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SUPPLEMENTARY MATERIAL FOR
"PROBABILISTIC META-LEARNING FOR BAYESIAN OPTIMIZATION"

The appendix contains additional plots of visualizations and additional results, detailed descrip-
tions of the synthetic function ensembles and meta-learning benchmarks, and a section about the
hyperparameters of BaNNER and their optimization.

A ADDITIONAL PLOTS

A.1 VISUALIZATION OF THE REGULARIZATION LOSS
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Figure 5: Example comparison between the Gaussian prior p(Z) and the empirical CDF based on
the embeddings z1, . . . , zT . We compare the two distributions to regularize the task embeddings to
conform with the prior p(Z).

A.2 POSTERIOR VISUALIZATION
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Figure 6: Visualization of the increasingly more accurate prediction (mean plus standard deviation in
green) for the unknown task (dashed black) for various number of context points (0, 1, 2, 4, 8, 16).
The points originate from the same distribution as used during meta-training.
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A.3 ADDITIONAL EXPERIMENTAL RESULTS

Now, we show additional plots comparing all methods on all benchmarks using the mean and the
standard error of the mean (95% confidence) and the median and the inter quantile range to visualize
different aspects of the methods. The first one highlights the average expected regret when run many
times, while the latter presents a picture of the variability of the runs, which might be more interesting
when a robust result with only a few runs is desirable.
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Figure 7: Performance on the ensembles of synthetic functions. Every row depicts a different
synthetic function benchmark. Left panel shows Mean ± standard error of the mean, while the right
depicts the medial and inter quantile range.
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Figure 8: Performance on the GLMNET benchmark. Each row represents a different target task
dataset. Left panel shows Mean ± standard error of the mean, while the right depicts the medial and
inter quantile range.
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Figure 9: Performance on the Ranger benchmark. Each row represents a different target task dataset.
Left panel shows Mean ± standard error of the mean, while the right depicts the medial and inter
quantile range.
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B DETAILS ON THE SYNTHETIC BENCHMARKS

Table 1: Overview over the synthetic function ensemble and their properties: the search space
dimension dx, the dimensionality of the unknown task parameters dτ , the number of meta tasks used
for training T , and the number of points per tasks Nt.

Ensemble dx dτ T Nt
Forrester 1 3 256 32
Quadratic 1 3 256 16

Branin 2 6 256 128
Hartmann3 3 4 256 1024
Hartmann6 6 4 256 1024

B.1 THE FORRESTER ENSEMBLE

The original Forrester function is defined as

f(x, a, b, c) = a · (6x− 2)2 · sin(12x− 4) + b · (x− 0.5)− c x ∈ [0, 1] (4)

The function has one global minimum, one local minimum, and a zero-gradient inflection point in the
domain x ∈ [0, 1]. To form an ensemble of functions, we chose the following distributions:

a ∼ U(0.2, 3) b ∼ U(−5, 15) c ∼ U(−5, 5) . (5)

Here τ = {a, b, c} and p(τ) is a three-dimensional uniform distribution. For the meta training, we
used 256 randomly drawn tasks and sampled 32 points per task using a Sobol sequence, which we
started at different sequence indices to ensure variety in the x values.

This ensemble with the chosen number of tasks and points per task constitutes an ensemble where
the exact location of the optimum varies, but there are only two main regions where where it occurs.
Meta-learning algorithm could benefit from that and show strong early performance.

B.2 THE QUADRATIC ENSEMBLE

The function for this ensemble reads

f(x, a, b, c) = (a · (x− b))2 − c x ∈ [−1, 1] (6)

We chose the following distributions for the parameters:

a ∼ U(0.5, 1.5) b ∼ U(−0.9, 0.9) c ∼ U(−1, 1) . (7)

This parametrization ensures that search interval always contains the minimum of the parabola at
x∗ = b with f(x∗) = c. Here τ = {a, b, c} and p(τ) is a three-dimensional uniform distribution. For
the meta training, we used 256 randomly drawn tasks and sampled 32 points per task using a Sobol
sequence, which we started at different sequence indices to ensure variety in the x values.

This ensemble was designed to have a broader distribution over the location of the optimum to
highlight algorithms that learn the global structure of the benchmark rather than focusing on a small
area of interest.

B.3 THE BRANIN ENSEMBLE

The function for this ensemble reads

f(x, a, b, c) = a(x2−b ·x21+c ·x1−r)+s ·(1−t) ·cos(x1)+s x1 ∈ [−5, 10], x2 ∈ [0, 15] (8)

We chose the following distributions for the parameters:
a ∼ U(0.5, 1.5) b ∼ U(0.1, 0.15) c ∼ U(1, 2)

r ∼ U(5, 7) s ∼ U(8, 12) t ∼ U(0.03, 0.05)
(9)

Here τ = {a, b, c, r, s, t} and p(τ) is a six-dimensional uniform distribution. The ranges where
chosen around the usually used fixed values for the parameters. For the meta training, we used 256
randomly drawn tasks and sampled 128 points per task using a Sobol sequence, which we started at
different sequence indices to ensure variety in the x values.
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B.4 THE HARTMANN3 ENSEMBLE

The function for this ensemble reads

f(x, α1, α2, α3, α4) = −
4∑
i=1

αi exp

− 3∑
j=1

Ai,j (xj − Pi,j)2
 x ∈ [0, 1]3 (10)

with

A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 and P = 10−4 ·

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 . (11)

We chose the following distributions for the parameters:

α1 ∼ U(1.00, 1.02) α2 ∼ U(1.18, 1.20)

α3 ∼ U(2.8, 3.0) α2 ∼ U(3.2, 3.4)
(12)

Here τ = {α1, α2, α3, α4} and p(τ) is a four-dimensional uniform distribution. The ranges where
chosen close to the usually used fixed values for the parameters. For the meta training, we used 256
randomly drawn tasks and sampled 1024 points per task using a Sobol sequence, which we started at
different sequence indices to ensure variety in the x values. We increased the number of points per
task to cover the three-dimensional space better.

B.5 THE HARTMANN6 ENSEMBLE

The function for this ensemble reads

f(x, α1, α2, α3, α4) = −
4∑
i=1

αi exp

− 3∑
j=1

Ai,j (xj − Pi,j)2
 x ∈ [0, 1]6 (13)

with

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 and

P = 10−4 ·

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .
(14)

We chose the following distributions for the parameters:

α1 ∼ U(1.00, 1.02) α2 ∼ U(1.18, 1.20)

α3 ∼ U(2.8, 3.0) α2 ∼ U(3.2, 3.4)
(15)

Here τ = {α1, α2, α3, α4} and p(τ) is a four-dimensional uniform distribution. The ranges where
chosen close to the usually used fixed values for the parameters. For the meta training, we used 256
randomly drawn tasks and sampled 1024 points per task using a Sobol sequence, which we started at
different sequence indices to ensure variety in the x values. We increased the number of points per
task to cover the three-dimensional space better.
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C DETAILS ON THE SURROGATE META-LEARNING BENCHMARKS

Data_id Task_id Name n p majPerc numFeat catFeat
335 3494 monks-problems-3 554 7 0.52 0 7

1471 9983 eeg-eye-state 14980 15 0.55 14 1
1485 9976 madelon 2600 501 0.50 500 1
1489 9952 phoneme 5404 6 0.71 5 1
1504 9967 steel-plates-fault 1941 34 0.65 33 1

Table 2: OpenML Random Bot surrogate benchmark test dataset characteristics, selected from the full
repertoire of 37 datasets (cf Table 2 in Kühn et al. (2018a)). n are the number of observations, p the
number of features, majPerc the percentage of observations in the largest class, numFeat the number
of numeric features and catFeat the number of categorical features. Dataset 335 (monks-problems-3)
is one of the six cases where only categorical and no numerical features are present. It is one of
the smaller datasets with only 5 out of 37 having fewer features, while all of these five have more
observations available. Dataset 1471 (eeg-eye-state) has average characteristics and, like the majority
of datasets, has only one categorical feature. Dataset 1485 (madelon) has the third largest number of
features with all except one being numeric, while containing a number observations below average.
Dataset 1489 (phoneme) is one of the five with the fewest features but contains an average amount of
observations. Dataset 1504 (steel-plates-fault) has average characteristics. These five datasets were
chosen randomly.

D DETAILS ON THE HYPERPARAMETER OPTIMIZATION

Here we provide details of the hyperparameter optimization (HPO) used to find the best configuration
of BaNNER based on the meta data for each task.

For HPO, we used BOHB by Falkner et al. (2018) to run concurrently on 20 CPUs (Intel R© Xeon R©

CPU E5-2695 v4 ) for optimization. The optimization budget for each task was limited to two days,
which depending on the dimensionality yielded slightly different numbers of evaluated configurations.
To speed up the optimization over the 15 dimensional search space (see Table 3), we used the multi-
fidelity feature of BOHB, which allows to quickly evaluate an approximation to the true validation
loss. We scaled both, the number of training epochs and the number of validation tasks used to
compute the average log-likelihood (ALL) of unseen points given test data. This allowed to quickly
discard configurations with unreasonable parameters and focuses the search in the promising parts
of the search space. The exact number of training iterations for the benchmarks can be found in
the code that we will release upon acceptance of the paper. They where chosen such that training
and evaluation of a single model on the highest fidelity took approximately 1 hour. As the smallest
fidelity, we used 1/32 of the training iterations and validation tasks, which corresponds to a training
of about 2 minutes and an evaluation on 4 validation tasks.

We fixed a few other hyperparameters for different reasons: We focuse on ADAM by Kingma &
Ba (2014), as we saw no difference between SGD and ADAM in early evaluations. We fixed the
batch size to 128 to limit the variation in training time because extremely small and large batch sizes
lead to increased run time. We fixed the number of HMC burin-steps to 512 and the number of
collected HMC samples to 1024 during training. With this choice, BaNNER finishes inference on
the benchmarks in approximately 5-10 seconds (depending on dz , the dimensionality of the latent
representation). We fixed the initialization of z for the sampling to zero, which is the mode of
our prior and also showed stable results in early evaluations compared to random samples or MAP
estimates of the latent embedding. We also normalize the input domain via Min-Max-scaling to
the unit hypercube and apply a standardization to the y values, choices one could potentially also
optimize, but was not necessary on the benchmarks presented in the paper.

Besides the goal of maximizing the ALL, we also rejected configurations where the HMC step did
not finish in a reasonable amount of time. We observed that some configurations slowed down the
HPO by orders of magnitude because the HMC sampling rejected most of the samples resulting
in a much larger computational cost. We actively canceled runs where the sampling on any of the

9
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Table 3: Search space for the hyperparameter optimization for BaNNER. We optimize over training
parameters (e.g. the learning rate schedule), architectural choices (e.g. number of layers and units
per layers of the multi layer perceptron (MLP) ), inference parameters (e.g. HMC step size), and
unknown properties of the tasks (e.g. the latest dimensionality dz). The "Log" transformation
indicates parameters we model on a logarithmic scale rather than a linear one. We placed a uniform
prior over each parameter. A description of the parameters can be found in Table 4.

Parameter Name Type Values Transfor-
mation

LR schedule Categorical [ExponentialDecay,
PolynomialDecay]

LR exponent Float [0.1, ·101] Log
initial LR Float [·10−6, 1.0] Log

final LR / inital LR Float [0.0001, 1.0] Log
dz Integer [1, 16]
p0(z) Categorical [N , δ]
εz Float [·10−6, 1.0] Log
λ−1 Float [·102, ·106] Log

MLP depth Integer [1, 3]
MLP width Integer [16, 256] Log

# BLR Features Integer [4, 64]
Hidden Activation Categorical [ReLU, Tanh,

Sigmoid, RBF]
HMC Step Size Float [0.001, 1.0] Log

#HMC Steps Integer [1, 64] Log
HMC acceptance prob. Float [0.4, 1.0]

validation tasks took longer than 100 HMC iterations per second (on average plus) on our hardware.
This means, that the HPO will also select configurations with a stable and efficient inference.

We show the best found configurations for all benchmarks in Table 4. The results suggest that most
parameters are adapted to achieve the best generalization on the different benchmarks. We see
different complexity of the MLP from very small on the Quadratic and Ranger benchmark to deeper
and wider on, e.g., Forrester and Hartmann3D. Also the learning rate schedule, and the embedding
noise εz vary between the different tasks. The HMC acceptance probability seems to be an oddity in
the results. The optimizer consistently favors configurations where the value is lower than the default
of 0.8. We suspect this could be an artifact of our short sampling for inference, which stabilize the
the predictions by rejecting MCMC proposals more often than usual.
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Table 4: Best found configuration of BaNNER on the different benchmarks. The learning rate schedule parameters (all containing a LR) control the meta-training.
The latent representation for the task has dz dimensions and the values are initialized via p0(z) either as all zeros or randomly according to the prior. During the
training, Gaussian noise with isotropic scale εz . The network consists of "MLP depth" hidden layers of width "MLP width", all using the same "Hidden Activation".
This network is followed by the last hidden layer with #BLRFeatures units. The remaining parameters affect the HMC sampling by setting the discretization step
length, the number of those steps between MCMC proposals and the target acceptance probability for sampling.

Parameter Forrester Quadratic Branin Hartmann3D Hartmann6D GLMNET Ranger
LR schedule Exponential Polynomial Exponential Polynomial Polynomial Polynomial Polynomial
LR exponent 2.0 4.13 None 0.139 1.64 0.294 4.19

initial LR 0.00246 0.00205 0.000715 5.37 · 10−6 0.000375 0.000121 0.000909
final LR / inital LR 0.000862 0.525 0.13 0.501 0.0148 0.000277 0.00123

dz 4.0 10.0 10.0 16.0 16.0 15.0 14.0
p0(z) zeroes zeroes zeroes zeroes zeroes random zeroes
εz 5.94 · 10−5 0.000811 0.00336 0.0402 0.122 0.017 0.328
ΛR 2.46 · 103 3.27 · 102 6.31 · 104 6.28 · 104 8.09 · 104 1.53 · 104 1.39 · 104

MLP width 152 18 123 47 124 142 21
MLP depth 2 1 2 3 1 1 1

# BLR Features 29.0 61.0 58.0 42.0 14.0 50.0 51.0
Hidden Activation Sigmoid Tanh ReLU ReLU ReLU ReLU RBF

HMC Step Size 0.00109 0.00324 0.00135 0.00156 0.00104 0.00375 0.00122
#HMC Steps 10.0 24.0 1.0 1.0 9.0 2.0 23.0

HMC acceptance prob. 0.487 0.582 0.668 0.611 0.525 0.663 0.565
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