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A OMITTED RESULTS

A.1 EXPERIMENTAL SETUP

In numerical experiments, we randomly generate a function space F = {(x− x0)>(a− a0)} with a
size of 50 by sampling x0 and a0 in Rd from standard normal distributions, where d = 10. We then
randomly choose a function as the true reward function f∗ from F , and generate the reward as

Y = f∗(X,A) +N (0, 1),

where the context X is drawn i.d.d. from N (0, 1) and A is the selected action. The whole action set
A is randomly initialized from [−1, 1]d with a size of 50. We repeat each instance 50 times to obtain
a smooth regret curve. The hyperparameters in algorithm 1 are set to be η = 1 and δ = 0.1

Test on graph quantities. To demonstrate the effectiveness of our algorithms, we introduce a
special type of graphs called clique-group (as shown in Figure 2). These graphs are designed such
that each block consists of a perfect graph, resulting in δf (G) = δ(G) = α(G), as proven by Domke
et al. (2017). Therefore, both options of algorithm 1 are optimal regarding graph quantities in our
artificially constructed graphs. To showcase that our method does not scale with the size of the action
set |A|, we start with an instance where the size of A is 100. We then iteratively reduce the size of
the action set to 80, 60, 40, 20. We report the average regret and its standard deviation at the final
round T = 214 in table 3.

In Section 4, we implement algorithms in various graphs to verify our findings. These graphs
are created using our random graph generator, which is described in algorithm 4. To simplify the
following graphs, self-loops are omitted. We present these graphs in Figure 2.

Fig. 2: Different types of graphs in order: a fully connected graph, a clique group, a k-tree, a random graph.

We also conducted numerical experiments on k-trees, where the graph has δf (G) = 1 and α(G) =
|A| − 1. In Figure 3, we observe that algorithm 1 with the first option has comparable performance
with the baseline FALCON. The scaled graphical quantities for algorithm 1 and FALCON are√
|A| − 1 and

√
|A|, respectively. However, algorithm 1 with the first option exhibits less variance

as it occasionally reduces the size of the exploration set to 2. On the other hand, algorithm 1 with the
second option shows a significant gap compared to the first option, highlighting its smaller leading
constants in terms of regret.
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Fig. 3: Test on k-trees.
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Fig. 4: Python code of solving convex optimization problem in Zhang et al. (2023)

Fig. 5: An example that cannot be successfully solved by the Python code in Figure 4

A.2 EXAMPLE OF NUMERICAL INSTABILITY

We use the Python code provided by Zhang et al. (2023) to solve the proposed convex optimization
problem. The full version is in Figure 4. In Figure 5, we provide an example that cannot be
successfully solved by the Python code in Figure 4.

B PROOFS

B.1 NOTATIONS

Our regret analysis builds on a framework established in Simchi-Levi & Xu (2021); Foster et al.
(2020), which analyzes contextual bandit algorithms in the universal policy space Ψ :=

∏
x∈X A.

In our work, we consider a subspace of Ψ reduced by graph feedbacks at each epoch and prove the
sampling probability pt satisfy good properties to attain low regrets. Specifically, we consider the
subspace Ψ(S) where the policy is supported on S. With abuse of notations, we define

R(π) = Ex[f∗(x, π(x))] and Reg(π) = R(πf∗)−R(π).

The above quantities do not depend on specific values of x. The following empirical version of above
quantities are defined as“Rt(π) = Ext [f̂m(t)(xt, π(xt))] and‘Regt(π) = Ex[“Rt(πf̂m(t)

)− “Rt(π)],

14



Under review as a conference paper at ICLR 2024

where m(t) is the epoch of the round t.

For any realization St, γt and f̂m, let Qt(·) be the equivalent policy distribution for pt(·|·), i.e.,

Qt(π) =
∏
x∈X

pt(π(x)|x, St),∀π ∈ Ψ(St).

The existence and uniqueness of such measure Qt(·) is a corollary of Kolmogorov’s extension
theorem. Note that both Ψ and Qt(·) are Ht−1-measurable, where Ht−1 is the filtration up to the
time t− 1. We refer to Section 3.2 of Simchi-Levi & Xu (2021) for more detailed intuition for Qt(·)
and proof of existence. By Lemma 4 of Simchi-Levi & Xu (2021), we know that for all epoch m and
all rounds t in epoch m, we can rewrite the expected regret in terms of our notations as

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ

Qt(π)Reg(π).

For simplicity, we define an epoch-dependent quantities

ρ1 = 1, ρm =

…
ητm−1

log(δ−1|F|m log(|A|T ))
,m ≥ 2,

so γt =
√
|St|ρm(t) for m(t) ≥ 2.

At the end of this subsection, we prove Lemma 3.1:

Proof.

• Due to the algorithmic construction, the set Dt found by the greedy algorithm is an indepen-
dence set of Gr, because there does exists connected edge in Dt. Hence, the size of Dt is
upper bounded by α(Gt). Since the empirically best arm must be selected into Dt and the
adjustment of Dt does not change the size of St, the size of St is equal to |Dt|, which is
bounded by α(Gt).
• Due the algorithmic construction, the LP finds a set Dt with its size

Ealg[|Dt|] =
∑
a∈A

Ealg[Bernoulli(za)] = δf (Gt).

The following adjustment only add new empirically best arm and modify the arms in place,
so

Ealg[|St|] ≤ Ealg[|Dt|] + 1 = δf (Gt) + 1.

�

To derive the regret upper bound, we also need to define the following high-probability events.
These high-probability events and their variants have been proved in literatures Foster et al. (2018);
Simchi-Levi & Xu (2021); Foster et al. (2020). These results still hold in graph feedback setting as
more samples only help concentration and sampling probability in both options can still cover all
actions (in expectation). To avoid repetition, we directly write down the following events:

Γ =

∀m ≥ 2,
1

τm−1

τm−1∑
t=1

Ext,at
[ ∑
a∈Nat (Gt)

(f̂m(t)(xt, a)− f∗(xt, a))2
∣∣∣Ht−1

]
≤ 1

ρ2
m

 .

Since the data size up to round t is at most |A|t, it is straightforward to show Γ holds with probability
at least 1− δ/2. This is the result of the union bound and the property of the Least Square Oracle
that is independent of algorithm design.

B.2 IMPLICIT OPTIMIZATION PROBLEM

Lemma B.1 (Implicit Optimization Problem). For all epoch m and all rounds t in epoch m, Qt is a
feasible solution to the following implicit optimization problem:∑

π∈Ψ

Qt(π)‘Regt(π) ≤
»
|St| − 1/ρm (3)

Ext
ï

1

pt(π(xt)|xt, St)

ò
≤ |St|+

»
|St|ρm‘Regt(π),∀π ∈ Ψ(St). (4)

15



Under review as a conference paper at ICLR 2024

Proof. Let m and t in epoch m be fixed. We have∑
π∈Ψ

Qt(π)‘Regt(π)

=
∑
π∈Ψ

Qt(π)Ext
î
(f̂m(xt, πf̂m(xt))− f̂m(xt, π(xt)))

ó
=Ext

[∑
a∈A

∑
π∈Ψ

I {π(xt) = a}Qt(π)(f̂m(xt, πf̂m(xt))− f̂m(xt, a))

]

=Ext

[∑
a∈A

pt(a|xt, St)(f̂m(xt, πf̂m(xt))− f̂m(xt, a))

]
.

The first and second equalities are the definitions of‘Regt(π) and Qt(π), respectively.

Now for the context xt, we have∑
a∈A

pt(a|xt, St)(f̂m(xt, πf̂m(xt))− f̂m(xt, a))

=
∑

a∈St−{πf̂m (xt)}

f̂m(xt, πf̂m(xt))− f̂m(xt, a)

|St|+ γt(f̂m(xt, πf̂m(xt))− f̂m(xt, a))

≤ [|St| − 1]/γt

≤
»
|St| − 1/ρm.

The first equality is due to the construction of p(·|·), which is zero of actions outside St. Taking
expectation over the randomness of xt and Gt, we have∑

π∈Ψ

Qt(π)‘Regt(π) ≤
»
|St| − 1/ρm.

The first inequality is Jensen’s inequality and the second one is due to Lemma 3.1 and the property of
the conditional expectation.

For the second inequality, we first observe that for any policy π ∈ Ψ(St), given any context xt ∈ X ,
1

pt(π(xt)|xt, St)
= |St|+ γt(f̂m(xt, πf̂m(xt))− f̂m(xt, π(xt))),

if π(xt) 6= πf̂m(xt), and

1

pt(π(xt)|xt, St)
≤ 1

1/|St|
= |St|+ γt(f̂m(xt, πf̂m(xt))− f̂m(xt, π(xt))),

if π(xt) = πf̂m(xt). The result follows immediately by taking expectation over xt and Gt. �

Compared with IOP in Simchi-Levi & Xu (2021), the key different part is that |St| is replaced by the
cardinality |A| of the whole action set. Another difference lies in the universal policy space Ψ. Since
we only consider a subspace of Ψ, it will be possible for us to reduce the dependence of action sizes
in regrets. These two points highlight the adaptivity to graph feedbacks and show how the graph
structure affects the action selection.

B.3 PREDICTION ERROR

Our setting do not change the proof procedure of the following lemma Simchi-Levi & Xu (2021),
because this lemma does not explicitly involve the number of action set. This lemma bounds the
prediction error between the true reward and the estimated reward.

Lemma B.2 Assume Γ holds. For all epochs m > 1, all rounds t in epoch m, and all policies
π ∈ Ψ(St), then ∣∣∣“Rt(π)−Rt(π)

∣∣∣ ≤ 1

2ρm

Ã
max

1≤s≤τm(t)−1

E

[
1

ps(π(xs)|xs, Ss)

]
,
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where the expectation is taken with respect to the randomness of xs and Ss.

Proof. For any fixed round t and any policy π ∈ Ψ(St), we have“Rt(π)−Rt(π) = Ext [f̂m(t)(xt, π(xt))− f∗(xt, π(xt))].

For all s = 1, 2, · · · , τm(t)−1, we have

Eas|xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1, Ss

]

=
∑
a∈A

ps(a|xs, Ss)
∑

a′∈Na(Gs)

(f̂m(t)(xs, a
′)− f∗(xs, a′))2

≥ps(π(xs)|xs, Ss)(f̂m(t)(xs, π(xs))− f∗(xs, π(xs)))
2.

Specifically, we have

Eas|xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]
≥ESs [ps(π(xs)|xs, Ss)](f̂m(t)(xs, π(xs))− f∗(xs, π(xs)))

2.

Therefore, we have

max
1≤s≤τm(t)−1

E

[
1

ps(π(xs)|xs, Ss)

] τm(t)−1∑
s=1

Eas,xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]

=

τm(t)−1∑
s=1

E

[
1

ps(π(xs)|xs, Ss)

]
Eas,xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]

=

τm(t)−1∑
s=1

ExsESs

[
1

ps(π(xs)|xs, Ss)

]
ExsEas|xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]

≥
τm(t)−1∑
s=1

Ñ
Exs

[Ã
ESs

[
1

ps(π(xs)|xs, Ss)

]
Eas|xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]]é2

≥
τm(t)−1∑
s=1

Ñ
Exs

[Ã
ESs

[
1

ps(π(xs)|xs, Ss)

]
ESs

[
ps(π(xs)|xs, Ss)

]
(f̂m(t)(xs, π(xs))− f∗(xs, π(xs)))2

]é2

≥
τm(t)−1∑
s=1

Ä
Exs [|f̂m(t)(xs, π(xs))− f∗(xs, π(xs))|]

ä2
≥
τm(t)−1∑
s=1

|“Rt(π)−Rt(π)|2

=τm(t)−1|“Rt(π)−Rt(π)|2.

Here, the inequalities result from Cauchy-Schwarz inequality, the previous deduction, the Jensen’s
inequality and the convexity of L1 norm, respectively. The final equality results from the i.i.d.
assumption on context distribution. Therefore,

|“Rt(π)−Rt(π)|

≤

Ã
max

1≤s≤τm(t)−1

E

[
1

ps(π(xs)|xs, Ss)

]
1

τm(t)−1

τm(t)−1∑
s=1

Eas,xs

[ ∑
a∈Nas (Gs)

(f̂m(t)(xs, a)− f∗(xs, a))2

∣∣∣∣∣Hs−1

]
.

We conclude the proof by plugging in the definition of Γ. �
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The third step is to show that the one-step regret Regt(π) is close to the one-step estimated regret‘Regt(π). In the following lemma, we mainly focus on the first option. Thanks to Lemma 3.1, the
following results can be easily extended to the second option.

Lemma B.3 Assume Γ holds. Let c0 = 4. For all epochs m and all rounds t in epoch m, and all
policies π ∈ Ψ(St),

Reg(π) ≤ 2‘Regt(π) + c0
»

EG[α(G)]/ρm, (5)‘Regt(π) ≤ 2Reg(π) + c0
»

EG[α(G)]/ρm. (6)

Proof. We prove this lemma via induction on m. It is easy to check

Reg(π) ≤ 1,‘Regt(π) ≤ 1,

as γ1 = 0 and c0EG
[
α(Gt)

]
≥ 1. Hence, the base case holds.

For the inductive step, fix some epoch m > 1 and assume that for all epochs m′ < m, all rounds t′
in epoch m′, and all π ∈ Ψ, the inequalities (9) and (10) hold. We first show that for all rounds t in
epoch m and all π ∈ Ψ,

Reg(π) ≤ 2‘Regt(π) + c0
»
EG[α(G)]/ρm.

We have

Reg(π)−‘Regt(π)

=[R(πf∗)−R(π)]− [“Rt(πf̂m)− “Rt(π)]

≤[R(πf∗)−R(π)]− [“Rt(πf∗)− “Rt(π)]

≤|R(πf∗)− “Rt(πf∗)|+ |R(π)− “Rt(π)|

≤ 1

2ρm

Ã
max

1≤s≤τm(t)−1

E

[
1

ps(πf∗(xs)|xs, Ss)

]
+

1

2ρm

Ã
max

1≤s≤τm(t)−1

E

[
1

ps(π(xs)|xs, Ss)

]

≤
max1≤s≤τm(t)−1

E
[

1
ps(πf∗ (xs)|xs,Ss)

]
5ρm

√
EG[α(G)]

+
max1≤s≤τm(t)−1

E
[

1
ps(π(xs)|xs,Ss)

]
5ρm

√
EG[α(G)]

+
5
√
EG[α(G)]

8ρm
.

The last inequality is by the AM-GM inequality.

From Lemma B.1 and Lemma 3.1 we know that

max
1≤s≤τm(t)−1

E

[
1

ps(πf∗(xs)|xs, Ss)

]
≤ EG[α(G)] +

»
EG[α(G)]ρm‘Regt(π),

holds for all π ∈ Ψ, for all epoch m ∈ [M ] and for all rounds t in corresponding epochs. Hence, for
epoch m and all rounds t in this epoch, we have

max1≤s≤τm(t)−1
E
[

1
ps(π(xs)|xs,Ss)

]
5ρm

√
EG[α(G)]

≤EG[α(G)] + EG[
√
α(G)]ρm−1

‘Regt(π)

5
√
EG[α(G)]ρm

, (Lemma B.1)

≤EG[α(G)] + EG[
√
α(G)]ρm−1[2Reg(π) + c0

√
EG[α(G)]/ρm−1]

5
√
EG[α(G)]ρm

, (inductive assumption)

≤EG[α(G)] +
√
EG[α(G)]ρm−1[2Reg(π) + c0

√
EG[α(G)]/ρm−1]

5
√
EG[α(G)]ρm

, (Jensen’s inequality)

≤2

5
Reg(π)

ρm−1

ρm
+

1 + c0
5ρm

»
EG[α(G)].
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We can bound
max1≤s≤τm(t)−1

E
[

1
ps(πf∗ (xs)|xs,Ss)

]
5ρm
√

EG[α(G)]
in the same way.

Combing all above inequalities yields

Reg(π)−‘Regt(π) ≤2(1 + c0)
√

EG[α(G)]

5ρm
+

4

5
‘Regt(π) +

5
√

EG[α(G)]

8ρm

≤‘Regt(π) + (2(1 +
c0
5

) +
5

8
)

√
EG[α(G)]

ρm

≤‘Regt(π) + c0

√
EG[α(G)]

ρm
.

Similarly, we have

‘Regt(π)−Reg(π)

=[“Rt(πf̂m)− “Rt(π)]− [R(πf∗)−R(π)]

≤[“Rt(πf̂m)− “Rt(π)]− [R(πf̂m)−R(π)]

≤|R(πf̂m)− “Rt(πf̂m)|+ |R(π)− “Rt(π)|.

We can bound the above terms in the same steps.

�

Now it is time to prove the theorem of the minimax regret.

Proof. Our regret analysis builds on the framework in Simchi-Levi & Xu (2021).

Step 1: proving an implicit optimization problem for Qt in Lemma B.1.

Step 2: bounding the prediction error between “Rt(π) andRt(π) in Lemma B.2. Then we can show
that the one-step regrets‘Regt(π) and Reg(π) are close to each other.

Step 3: bounding the cumulative regret Reg(T ).

By Lemma 4 of Simchi-Levi & Xu (2021),

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ

Qt(π)Reg(π) =

T∑
t=1

∑
π∈Ψ(St)

Qt(π)Reg(π).

At the round t, the policy space Ψ shrinks to Ψ(St) so we only need to consider the polices in this
subspace. From Lemma B.3, we know

Reg(π) ≤ 2‘Regt(π) + c0
»
EG[α(G)]/ρm
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so

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ(St)

Qt(π)Reg(π)

≤2

T∑
t=1

∑
π∈Ψ(St)

Qt(π)‘Regt(π) +

T∑
t=1

c0
»
EG[α(G)]/ρm(t)

≤(2 + c0)
»
EG[α(G)]

T∑
t=1

1

ρm(t)

≤(2 + c0)
»
EG[α(G)]

dlog2 Te∑
m=1

»
log(2δ−1|F| log2 T )τm−1/η

≤(2 + c0)
»
EG[α(G)] log(2δ−1|F| log2 T )/η

dlog2 Te∑
m=1

τm − τm−1√
τm−1

≤(2 + c0)
»
EG[α(G)] log(2δ−1|F| log2 T )/η

dlog2 Te∑
m=1

√
2
m−1

≤17.875
»
EG[α(G)] log(2δ−1|F| log2 T )T/η.

�

We have completed the proof of the first option. For the second option, we only need to plug in the
expected upper bound EG[δf (G)]. The remaining steps do not change so we can still obtain the final
regret upper bounds.

B.4 INCORPORATING THE UNIFORM GAP

To incorporate the instance gaps, we define the following quantities that are used to show the regret
upper bound:

qm = Ex[|A(x;Fm)| > 1]

q̂m = Ex∼Dm [|A(x;Fm)| > 1]

wm = qm + µm

ŵm = q̂m + µm.

Similarly, we need to define the following high-probability event Γ.

Lemma B.4 (Foster et al. (2018; 2020)) Let Cδ = 16 log(2δ−1|F||A|2T 2) and M = dlog T e. De-
note the following events as Γi, i = 1, 2, 3, respectively.

1. For all m ∈ [M ], for all βm ≥ 0,
τm−1∑
t=τm−2

Ext,at [
∑

a∈Nat (Gt)

(f̂m(xt, a)− f∗(xt, a))2|Ht−1] ≤ Cδ

and

∀f ∈ Fm,
τm−1∑
t=τm−2

Ext,at [
∑

a∈Nat (Gt)

(f̂m(xt, a)− f∗(xt, a))2|Ht−1] ≤ 2βm + Cδ.

2. For all m ∈ [M ], we have f∗ ∈ FM ⊂ FM−1 ⊂ · · · F1.

3. For all m ∈ [M ], we have 2
3wm ≤

2
3 ŵm ≤

2
3wm.

Then with probability 1− δ, the event Γ =
⋂3
i=1 Γi holds.
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Given the high-probability event Γ, we observe f̂m ∈ Fm and f∗ ∈ Fm for all m ∈ [M ]. Since
|St| = 1, we must have πf (x) = πf∗(x) = πf̂m(x). Therefore, we only need to consider Rdist (π)

and R̂dist (π). Define the following quantities:

Rdist (π) = E[I {|St| > 1} f∗(x, π(x))] and R̂dist (π) = E[I {|St| > 1} f̂m(x, π(x))].

We conclude that
Regt(π) = Rdist (πf∗)−Rdist (π)

and ‘Regt(π) = “Rdist (πf∗)− “Rdist (π)

when Γ holds. Now we prove a proposition of selected quantities λm = ŵm/
√
ŵm−1.

Proposition B.1 Assume that Γ holds. Then ρm/ŵm is monotonically non-decreasing in m.

Proof. We have ρ1
ŵ1

= 0 for m = 1 and

ρm
ŵm

=

 
η(τm−1 − τm−2)

ŵm log(2δ−1|F||A|2T 2)

for all m = 2, · · · ,M .

Clearly, the property holds for m = 2. Hence, for all m = 3, · · · ,M , we have

ρm−1

ŵm−1
/
ρm
ŵm

=

 
ŵm−2

ŵm−1

(τm−2 − τm−3)

(τm−1 − τm−2)
=

 
ŵm−2

2ŵm−1
≤

√
4
3wm−2

2× 2
3wm−1

=

…
wm−2

wm−1
≤ 1.

The last inequality due to the fact that FM ⊂ FM−1 · · · F1 and thus wm−2 = qm−2 + µm−2 ≤
qm−1 + µm−1 ≤ wm−1.

�

Then we need to modify the proof of Lemma B.1 to incorporate the quantity qm. We mainly focus on
the first option.

Corollary B.1 (Disagreement-based Implicit Optimization Problem). For all epochm and all rounds
t in epoch m, Qt is a feasible solution to the following implicit optimization problem:

E
[∑
π∈Ψ

Qt(π)‘Regt(π)
]
≤ qm

»
EG[α(G)]/ρm (7)

E
ï

I {|St| > 1}
pt(π(xt)|xt, St)

ò
≤ qmEG[α(G)] +

»
EG[α(G)]ρm‘Regt(π),∀π ∈ Ψ(St). (8)

Proof. From the proof of Lemma B.1, we know that

E
[∑
π∈Ψ

Qt(π)‘Regt(π)
]

≤E[
»
|St| − 1]/ρm

≤(E[
»
|St| − 1I {|St| > 1}] + E[

»
|St| − 1I {|St| = 1}])/ρm

≤E[
»
|St| − 1I {|St| > 1}]/ρm

≤E[
»
|St| − 1I {|A(xt;Fm)| > 1}]/ρm

=E[
»
|St| − 1E[I {|A(xt;Fm)| > 1}]|Gt]/ρm

≤qm
»

EG[α(G)]− 1/ρm.

The fourth inequality is due to the fact that I {|St| > 1} implies I {|A(xt;Fm)| > 1}. The last
equality is due to the independence of xt and Gt.
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For the second inequality, we have

E
ï

I {|St| > 1}
pt(π(xt)|xt, St)

ò
=E
ï

1− I {|St| = 1}
pt(π(xt)|xt, St)

ò
=E
ï

1

pt(π(xt)|xt, St)

ò
− E
ï

I {|St| = 1}
pt(π(xt)|xt, St)

ò
=E
ï

1

pt(π(xt)|xt, St)

ò
− P(|St| = 1)

≤ESt [|St|] +
»
EG[α(G)]ρm‘Regt(π)− P(|St| = 1)

≤ESt [|St|I {|St| = 1}] + ESt [|St|I {|St| > 1}] +
»
EG[α(G)]ρm‘Regt(π)− P(|St| = 1)

≤qmEG[α(G)] +
»

EG[α(G)]ρm‘Regt(π).

�

For the second step, we directly write down the results as the proof does not involve any action sizes.
We can follow the similar proof steps as Lemma B.2.

Lemma B.5 Assume Γ holds. For all epochs m > 1, all rounds t in epoch m, and all policies
π ∈ Ψ(St), then

∣∣∣“Rt(π)−Rt(π)
∣∣∣ ≤ λm

2ρm

Ã
max

1≤s≤τm(t)−1

E

[
I {|Ss| > 1}

ps(π(xs)|xs, Ss)

]
,

where the expectation is taken with respect to the randomness of xs and Ss.

The third step is to show that the one-step regret Regt(π) is close to the one-step estimated regret‘Regt(π). The following lemma states the result.

Lemma B.6 Assume Γ holds. Let c0 = 4. For all epochs m and all rounds t in epoch m, and all
policies π ∈ Ψ(St),

Regt(π) ≤ 2‘Regt(π) + c0ŵm
»

EG[α(G)]/ρm, (9)‘Regt(π) ≤ 2Regt(π) + c0ŵm
»

EG[α(G)]/ρm. (10)

Proof. We prove this lemma via induction on m. It is easy to check

Regt(π) ≤ 1,‘Regt(π) ≤ 1,

as γ1 = 0 and c0EG
[
α(G)

]
≥ 1. Hence, the base case holds.

For the inductive step, fix some epoch m > 1 and assume that for all epochs m′ < m, all rounds t′
in epoch m′, and all π ∈ Ψ, the inequalities (9) and (10) hold. We first show that for all rounds t in
epoch m and all π ∈ Ψ,

Regt(π) ≤ 2‘Regt(π) + c0ŵm
»

EG[α(Gt)]/ρm.
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We have
Regt(π)−‘Regt(π)

=[Rdis(πf∗)−Rdis(π)]− [“Rdist (πf̂m)− “Rdist (π)]

≤[Rdis(πf∗)−Rdis(π)]− [“Rdist (πf∗)− “Rdist (π)]

≤|Rdis(πf∗)− “Rdist (πf∗)|+ |Rdis(π)− “Rdist (π)|

≤ λm
2ρm

Ã
max

1≤s≤τm(t)−1

E

[
I {|Ss| > 1}

ps(πf∗(xs)|xs, Ss)

]
+

λm
2ρm

Ã
max

1≤s≤τm(t)−1

E

[
I {|Ss| > 1}

ps(π(xs)|xs, Ss)

]

≤
max1≤s≤τm(t)−1

E
[

I{|Ss|>1}
ps(πf∗ (xs)|xs,Ss)

]
5ρm

√
EG[α(G)]ŵm−1/ŵm

+
max1≤s≤τm(t)−1

E
[

I{|Ss|>1}
ps(π(xs)|xs,Ss)

]
5ρm

√
EG[α(G)]ŵm−1/ŵm

+
5
√
EG[α(G)]ŵm

8ρm
.

The last inequality is by the AM-GM inequality.

From Corollary B.1 we know that

max
1≤s≤τm(t)−1

E
[ I {|Ss| > 1}
ps(π(xs)|xs, Ss)

]
≤ qm−1EG[α(G)] + EG[

»
α(G)]ρm−1

‘Regt(π),

holds for all π ∈ Ψ, for all epoch m ∈ [M ] and for all rounds t in corresponding epochs. Hence, for
epoch m and all rounds t in this epoch, we have

max1≤s≤τm(t)−1
E
[

I{|Ss|>1}
ps(π(xs)|xs,Ss)

]
5ρm

√
EG[α(G)]ŵm−1/ŵm

≤qm−1EG[α(G)] + EG[
√
α(G)]ρm−1

‘Regt(π)

5
√
EG[α(G)]ρmŵm−1/ŵm

, (Corollary B.1)

≤qm−1EG[α(G)] + EG[
√
α(G)]ρm−1[2Regt(π) + c0ŵm−1

√
EG[α(G)]/ρm−1]

5
√
EG[α(G)]ρmŵm−1/ŵm

, (inductive assumption)

≤qm−1EG[α(G)] +
√

EG[α(G)]ρm−1[2Regt(π) + c0ŵm−1

√
EG[α(G)]/ρm−1]

5
√
EG[α(G)]ρmŵm−1/ŵm

, (Jensen’s inequality)

≤2

5
Regt(π)

ρm−1/ŵm−1

ρm/ŵm
+
qm−1 + c0ŵm−1

5ρmŵm−1/ŵm

»
EG[α(G)], (Proposition B.1 and qm−1 ≤ wm)

≤2

5
Regt(π) +

4/3 + c0
5

ŵm
»
EG[α(G)]/ρm.

We can bound
max1≤s≤τm(t)−1

E
[

I{|Ss|>1}
ps(πf∗ (xs)|xs,Ss)

]
5ρm
√

EG[α(G)]ŵm−1/ŵm
in the same way.

Combing all above inequalities yields

Regt(π)−‘Regt(π) ≤2(4/3 + c0)ŵm
√
EG[α(G)]

5ρm
+

4

5
‘Regt(π) +

5
√
EG[α(G)]ŵm

8ρm

≤‘Regt(π) + (2(
4

3
+
c0
5

) +
5

8
)ŵm

√
EG[α(G)]

ρm

≤‘Regt(π) + c0
ŵm
√

EG[α(G)]

ρm
.

Similarly, we have ‘Regt(π)−Regt(π)

=[“Rdist (πf̂m)− “Rdist (π)]− [Rdis(πf∗)−Rdis(π)]

≤[“Rdist (πf̂m)− “Rdist (π)]− [Rdis(πf̂m)−Rdis(π)]

≤|Rdis(πf̂m)− “Rdist (πf̂m)|+ |Rdis(π)− “Rdist (π)|.
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We can bound the above terms in the same steps.

�

Lemma B.7 Assume Γ holds. For all epochs m and all rounds t in epoch m, and all f ∈ Fm, we
have

Regt(πf ) ≤ 6ŵm
»

EG[α(G)]M/ρm.

Proof. We rewrite Regt(πf ) as E[I {πf (x) 6= πf∗} (f∗(x, πf∗(x)) − f∗(x, πf (x)))]. Hence we
have

Regt(πf )

=E[I {πf (x) 6= πf∗(x)} (f∗(x, πf∗(x))− f∗(x, πf (x)))]

=E
[
I {πf (x) 6= πf∗(x)} (f∗(x, πf∗(x))− f(x, πf∗(x)) + f(x, πf∗(x))− f(x, πf (x))

+ f(x, πf (x))− f∗(x, πf (x)))
]

≤E[I {πf (x) 6= πf∗(x)} (|f∗(x, πf∗(x))− f(x, πf∗(x))|+ |f∗(x, πf (x))− f(x, πf (x))|)].

We now consider the term (Regt(πf ))2 as following.

(Regt(πf ))2

≤(E[I {πf (x) 6= πf∗(x)} (|f∗(x, πf∗(x))− f(x, πf∗(x))|+ |f∗(x, πf (x))− f(x, πf (x))|)])2

≤E
ïÅ

I {|St| > 1}
pt−1(πf (x)|x, St)

+
I {|St| > 1}

pt−1(πf∗(x)|x, St)

ã
Ex,a∼pt−1(·|x,St)(f

∗(x, a)− f(x, a))2

ò
≤E
ïÅ

I {|St| > 1}
pt−1(πf (x)|x, St)

+
I {|St| > 1}

pt−1(πf∗(x)|x, St)

ãò
(2βm + Cδ)

nm/2

≤E
ïÅ

I {|St| > 1}
pt−1(πf (x)|x, St)

+
I {|St| > 1}

pt−1(πf∗(x)|x, St)

ãò
2Mηλ2

m

ρ2
m

.

From Corollary B.1 we know

E
ï

I {|St| > 1}
pt−1(πf (x)|x, St)

ò
≤qm−1EG[α(G)] +

»
E[α(G)]ρm−1

‘Regτm−1
(πf )

≤qm−1EG[α(G)] + 2
»

E[α(G)]ρm−1Regτm−1
(πf ) + c0ŵm−1E[α(G)]

≤3

2
ŵm−1EG[α(G)] + 2

»
E[α(G)]ρm−1Regτm−1

(πf ) + c0ŵm−1E[α(G)].

and

E
ï

I {|St| > 1}
pt−1(πf∗(x)|x, St)

ò
≤qm−1EG[α(G)] +

»
E[α(G)]ρm−1

‘Regτm−1
(πf∗)

≤qm−1EG[α(G)] + 2
»
E[α(G)]ρm−1Regτm−1

(πf∗) + c0ŵm−1E[α(G)]

≤3

2
ŵm−1EG[α(G)] + 72ŵm−1EG[α(G)].

Plugging the above two inequalities yields

(Regt(πf ))2 ≤ (2
»

EG[α(G)]ρm−1Regt(πf ) + (2c0 + 3)ŵm−1EG[α(G)])
2Mηŵ2

m

ŵm−1ρ2
m

.

which implies

(Regt(πf ))2 ≤ (2
»
EG[α(G)]

ρmŵm−1

ŵm
Regt(πf ) + (2c0 + 3)ŵm−1EG[α(G)])

2Mηŵ2
m

ŵm−1ρ2
m
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according to Proposition B.1.

Solving the inequality for Regt(πf ) shows that

Regt(πf ) ≤ c1ŵm log T
»

EG[α(G)]/ρm,

where c1 = 6.

�

At this point, we can bound the regret within each epoch using the above, which gives a bound in
terms of the empirical disagreement probability ŵm. To proceed, we relate this quantity to the policy
disagreement coefficient. Our proof can directly follow from that in Foster et al. (2020) by replacing
A with EG[α(G)] and A/γm with

√
EG[α(G)]/ρm. Our regret analysis builds on the framework in

Simchi-Levi & Xu (2021). Hence, we can directly write down the following lemma.

Lemma B.8 Assume that Γ holds. For any fix ε > 0 and every m ∈ [M ], we have∑
π∈Ψ

Qt(π)Regt(π) ≤ max

ß
ε, θcsc(F , ε)c2E[α(G)] log(2δ−1T 2|F|)

nm−1

™
+

256 log(4M/δ)

nm−1
,

where θcsc(F , ε) = supε≥ε0
1
εPX (x ∈ X : ∃f ∈ Fcscε such that πf (x) 6= πf∗(x)) and Fcscε =

{f ∈ F|R(πf∗)−R(πf ) ≤ ε}.

Corollary B.2 Assume that Γ and Assumption 3.1 holds. For any fix ε > 0 and every m ∈ [M ], we
have∑
π∈Ψ

Qt(π)Regt(π) ≤ max

®
ε∆,

c2θ
pol(F , ε)E[α(G)] log(2δ−1T 2|F|)

∆nm−1

´
+

256 log(4M/δ)

nm−1
.

Proof. We replace ε∆ with ε in Lemma B.8. Since
Fcscε∆ = {f ∈ F|R(πf∗)−R(πf ) ≤ ε∆},

we have
PX (x ∈ X : ∃f ∈ Fε such that πf (x) 6= πf∗(x))∆ ≤ R(πf∗)−R(πf ) ≤ ε∆.

We conclude that
PX (x ∈ X : ∃f ∈ Fε such that πf (x) 6= πf∗(x)) ≤ ε

and thus

θcsc(F , ε∆) ≤ sup
ε≥ε′

PX (x ∈ X : ∃f ∈ Fε′ such that πf (x) 6= πf∗(x))

ε′∆
= θpol(F , ε)/∆.

�

Now it is time to prove the gap-dependent upper bound in Theorem 3.3.

Proof.

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ

Qm(t)(π)Regt(π)

≤
M∑
m=1

τm∑
t=τm−1+1

∑
π∈Ψ

Qt(π)Regt(π)

≤
M∑
m=1

nm

Ç
max{ε∆, c2θ

pol(F , ε)E[α(G)] log(2δ−1T 2)

∆nm−1
}+

256 log(4M/δ)

nm−1

å
≤

M∑
m=1

Ç
max{ε∆nm,

2c2θ
pol(F , ε)E[α(G)] log(2δ−1T 2)

∆
}+ 512 log(4M/δ)

å
≤max

®
ε∆T,

2c2θ
pol(F , ε)E[α(G)] log(2δ−1T 2) log T

∆

´
+ 512 log T log(4 log T/δ)

�

Again, for the second option, we can directly replace EG[α(G)] with EG[δf (G)].
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B.5 LOWER BOUND

To establish tour lower bound, we synergistically combine the methodologies employed to prove
lower bounds in contextual bandits as described in (Foster et al., 2020), with the techniques utilized in
proving lower bounds for multi-armed bandit algorithms incorporating graph feedback, as presented
in (Buccapatnam et al., 2017). We introduce hyperparameters ∆ and ε for our construction, which
will be determined later. For simplicity, we assume that the action set A can be rewritten as [|A|].
Contexts. We define d := [log(|F|)] and k = bε−1c. The context domain, denoted as X , is
constructed from d disjoint partitions labeled as X (1), · · · ,X (d). Each partition X (i) comprises the
set {x(i,0), x(i,1), · · · , x(i,k)} for i ∈ [d]. The total size of different contexts is d(k + 1). By taking
the union of these partitions, we obtain the complete context domain X .

To define the context distribution D, we specify the probabilities assigned to each context in X . Let
Di denote the distribution over X (i). In Di, each context x(i,j) for j ∈ [k] is assigned a probability
of ε, while the context x(i,0) has a probability of 1−kε ≥ 0. To obtain the overall context distribution
D, we average Di over all d partitions: D = 1

d

∑d
i=1D

i.

Function space. We now choose a regression function class F . For each subset X (i), we de-
fine a corresponding class of regression functions F (i) in the following manner. Initially, we set
f (i,0)(x(i,j), ·) = (1/2 + ∆, 1/2, · · · , 1/2) for all j. Next, for each b 6= a1 and l ∈ [k], we specify:

f (i,l,b)(x(i,j), ·) =

ß
1
21 + ∆e1, j 6= l
1
21 + ∆eb, j = l

Here, 1 denotes all-one vectors and eb is a basis vector where the b-coordinate is equal to 1. To obtain
the function class F , we stitch together F (1), · · · ,F (d) over their respective subsets of the domain.

The function classF induces a policy space denoted as Π. This policy space satisfies π(i,l,b)(x(i,0)) =
1 and

π(i,l,b) =

ß
1, if j 6= l,
b, if j = l.

This class consists of all policies that deviate from a1 on a subset of contexts of size at most d, with
the condition that this subset intersects with each X (i) at most once.

Regret decomposition. Let P(i,l,b) denote the reward distribution given by r(a) ∼
Bernoulli(f (i,l,b)(x, a)) conditioned on x for each x ∈ X (i). We define pt(x, a) = P(at =

a|Ht− 1, xt = x) and p̄(x, a) = 1
T

∑T
t=1 pt(x, a). For any sequence ν = ν1, · · · , νd, where

νi = (vi, bi) with vi ∈ [k] and bi ∈ {2, · · · , |A|}, we let Pν denote the distribution of HT when
the reward distribution for X (i) is given by P(i,vi,bi). We sample the problem instance ν from a
distribution defined as follows: for each i, set vi = 0 with probability 1/2. Otherwise, select vi
uniformly from [k], and select bi uniformly from {2, · · · , |A|}. According to Foster et al. (2020), we
have the inequality

E[Eν [Reg(T )]] ≥ ∆T

4kd(|A| − 1)

d∑
i=1

k∑
l=1

∑
b 6=a1

EP(i,l,b)‖p̄− π(i,l,b)‖L1(D(i)).

Let I ⊂ [d] denote the set of indices i for which

1

k(|A| − 1)

k∑
l=1

∑
b6=a1

EP(i,l,b)‖p̄− π(i,l,b)‖L1(D(i)) ≤ ε/32.

If |I| ≤ d/2, then
E[Eν [Reg(T )]] ≥ ε∆T/32.

For the other case, we have |I| ≥ d/2. In this case, such condition satisfies the requirement of the
Fano method with reverse KL-divergence in (Raginsky & Rakhlin, 2011). It implies that for P(i,0,0)

we have

ln 2 ≤ 1

k

k∑
l=1

KL(P(i,0,0)‖P(i,l,b)),∀b = 2, 3, · · · , |A|.

26



Under review as a conference paper at ICLR 2024

Note that

KL(P(i,0,0)‖P(i,l,b))
= KL(Bernoulli(1/2)‖Bernoulli(1/2 + 2∆))EP(i,0,0) [O(x(i,l), b)]
≤ 4∆2EP(i,0,0) [O(x(i,l), b)],

where O(x(i,l), b) is equal to the number of observing the rewards of the arm b when the context
x(i,l) occurs. Hence, we have

EP(i,0,0) [O(X (i) − {x(i,0)}, b)] ≥ k log 2

4∆2
.

Denote N(X (i) − {x(i,0)}, b) the number of pulling the arm b when the contexts in X (i) − {x(i,0)}
occur. From the graph structure we know that∑
u∈Nb

gu,bEP(i,0,0) [N(xt ∈ X (i) − {x(i,0)}, u)] ≥ EP(i,0,0) [O(xt ∈ X (i) − {x(i,0)}, b)] ≥ k log 2

4∆2

These lead to the constraints of the linear programming (2). Moreover, we have

E[Eν [Reg(T )]] ≥ ∆E

[
Eν [

T∑
t=1

d∑
i=1

I
¶
xt ∈ X (i) − {x(i,0)}, at 6= a1, vi = 0

©
]

]

≥∆

2

d∑
i=1

T∑
t=1

EP(i,0,0) [I
¶
xt ∈ X (i) − {x(i,0)}, at 6= a1

©
]

=
∆

2

d∑
i=1

∑
b6=a1

EP(i,0,0) [N(X (i) − {x(i,0)}, b)].

The term
∑|A|
b=1 EP(i,0,0) [N(X (i) − {x(i,0)}, b)] is the object of the linear programming, so∑

b6=a1

EP(i,0,0) [N(X (i) − {x(i,0)}, b)] ≥ kδf (G) ln 2

4∆2
=
kδf (G)

8∆2

if EP(i,0,0) [N(X (i) − {x(i,0)}, 1)] ≥ |A|.
Combing all above inequalities yield

E[Eν [Reg(T )]] ≥ kδf (G)

16∆
≥ δf (G)

32ε∆
,

where we can select a value ε such that 1
ε ≥

1
2b

1
ε c. Therefore we have

E[Eν [Reg(T )]] ≥ min{δf (G)

32ε∆
,
ε∆T

32
}.

Now we choose ε∆ =
δf (G)
T and obtain

E[Eν [Reg(T )]] ≥
»
δf (G)T/32.

Since the expectation is larger than
√
δf (G)T/32, There must exist an instance such that the regret

on this instance is larger than
√
δf (G)T/32.

Time-varying graphs. Now we consider the time-varying graphs. We divide the time horizon
according to the graph G. We know that there exists an instance such that

E[Reg(TG)] ≥
»
δf (G)TG/32,
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where TG is the number of times that the graph G occurs. Therefore,

E[Reg(T )] = EG[
∑
G∈G

EG[Reg(TG)|G]]

≥ 1

32
E[
∑
G∈G

»
δf (G)E[TG|G]]

≥ 1

32

 
E[
∑
G∈G

δf (G)E[TG|G]]

≥ 1

32

 
E[
∑
G∈G

δf (G)TP(G)]

≥ 1

32

»
EG[δf (G)]T .

We complete the proof.
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C ADDITIONAL ALGORITHMS

Algorithm 2 ConstructExplorationSet - Option 1

Input: the adjacency matrix Gt, the adaptive set A(xt;Fm), gaps ∆a,t for a ∈ A(xt;Fm)
1: Sort gaps in the ascending order
2: Initialize auxiliary set Bt and the exploration set St to be empty
3: for each arm a in A(xt;Fm) do
4: if the arm a is not in Bt then
5: Put the arm a in St
6: Update Bt = Bt ∪Na(Gt)

Output: An exploration set St

Algorithm 3 ConstructExplorationSet - Option 2

Input: the adjacency matrix Gt, the adaptive set A(xt;Fm), the empirical best arm ât
1: Solve the (2) to obtain the optimal solution z∗a for each a ∈ A
2: Initialize the exploration set St to be empty
3: for each arm a in A do
4: if Bernoulli(z∗a) == 1 then
5: Put the arm a in St
6: for each arm a in St do
7: if Na(Gt) ∩ A(xt;Fm) = ∅ then
8: Remove the arm a in St
9: if |Na(Gt) ∩ A(xt;Fm)| = 1 then

10: Let the arm in Na(Gt) ∩ A(xt;Fm) be ã
11: Remove the arm a in St and add the arm ã in St
12: Add the empirical best arm ât in St
Output: An exploration set St

Algorithm 4 A random graph generator

Input: The number of nodes K, a dense factor η
1: Initialization: a K ×K identity matrix G, a counter t
2: repeat
3: Uniformly sample two nodes u, v in [K]
4: Add the edge (u, v) and (v, u), i.e., G[u][v] = G[v][u] = 1
5: t = t+ 1
6: until t ≥ η ×K2

Output: An adjacency matrix G

D CONCLUSION

In this paper, we have introduced a framework for incorporating side-observations into contextual
bandits with a general reward function space. We have derived instance-independent upper and lower
bounds on the regret and proposed a near-optimal algorithm that matches these lower bounds up to
logarithmic terms and constants. However, there are several avenues for future research and extension
of our work.

Firstly, it would be valuable to explore the possibility of capturing the gap-dependent upper bound in
a more precise manner than what is presented in Theorem 3.3. Assuming the gap condition:

f∗(x, πf∗(x))− f∗(x, a) ≥ ∆a, ∀x ∈ X ,

we still lack a method to establish a gap-dependent upper bound specific to each arm, similar to
the case in MAB. Obtaining such gap-dependent upper bounds would allow us to more accurately
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Algorithm 5 An Adaptive Contextual Bandit algorithm with Graph feedback (AdaCB.G)

Input: time horizon T , confidence parameter δ, tuning parameters η
1: Set epoch schedule {τm = 2m,∀m ∈ N} and the sample splitting schedule tm = τm+τm−1

2
2: for epoch m = 1, 2, · · · , dlog2 T e do
3: Compute the confidence radius βm = 16(log T −m+ 1) log(2|F||A|2T 2/δ)
4: Compute the smoothing parameter µm = 64 log(4δ−1 log T )/(τm − τm−1)
5: Compute the function

f̂m = arg min
f∈F

τm−1∑
n=1

∑
a∈Nan (Gn)

(f(xn, a)− yn,a)2

via the Offline Least Square Oracle
6: Compute

Fm =

f ∈ F|
tm−1∑
n=1

∑
a∈Nan (Gn)

(f(xn, a)− yn,a)2 ≤ min
f̃∈F

tm−1∑
n=1

∑
a∈Nan (Gn)

(f̃(xn, a)− yn,a)2 + βm


7: Compute the instance-dependent scale factor

λm =
Ex∼Dm [I {A(x;Fm) > 1}] + µm√

Ex∼Dm−1
[I {A(x;Fm−1) > 1}] + µm−1

,

where Dm ∼ unif(xtm−1+1,··· ,xτm−1
) (for the first epoch, λ1 = 1)

8: for round t = τm−1 + 1, · · · , τm do
9: Observe the context xt and the graph Gt

10: Compute the best arm candidate set A(xt;Fm)
11: if |A(xt;Fm)| == 1 then
12: Let the exploration set be St = {ât}, where ât = maxa∈A f̂m(xt, a)
13: else
14: Call the subroutine ConstructExplorationSet to find the exploration set St
15: if |St| ≥ |A(xt;Fm)| then
16: Let the exploration set St be A(xt;Fm)

17: Compute γt = λm

√
η|St|τm−1

2 log(2δ−1|F|T 2) (for the first epoch, γt = 0)
18: Compute the following probabilities

pt(a) =


1

|St|+γt(f̂m(xt,ât)−f̂m(xt,a))
, for all a ∈ St − {ât}

0, for all a ∈ A− St,
1−

∑
a 6=ât pt(a), for a = ât,

where ât = maxa∈A f̂m(xt, a)
19: Sample at ∼ pt(·) and take the action at
20: Observe a feedback graph {(a, yt,a)|a ∈ Nat(Gt)} from Gt
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balance the trade-off between the number of arms to explore and their corresponding gaps, as we
discuss in the first option and the second option.

Then, we aim to develop a best-of-both-worlds algorithm that can automatically adapt and perform
well in both stochastic and adversarial settings. This will enhance the practical applicability of our
framework and allow it to address a broader range of real-world problems. By designing an algorithm
that can dynamically adjust its behavior based on the environmental characteristics, people may
achieve superior performance across different scenarios.

Furthermore, we recognize the importance of studying uninformed graph feedback problems. While
our current framework focuses on the informed graph feedback setting, where the entire feedback
graph is known prior to each decision, many practical problems involve uninformed graph feedback,
where the graph is unknown at decision time. Investigating strategies and algorithms that can handle
this scenario effectively is an important direction for future research.

Additionally, we aim to derive gap-dependent upper bounds for more general types of feedback
graphs, such as weakly observable graphs. Our current approach may face limitations in constructing
an effective exploration set in these cases, and new techniques and strategies need to be developed to
overcome these challenges. By extending our framework to handle diverse types of feedback graphs,
we can enhance its versatility and address a wider range of real-world applications.
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