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Figure 1: The screenshot of the designed AesExpert-Chatbot demo, which will be publicly available.

1 BUILDING THE AESEXPERT-CHATBOT
To reduce the difficulty of deploying multi-modal large language
models (more than 12GB graphic memory), we further design a
user-interactive Chatbot for the proposed multi-modality Aesthetic
Expert models (named AesExpert-Chatbot), as shown in Fig-
ure 1. AesExpert-Chatbot can be used directly on devices with
a browser without additional graphic memory (not limited to Win-
dows, Ubuntu, macOS, or Android), facilitating human-machine
interaction in aesthetics tasks. Technical details are as follows.

System Configuration: The AesExpert-Chatbot model is per-
formed based on Gradio [3], which is an open-source Python library.
Considering the inference speed, we deployed the well-trained Ae-
sExpert model on 2 NVIDIA RTX 4090 24G GPUs with a good
network environment to ensure the stability of operation.

User Interface Design: The principles of the user interface
include simplicity, usability, and comprehensiveness. First, it has a
simple layout with text boxes for user input and chatbot response.

For the input image, the interface provides three different selection
methods, including dragging an image into the specified area, se-
lecting an image from the specified file, and real-time acquisition
by the camera. In addition, we also provide three examples of dif-
ferent question types to allow users to quickly master how to use
it. Finally, we optimize the interface for response speed and also
ensure compatibility across different devices and screen sizes.

Deployment and Evaluation: We leverage the function of net-
work sharing in Gradio for online deployment to load the user inter-
face on a publicly accessible URL. Then, we conduct comprehensive
testing for AesExpert-Chatbot and optimize it based on collected
user feedback. Finally, we provide the stable AesExpert-Chatbot,
as shown in Figure 1. We hope this work can provide high-quality
resources to the community to promote the further development of
multi-modal large language models in image aesthetics perception.
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Table 1: Hyper-parameters for AesExpert models.

Model LLaVA-1.5 mPLUG-Owl2

input size 336×336 448×448
batch size 128 256
gradient ACC 1 16
lr max 2e-5 2e-5
lr schedule cosine decay cosine decay
warmup epochs 0.03 0.03
weight decay 0 0
numerical precision bfloat16 bfloat16
epoch 1 1
optimizer AdamW AdamW
optimizer sharding True True
activation checkpointing True True

2 PROMPTS FOR BUILDING AESMMIT WITH
GPT-4

While the corpus-rich aesthetic critiques in the AesFeedback
dataset can provide rich knowledge for aesthetic instruction tuning
of MLLMs, we further leverage GPT to transform human feedback
into instruction-following formats [1]. GPT prompts for instruction
generation are as follows:

#System: You are a helpful assistant that can generate a question-
and-answer pair based on the given description of image aesthetics
perception. The purpose of these questions is to ask what can be found
in the images, so these questions should not contain text information
to aid judgment. The options should be concise and only contain
the core information with a minimum of words. You should also
generate several false answers for each question under the key of false
candidates, which are also reasonable given the question contradicts
the description. Organize the output a list in JSON format and when
you respond, please only output the JSON, no other words are needed:

Yes-or-No-style questions: #User: These questions are with the
beginning of Does. The given description: [$DESC].

Why-style questions: #User: These questions are with the begin-
ning of Why. The given description: [$DESC].

What-style questions: #User: These questions are with the be-
ginning of What. The given description: [$DESC].

How-style questions: #User: These questions are with the begin-
ning of How. The given description: [$DESC].

3 HYPER-PARAMETERS DURING
FINE-TUNING

In this work, we directly use the proposed AesMMIT dataset to per-
form supervised instruction fine-tuning on the models pre-trained
on general-purpose visual tasks [2, 5]. For LLaVA-v1.5 (7B/13B)
[4], the process of instruction tuning is conducted on 8 NVIDIA
Tesla A100 80G GPUs (requiring about 6 hours for 7B, 10 hours
for 13B). For mPLUG-Owl2 [6], the process of instruction tuning
is also conducted on 8 NVIDIA Tesla A100 80G GPUs (requiring
about 6.5 hours). All hyper-parameters are recorded in Tabel 1.

4 QUALITATIVE ANALYSIS
To visually verify the aesthetic perception performance of the pro-
posed AesExpert model, we invited some aesthetic researchers to
conduct tests in actual application scenarios. These conversations
exhibit its excellent abilities on various aesthetic tasks, including
aesthetic evaluation and aesthetic interpretation (in Figure 2), com-
position perception (in Figure 3), emotion understanding (in Figure
4) and enhancement suggestion (in Figure 5). We will make the
AesExpert demo publicly available, and we hope to collect more
user suggestions to improve the aesthetic perception capabilities of
multi-modality large language models.
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Figure 2: Aesthetic evaluation and aesthetic interpretation.

Figure 3: Composition perception.
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Figure 4: Emotion understanding.

Figure 5: Enhancement suggestion.


	1 Building the AesExpert-chatbot
	2 Prompts for Building AesMMIT with GPT-4
	3 Hyper-parameters during Fine-Tuning
	4 Qualitative Analysis
	References

