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1 LOCAL PERSPECTIVE TRANSFORMATION
As mentioned in Sec. 3 of the manuscript, the perception mod-
ule faces the challenge of simulating the victim’s view through a
full-image image transformation for the inherent imaging inconsis-
tencies. To address this, we innovatively abstract complex scenes
from pixel-wise to region-based representations based on scene
priors, where the scene from the attacker’s view can be represented
by the vehicle’s shape: rectangle, while the scene from the victim’s
view often adheres to traffic signs’ fixed shapes as well, such as
circle or octagon. Then we propose a local perspective transfor-
mation network to facilitate effective and efficient estimation of
the target’s distorted states in the victim’s view from the attacker’s
accessible imaging, which builds the relationship between such
geometric features that inherently exist at both viewpoints. For
such attack-to-victim state inference, what hides behind is a tra-
ditional stereoscopic conversion containing two steps based on
camera calibration and perspective projection. In this way, the tar-
get state in a victim-view 2D image could be estimated through
transformation matrices, where the world coordinate systems, the
camera coordinate systems, the image coordinate systems, and the
pixel coordinate systems should be considered here. For the sake of
simplicity, the image and pixel coordinate systems are treated as a
singular system in our analysis, owing to their only difference being
the definition of the origin. Fig 1 is an illusion of such a conversion
process, and we will give a detailed description in the following:

1 Car’s 2D-3D State in
the World System

Predicted Sign’s 2D 
State based on Car’s 

Information

2

Figure 1: The essence process of the local perspective trans-
formation executed by PTN.

The perspective transformation helps us obtain the 2D image-
space region of the sign in the foreground of the driving vehicle’s
shot, which is based on two main relationships: (1) a 3D to 2D
mapping of the target sign and (2) a 2D to 3Dmapping of the vehicle.
Specifically, let 𝑃 = {𝑝𝑘 |𝑘 = 1, ...,𝑚} denote a 3D dot set of the
world coordinate system that represents a traffic sign’s contour, and
𝑄 = {𝑞 𝑗 | 𝑗 = 1, ..., 𝑛} denote a 2D dot set that denotes the vehicle’s

bounding box of its state in scene o𝑡𝑎 . First, for the transformation
of the target sign, let𝑊 (·) denote a transformation function from
the world to the camera system, which works mainly through a
transformation matrix 𝐿𝑤 called view matrix, usually determined
by the position, orientation, and upward direction of the camera.
Then, for each point 𝑝𝑘 in 𝑃 and corresponding coordinates of the
same point 𝑝′

𝑘
=𝑊1 (𝑝𝑘 ) in the vehicle’s camera coordinate system,

a view relationship between the two representations could be:[
𝑝′⊤
𝑘
1

]
= 𝐿𝑤,𝜃1 ·

[
𝑝⊤
𝑘
1

]
, 𝐿𝑤,𝜃1 =

[
𝑅𝜃1 𝑇𝜃1
0 1

]
, (1)

where 𝑅𝜃1 is a 3 × 3 rotation matrix (attitude information), and
𝑇𝜃1 is a 3 × 1 translation matrix (position information), 𝜃1 denotes
parameters about vehicle’s sensor: for rotation, it denotes the ro-
tation angles around the three axes; for translation, it denotes the
relative position of the sensor. Then we could get a new dot set
𝑃 ′ = {𝑝′

𝑘
|𝑘 = 1, ...,𝑚} that denotes the sign in the camera system

of the victim’s sensor. Additionally, there also exists a transforma-
tion between the image and the camera system called perspective
projection, which is here denoted as 𝐻 (·). And the new 2D coordi-
nate 𝑝′′

𝑘
= 𝐻1 (𝑝′𝑘 ) could be essentially calculated by a perspective

projection matrix 𝐿ℎ as:

𝑝′
𝑘𝑧

·
[
𝑝′′⊤
𝑘
1

]
= 𝐿ℎ,𝜃1∗ ·

[
𝑝′⊤
𝑘
1

]
, (2)

where 𝜃1∗ denotes the vehicle sensor’s internal reference, and 𝑧

denotes the component axis. The whole mapping from the 3Dworld
system to 2D key region in the vehicle sensor’s imaging is as follows,
where we could get the sign representation 2D dot set 𝑃 ′′ to further
reduce the sign’s binary region𝑀𝑃 and then determine its content:

𝑃 ′′ = 𝐻1 (𝑊1 (𝑃)) (3)

During the above steps, we need the victim’s accurate informa-
tion 𝜃1 and 𝜃1∗ for matrix 𝐿𝑤 in Eq.(1) and 𝐿ℎ in Eq.(2) to promise
a valid prediction 𝑃 ′′ on the sign’s distorted state. To address this,
it should first conduct a similar 2D to 3D mapping of the vehicle’s
state with the vehicle representation dot set 𝑄 . We attempt to get
the vehicle’s real 3D coordinate 𝑄 ′′ through inverse matrix oper-
ations:𝑊2 and 𝐻2, and the conversion for point 𝑞 𝑗 is a changing
form of Eq.(3): [

𝑞′′⊤
𝑗

1

]
= 𝐿−1

𝑤,𝜃2
· 𝐿−1

ℎ,𝜃2∗
· 𝑞′𝑗𝑧 ·

[
𝑞⊤
𝑗

1

]
, (4)

where 𝜃2 and 𝜃2∗ are the third-party sensor’s accessible external
and internal references. Since this sensor is manually arranged,
they are known terms to us, leading to a direct calculation if we
obtain the victim’s information.

It’s obvious that once the position and orientation change, the
vehicle’s parameters will also change and the process needs to be
calculated again, and it’s impracticable to obtain parameters for
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each frame individually. What’s more, some values for matrix calcu-
lations (like 𝑞′

𝑗𝑧
) are hard to reach with a single sensor, resulting in

an inability to infer. In contrast, we do not need to convert between
coordinate systems by step-by-step calculations with difficulty in
obtaining parameter values. Our perception module only needs
to learn specific regular patterns of the geometric prior once in
this dynamic continuous scene, which can respond repeatedly and
quickly during application. In this way, we could easily get the ge-
ometry feature in scene o𝑡𝑣 with specificity for each frame: contour,
and then bring out the target content of the sign’s region under the
victim’s perspective for the decision stage.

2 DETAILS OF EXPERIMENTS
2.1 Hyperparameter Settings
There are also several variables that should be assigned, especially
for agent training. By default, we set r𝑠 as 10000, and 𝛼 as 100 in
𝑅attack, we also set r𝜔 and r𝜆 as 100 in 𝑅appear. Among them, if the
attack is conducted by one step, r𝑠 will change to 50000 as a better
reward. As for𝜔0, to control the light width, it is assigned as 10 and
only 15 for Sign “Stop" since its region is larger with more exclusive
characteristics such as shape, which requires a higher attack level.
Due to the different optimization difficulties of the attack on various
classifiers, we have only selected the settings of one of the cases
as an example, and they all can be adjustable based on experience
and actual situations, which is related to reinforcement learning
settings and is not our core focus.

2.2 Details of PTN Training
In our experiments, we have directly chosen suitable weights for
perspective inference to test the validity of the whole framework
ELA, while we didn’t mention the training details of PTN. Specifi-
cally, we initially set 𝑒𝑝𝑜𝑐ℎ as 500 with loss records and save models
regularly. Figure 2 illustrates an example of the trend of training
loss, where we can find that the training loss quickly reaches a low
but not stable trend in the first fifth of training. And the weights
obtained in the later stage when the loss is more stable and lower
can also be found to have a more stable reasoning effect during
validation. For this reason, we choose to sacrifice some training

Figure 2: One record of the PTN training process.

time in exchange for more stable weights, which have been used in
our attack framework, to ensure effective inference on the test set.

2.3 Discussions on Adversarial Examples
Semantic Information: Since we have counted the frequency
rank of wrong labels after our attack in Sec. 4.5, we want to analyze
whether there is a semantic characteristic pattern in the adversar-
ial examples of successful attacks. Figure 3 demonstrates several
successful examples, where some of the semantic characteristics
of the attacked images are relatively easy to understand. The new
features are intuitively similar to those wrong labels, such as the
sign “30" being misled to “70" since the laser beam enables a charac-
ter “seven" to pretend to be in the image, or the misclassified sign
“90" with a beam that causes a somewhat similar appearance to
the number “six". Even if there also exist some results that cannot
be directly explained, we suppose that it must have a similarity
to the mislabeled feature map in classification layers after being
abstracted into a high-level representation by the DNNs.

Figure 3: Successful attack examples with misclassification
labels of different categories.
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