⊤u.

Since both E =
√

ΣM(x)Bm
2 and Kv = ABn

1 − v (for some v ∈ ABn
1 ) contain zero vector, we

have Kv ⊆ c
√
ΣM(x)Bm

2 . This completes the proof of Lemma F.4 (and Lemma 2.6). □

In the view of Lemma F.4, we next show that for any direction θ ∈ Rm,
√
Var[θ⊤M(x)] ≳

1
εwABn

1
(θ) as long as M(x) is (ε, δ)-differentially private.

Lemma F.5 Fix any 0 < ε < 1
2 , 0 ≤ δ < 1 and a query matrix A ∈ Rm×n. Let C > 0 be some

universal constant. If M(·) is an additive noise mechanism such that M(x) = Ax + z for any
dataset x ∈ Rn and M(·) preserves (ε, δ)-differential privacy, then for any x ∈ Rn and any direction
θ ∈ Rm, let δ′ = e1/2−1

eε−1 δ, we have√
Var[θ⊤M(x)] ≥ 1− δ′

Cε
wABn

1
(θ).

Proof: [Proof Of Lemma F.5] Given any vector θ ∈ Rm, recall that the width of a convex body
K ⊆ Rm with respect to θ is defined as

wK(θ) := max
x∈K

θ⊤x−min
x∈K

θ⊤x

in Definition A.9. In this Lemma, we aim to show that if M(x) preserves (ε, δ)-differential privacy,
then the variance of the one-dimensional marginal of M(x) cannot be very small in terms of
wABn

1
(θ). Unlike Nikolov & Tang (2024), since we focus on the additive noise mechanisms, we

consider Lemma F.3 relating to the lower bound for such mechanisms.

Fix any θ ∈ Rd. We remark that we are trying the give the lower bound of the variance of one-
dimensional marginal θ⊤M(x), and θ⊤M(x) = θ⊤Ax + θ⊤z. By the post-processing property,
θ⊤M(x) also preserves (ε, 0)-differential privacy since M(x) is ε-differentially private. Thus, by
Lemma F.3,

E
[
(θ⊤z)2

]
= Var[θ⊤M(x)] ≳

(1− δ′)2

ε2
∥Aθ∥2∞ ≥ (1− δ′)2

ε2
max

∥x−x′∥1≤1
|θ⊤A(x− x′)|2. (25)
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Fix any θ ∈ Rm. We then show that for any x, there always exist a neighboring dataset x′ such
that |θ⊤A(x− x′)| can be lower bounded by wABn

1
(θ)/2. This gives a lower bound of E

[
(θ⊤z)2

]
.

The construction closely follows Nikolov & Tang (2024) and we state the construction here for
completeness.

Consider a mapping f : Rm → Rn from ABn
1 to Bn

1 such that for any v ∈ ABn
1 , v = Af(v). Given

any θ ∈ Rm, let w be the vector in ABn
1 that maximizes θ⊤w. Then, we can choose x′

+ such that
(x, x′

+) is a pair of neighboring datasets such that x− x′
+ = f(w). In this case,

θ⊤A(x− x′
+) = θ⊤Af(w) = θ⊤w = max

v∈ABn
1

θ⊤v.

Similarly, for any x we can also find another pair of neighboring datasets x and x′
− such that

−θ⊤A(x− x′
−) = max

v∈ABn
1

−θ⊤v = min
v∈ABn

1

θ⊤v.

Thus, we have

|θ⊤A(x− x′
+)|+ |θ⊤A(x− x′

−)| =
∣∣∣∣ max
v∈ABn

1

θ⊤v

∣∣∣∣+ ∣∣∣∣ min
v∈ABn

1

θ⊤v

∣∣∣∣
≥ max

v∈ABn
1

θ⊤v − min
v∈ABn

1

θ⊤v ≥ wABn
1
(θ).

In particular, this implies that, for any θ ∈ Rm and any x ∈ Rn, there exists an x′ ∈ Rn neighboring
to x such that

|θ⊤A(x− x′)| ≥
wABn

1
(θ)

2
, where wK(θ) := max

v∈K
v⊤θ −min

v∈K
v⊤θ. (26)

Combining eq. (25) and eq. (26), we get

Var[θ⊤M(x)] ≳
(1− δ′)2

ε2
max

∥x−x′∥1≤1
|θ⊤A(x− x′)|2

≥ (1− δ′)2

ε2
|θ⊤A(x− x′)|2 ≥ (1− δ′)2

(
wABn

1
(θ)

ε

)2

for any θ ∈ Rm.

□

We now proceed to complete the proof of Theorem 2.8. As a consequence of Lemma F.4 and Lemma
F.5, by setting W = Cε

√
ΣM(x), we see that for any (ε, δ)-differentially private algorithm M and

p ≥ 2, there are

Cε
√

trp/2(ΣM(x)) ≥ inf
W∈Rm×m

{√
trp/2(WW⊤) : ABn

1 ⊆↔ WBm
2

}
= Λp(A).

Then, by Lemma 2.7 and Lemma 2.2, we have(
E
[
∥M(x)−Ax∥pp

])1/p ≥ 1− δ′

Cε
· Cε

√
trp/2(ΣM (X))

≥ (1− δ′)Λp(A)

Cε
≥

(1− δ′)γ(p)(A)

Cε
,

which completes the proof of Theorem 2.8.

□

F.2 PROOF OF LEMMA 2.5

Suppose A has linearly independent rows, then for any non-zero θ̂ ∈ Rm, θ̂⊤A must have at least one
non-zero elements since θ̂⊤A would be linear combinations of rows of A. Let the non-zero element
be (θ̂⊤A)i > 0. Then

κ(A) = min
θ⊤θ=1

(
max
x∈Bn

1

θ⊤Ax− min
x∈Bn

1

θ⊤Ax

)
≥ 2(θ̂⊤A)i > 0.

On the other hand, if A has linearly dependent rows, then there will be a θ̂ ∈ Rn such that θ̂⊤A = 0,
and thus κ(A). Intuitively, such A maps Bn

1 to a lower dimension polytope.
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Figure 1: A geometric intuition of Lemma 2.14.

G MISSING PROOFS FROM SECTION 2.4

G.1 PROOF OF LEMMA 2.14

Proof: We first show that κ(Aprefix) ≥ 2. Fix any unit vector θ = (θ1, · · · θn)⊤ ∈ Rn, we have

max
∥x∥1≤1

θ⊤Aprefixx = |θ1|+ 2|θ2|+ · · ·+ n|θn| =
n∑

i=1

i|θi|. (27)

We show the minimum value of eq. (27) by induction. We claim that for any 1 ≤ i ≤ n, conditioned
on
∑i

j=1 θ
2
j = a for any 0 < a ≤ 1, the minimum value of

∑i
j=1 j|θj | is at least

√
c. Now, consider

the new condition
∑i+1

j=1 θ
2
j = c for some 0 < c ≤ 1. Let a = c− θ2i+1, according to the assumption,

we have that
i∑

j=1

j|θj |+ (i+ 1)|θi+1| ≥
√

c− θ2i+1 + (i+ 1)|θi+1|.

Consider the function f(y) =
√

c− y2 + (i + 1)y for 0 < c ≤ 1 and 0 ≤ y ≤
√
c. We have

df
dy = −y√

c−y2
+ i+1. Clearly for any i ≥ 1, there exists a 0 < c0 <

√
c such that f(y) monotonically

increasing in (0, c0) and monotonically decreasing in (c0,
√
c). Thus, f(y) ≥ min{f(0), f(

√
c)} ≥√

c. That is,
i∑

j=1

j|θj |+ (i+ 1)|θi+1| ≥
√
c.

Since c can be any value in (0, 1] and |θ1| = 1 if θ21 = 1, by induction, for any unit vector θ ∈ Rn,

max
∥x∥1≤1

θ⊤Aprefixx =

n∑
i=1

i|θi| ≥ 1.

With a symmetric argument, we have that for the same vector θ,

min
∥x∥1≤1

θ⊤Aprefixx = −
n∑

i=1

i|θi| ≤ −1,

Which implies that κ(Aprefix) ≥ 2. On the other hand, Let θ̂ = e1 = (1, 0, · · · , 0)⊤, then it is easy to
see that wABn

1
(θ̂) = 2. Thus, κ(Aprefix) = 2. □

Figure 1 also gives a geometric explanation of the most “narrow” width of ABn
1 when n = 2. In the

following diagram, x+ = (1, 1)⊤ ∈ AprefixB
2
1 and x− = (−1,−1)⊤ ∈ AprefixB

2
1 .
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G.2 PROOF OF THEOREM 2.12

We show two factorizations of the counting matrix Aprefix that works across all p-norm for constant
p. If we use the factorization of Aprefix as in Fichtenberger et al. (2023) or Henzinger & Upadhyay
(2025). We here discuss Fichtenberger et al. (2023) for its simplicity. To recall their result, they
construct matrices L and R such that LR = Aprefix and

L[i, j] = R[i, j] =

{
f(i− j) i ≥ j

0 i < j
, where f(k) =

{(
1− 1

2k

)
f(k − 1) k ≥ 1

1 k = 0

By noting that f(k) is the Wallis’ formula, we know that f(k) ≤ 1√
πk

. This implies that

∥R∥21→2 =

T∑
i=1

R[i, 1]2 =

n∑
i=1

f(i− 1)2 ≤ 1 +

n∑
i=2

1

π(i− 1)
= O(log(n))

Similarly,

√
trp/2(LL⊤) =

(
n∑

i=1

(∥L[i, :]∥2)p/2
)1/p

= O

( n∑
i=1

logp/2(i)

)1/p
 = O(n1/p

√
log(n)).

That is, γ(p)(Aprefix) = O(n1/p log(n)). Then, Theorem 2.12 follows using Theorem D.1.
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