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1 MODULE STRUCTURE
The extra explicit optimizations promote adapting sample diver-
sities by considering the information on facial image qualities.
Given a forgery sample, various image qualities can yield disparities
within the forgery traces. It becomes important to adjust the detec-
tor to accommodate such quality variations. Therefore, we further
incorporate an extra regression network branch and a lightweight
attention module into the detector. Fig. 1 shows the details of the
newly proposed structures. In the regression branch, there is only a
group convolutional layer with 3×3 kernel size and a convolutional
layer with 1×1 kernel size. Since the group number equals 𝐶 , these
two convolutional layers constitute the depthwise separable convo-
lutional layer, in which the overall parameters and computational
cost are low. Moreover, the parameters of the attention module are
also lightweight. Similar to the Squeeze-and-Excitation module in
[1], we focus on the channel dimension by averaging the spatial
features in each channel. After that, the averaged channel features
are respectively squeezed and enlarged through fully connected
layers. The channel dimension of the squeezed feature equals 256.
After the re-enlarged features go through the sigmoid function, the
weights will multiply the backbone features and get the feature 𝐹 .

2 APPLICABILITY ANALYSIS
Considering the prevalence of distorted images across social media,
an ideal applicable deepfake detector should demonstrate resilience
against these image distortions. To further analyze the applicability
of our proposed method under different image distortions, we test
the detector by inputting the images with different distortions.
Following the work in [2], Fig 2(a) shows the applicability of the
detector to different kinds of image distortion. With the increasing
distortion levels, more information within the original images is
either interfered with or lost. According to the detection results,
it can be noticed that the deepfake detector with FPG is robust to
saturation, contrast, and block-wise distortion, which demonstrates
the applicability of the detector against color-level distortions. Also,
the detector is robust to the early-level Gaussian blur and JPEG
compression. The samples afflicted by severe blur and compression
distortions are presented in Fig 2(b). Since the presence of distinctive
textures within the forgery traces is essential for perception, the
severe blur and compression not only result in the loss of color
information but also interfere with excessive textures, which may
be the reason why the detection results appear declined.

3 SALIENCY VISUALIZATION
As mentioned in the main text, unlike the baseline method which
lacks the connection between forgery sample generation and forgery
perception cultivation, FPG investigates the deficiencies of forgery
perceptions and adopts a refinement strategy to pertinently train
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Figure 1: The details of the proposed regression network
branch and the attention module. The output of the regres-
sion branch is then mapped to a value that is supervised by
the output of the quality assessment network (denoted as Q).

None
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Block
(a) Detection results on different distortations  (b) Samples with different distortions

Figure 2: (a) Applicability analysis on the FF++ dataset under
different image distortions. Here ‘CS’, ‘CC’, ‘BW’, ‘GB’, and
‘JPEG’ denote color saturation, color contrast, block-wise dis-
tortion, Gaussian blur, and JPEG compression, respectively.
(b) Samples of the distortions considered at severity level 5.

the detector, thereby elevating the generalization efficiently. More-
over, FPG introduces more sample information as explicit optimiza-
tions, which makes the detector further adapt the sample diversities.
To further investigate the perception of the detector to the forgery
samples, more visualization examples from different datasets are
shown in Fig 3. With the help of FPG, even if the detector unknows
these datasets, there are still higher salient values than the baseline
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Figure 3: The saliency visualization of forgery samples from different unknown public datasets.

Figure 4: The refined forgery samples with different pertur-
bations. The left is the sample with discrete perturbation.
The right is the sample with unified perturbation.

Table 1: Ablation study of refinement sequence. ‘S’ and ‘M’
denote the forgery shape refinement and forgery magnitude
refinement, respectively.

Sequence Test Set AUC (%)
CDF DFD DFDC DFDCP FFIW Avg

M→ S 93.45 97.14 74.50 87.26 88.17 88.10
S→M 94.49 96.41 74.75 87.24 87.93 88.16

method within the forgery faces, which means the detector can
perceive the forgery traces more completely.

4 MORE ABLATION STUDIES
Sample Refinement Sequence. In our refinement strategy, the
sequence of sample refinement is first to refine the shape and then
the magnitude of the forgery traces. To investigate the impact of
the refinement sequence, we adjust the sequence by first refining
the magnitude and then the shape of the forgery traces. The results
under different datasets are shown in Table 1, it can be noticed
that there is only a 0.06 % difference (88.16% vs. 88.10%) in the
average detection results for different refinement sequences. This
observation underscores the robustness of the refinement sequence.
Different Perturbation Settings. In forgery magnitude refine-
ment, the forgery masks are added with the perturbations to enlarge

Table 2: Ablation study of different perturbation settings in
forgery magnitude refinement.

Perturbation Test Set AUC (%)
CDF DFDCP FFIW Avg

Discrete 94.32 85.60 87.49 89.14
Unified 94.49 87.24 87.93 89.88

the discrepancies between the prediction scores and the correspond-
ing labels. In general, the discrete perturbation 𝜖 at the (𝑢, 𝑣)-th
location of the mask is computed as follows:

𝜖𝑖 (𝑢,𝑣) =

{
𝜖, if sign

(
𝜕L𝐶𝐸 (𝒙̄′

𝑖 )
𝜕𝑀̄𝑖 (𝑢,𝑣)

)
> 0

−𝜖, otherwise
, (1)

where 𝜖 is the magnitude of perturbation. However, as seen on the
left of Fig. 4, these perturbations lead to noise-like points within
the forgery traces, which make the refined samples different from
the real-world forgery samples. Since we consider both the adver-
sarial property and the similarity with the real-world samples, the
computation of perturbation is different from Eq. (1). The refined
forgery added with the proposed unified perturbation is shown on
the right of Fig. 4. Moreover, in Table 2, we compare the detection
results of different perturbation settings. The results from different
datasets demonstrate the importance of the similarity.

5 LIMITATION AND FUTUREWORK
The potential problem lies in the additional computational costs in-
curred by the refinement strategy. Therefore, we will mitigate these
costs to achieve more efficient refinement in our future work. After
that, for each forgery sample, we can perform multiple iterative
refinements to further improve the forgery perception.
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