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Abstract1

The classical Weisfeiler-Leman algorithm aka color refinement is fundamental for2

graph learning and central for successful graph kernels and graph neural networks.3

Originally developed for graph isomorphism testing, the algorithm iteratively4

refines vertex colors. On many datasets, the stable coloring is reached after a5

few iterations and the optimal number of iterations for machine learning tasks6

is typically even lower. This suggests that the colors diverge too fast, defining7

a similarity that is too coarse. We generalize the concept of color refinement8

and propose a framework for gradual neighborhood refinement, which allows a9

slower convergence to the stable coloring and thus provides a more fine-grained10

refinement hierarchy and vertex similarity. We assign new colors by clustering11

vertex neighborhoods, replacing the original injective color assignment function.12

Our approach is used to derive new variants of existing graph kernels and to13

approximate the graph edit distance via optimal assignments regarding vertex14

similarity. We show that in both tasks, our method outperforms the original color15

refinement with only moderate increase in running time advancing the state of the16

art.17

1 Introduction18

The (1-dimensional) Weisfeiler-Leman algorithm, also referred to as color refinement, iteratively19

refines vertex colors by encoding colors of neighbors and was originally developed as a heuristic for20

the graph isomorphism problem. Although it cannot distinguish some non-isomorphic graph pairs,21

for example strongly regular graphs, it succeeds in many cases. It is widely used as a sub-routine22

in isomorphism algorithms today to reduce ambiguities that have to be resolved by backtracking23

search [1]. It has also gained high popularity in graph learning, where the technique is used to24

define graph kernels [2–5] and to formalize the expressivity of graph neural networks, see the recent25

surveys [6, 7]. Graph kernels based on Weisfeiler-Leman refinement provide remarkable predictive26

performance while being computationally highly efficient. The original Weisfeiler-Leman subtree27

kernel [2] and its variants and extensions, e.g., [3–5], provide state-of-the-art classification accuracy28

on many datasets and are widely used baselines. The update scheme of the Weisfeiler-Leman29

algorithm is similar to the idea of neighborhood aggregation in graph neural networks (GNNs). It has30

been shown that (i) the expressive power of GNNs is limited by the Weisfeiler-Leman algorithm, and31

(ii) that GNN architectures exist that reach this expressive power [8, 9].32

As a consequence of its original application, the Weisfeiler-Leman algorithm assigns discrete colors33

and does not allow distinguishing minor or major differences in vertex neighborhood but considers34

two colors as either the same or different. Most Weisfeiler-Leman graph kernels match vertex35

colors of the first few refinement steps by equality, which can be considered as too rigid, since these36

colors encode complex neighborhood structures. In machine learning tasks, a more fine-grained37

differentiation appears promising. Often data is noisy, which in graphs can show for example in38

small differences in vertex degree. Such differences get picked up by the refinement strategy of the39

Weisfeiler-Leman algorithm and cannot be distinguished from significant differences.40

We address this problem by providing a different approach to the refinement step of the Weisfeiler-41

Leman algorithm: We replace the injective relabeling function with a non-injective one, to gain a42

more gradual refinement of colors. This allows to obtain a finer vertex similarity measure, that can43
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distinguish between large and small changes in vertex neighborhoods with increasing radius. We44

characterize the set of functions that, while not necessarily injective, guarantee that the stable coloring45

of the original Weisfeiler-Leman algorithm is reached after a possibly higher number of iterations.46

Thus, our approach preserves the expressive power of the Weisfeiler-Leman algorithm. We discuss a47

possible realization of such a function and use k-means clustering in our experimental evaluation as48

an exemplary one.49

Our Contribution.50

1. We propose refining, neighborhood preserving (renep) functions, which generalize the concept51

of color refinement. This family of functions leads to the coarsest stable coloring while only52

incorporating direct neighborhoods.53

2. We show the connections of our approach to the original Weisfeiler-Leman algorithm, as well as54

other vertex refinement strategies.55

3. We propose two new graph kernels based on renep functions, that outperform state-of-the-art56

kernels on synthetic and real-world datasets, with only moderate increase in running time.57

4. We apply our new approach for approximating the graph edit distance via bipartite graph58

matching and show that it outperforms state-of-the-art heuristics.59

2 Related Work60

Various graph kernels based on the standard Weisfeiler-Leman refinement have been proposed [2–5].61

Recent comprehensive experimental evaluations confirm their high classification accuracy on many62

real-world datasets [10, 11]. These approaches implicitly match colors by equality, which can be63

considered as too rigid, since colors encode unfolding trees representing complex neighborhood64

structures. Some recent works address this problem: Yanardag and Vishwanathan [12] introduced65

similarities between colors using techniques inspired by natural language processing, that were66

subsequently refined by Narayanan et al. [13]. Schulz et al. [14] define a distance function between67

colors by comparing the associated unfolding trees using a tree edit distance. Based on this distance68

the colors are clustered to obtain a new graph kernel. Although the tree edit distance is polynomial-69

time computable, the running time of the algorithm is very high. A kernel based on the Wasserstein70

distance of sets of unfolding trees was proposed by Fang et al. [15]. The vertices of the graphs are71

embedded into `1 space using an approximation of the tree edit distance between their unfolding72

trees. A graph can then be seen as a distribution over those embeddings. While the function proposed73

is not guaranteed to be positive semi-definite, the method showed results similar to and in some cases74

exceeding state-of-the-art techniques. The running time, however, is still very high and the method is75

only feasible for unfolding trees of small height.76

These approaches define similarities between Weisfeiler-Leman colors and the associated unfolding77

trees. Our approach, in contrast, alters the Weisfeiler-Leman refinement procedure itself and does not78

rely on computationally expensive matching of unfolding trees.79

3 Preliminaries80

In this section we provide the definitions necessary to understand our new vertex refinement algorithm.81

We first give a short introduction to graphs and the original Weisfeiler-Leman algorithm, before we82

cover graph kernels.83

Graph Theory. A graph G = (V,E, µ, ν) consists of a set of vertices V , denoted by V (G), a set84

of edges E(G) = E ⊆
(
V
2

)
between the vertices, a labeling function for the vertices µ : V → L,85

and a labeling function for the edges ν : E → L. The set L contains categorical labels, which can86

be represented as natural numbers. We discuss only undirected graphs and denote an edge between87

u and v by uv. The set of neighbors of a vertex v ∈ V is denoted by N(v) = {u | uv ∈ E}. A88

(rooted) tree T is a simple (no self-loops or multi-edges), connected graph without cycles and with a89

designated root node r. A tree T ′ is a subtree of a tree T , denoted by T ′ ⊆ T , iff V (T ′) ⊆ V (T ).90

The root of T ′ is the node closest to the root in T .91

A vertex coloring c : V (G) → N0 of a graph G is a function assigning each vertex a color. For92

vertices with c(u) = c(v) we also write u ≈c v. A coloring π on a set S is a refinement of (or refines)93
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(a) Initial colors (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Hierarchy

Figure 1: Initial coloring and results of the first three iterations of the Weisfeiler-Leman algorithm.
To use less colors for this example, vertices with a unique color do not get a new color. The color
hierarchy shows the development of the colors over the refinement iterations.

a coloring π′, iff s1 ≈π s2 ⇒ s1 ≈π′ s2 for all s1, s2 in S. We denote this by π 4 π′ and write94

π ≡ π′ if π 4 π′ and π′ 4 π. If π 4 π′ and π 6≡ π′, we say that π is a strict refinement of π′, written95

π ≺ π′. The refinement relation defines a partial ordering on the colorings.96

Color Hierarchy. We consider a sequence of vertex colorings (π0, π1, . . . , πh) with πh 4 · · · 4 π097

and assume that for i 6= j the colors assigned by πi and πj are distinct. We can interpret such a98

sequence of colorings as a color hierarchy, i.e., a tree Th that contains a node for each color c ∈99

{πi(v) | i ∈ {0, . . . , h} ∧ v ∈ V (G)} and an edge (c, d) iff ∃v ∈ V (G) : πi(v) = c ∧ πi+1(v) = d.100

We associate each tree node with the set of vertices of G having that color.1 Here, we assume that101

the initial coloring is uniform. If this is not the case, we add an artificial root node and connect it to102

the initial colors. Likewise we insert the coloring π0 =
{
V (G)

}
as first element in the sequence of103

vertex colorings. An example color hierarchy is given in Figure 1.104

Using this color hierarchy we can derive multiple colorings on the vertices: Choosing exactly one105

color on every path from the leaves to the root (or only the root), always leads to a valid coloring. The106

finest coloring is induced by the colors representing the leaves of the tree. Given a color hierarchy T ,107

we denote this coloring (which is equal to πh) by πT .108

Weisfeiler-Leman Color Refinement. The 1-dimensional Weisfeiler-Leman (WL) algorithm or
color refinement [16, 17] starts with a coloring c0, where all vertices have a color representing their
label (or a uniform coloring in case of unlabeled vertices). In iteration i, the coloring ci is obtained
by assigning each vertex v in V (G) a new color according to the colors of its neighbors, i.e.,

ci+1(v) = z
(
ci(v), {{ci(u) | u ∈ N(v)}}

)
,

where z : N0×NN0
0 → N0 is an injective function. Figure 1 depicts the first iterations of the algorithm109

for an example graph.110

After enough iterations the number of different colors will no longer change and this resulting coloring111

is called the coarsest stable coloring. The coarsest stable coloring is unique and always reached after112

at most
∣∣V (G)

∣∣− 1 iterations. This trivial upper bound on the number of iterations is tight [18]. In113

practice, however, Weisfeiler-Leman refinement converges much faster (see Appendix C).114

Graph Kernels and the Weisfeiler-Leman Subtree Kernel. A kernel on X is a function k : X ×115

X → R, so that there exist a Hilbert spaceH and a mapping φ : X → H with k(x, y) = 〈φ(x), φ(y)〉116

for all x, y in X , where 〈·, ·〉 is the inner product ofH. A graph kernel is a kernel on graphs, i.e., X117

is the set of all graphs.118

The Weisfeiler-Leman subtree kernel [2] with height h is defined as119

khST (G1, G2) =

h∑
i=0

∑
u∈V (G1)

∑
v∈V (G2)

δ(ci(u), ci(v)), (1)

where δ is the Dirac kernel (1, iff ci(u) and ci(v) are equal, and 0 otherwise). It counts the number of120

vertices with common colors in the two graphs up to the given bound on the number of Weisfeiler-121

Leman iterations.122

1Here, we consider a color hierarchy for a single graph, but given corresponding colorings on a set of graphs,
a color hierarchy can be generated in the same way. In an inductive setting, where no fixed set of graphs is given,
the color hierarchy contains all colors, that can be produced by the corresponding coloring algorithm.
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(a) Initial colors

,

,

,

,

{{:

:

:

:

{{

{{

{{

}}

}}

}}

}}

(b) Neighbor colors (c) Result of WL (d) Result of GWL (e) Color hierarchy

Figure 2: Initial coloring and results of the first iteration using WL and GWL refinement. We assume
that the update function of GWL is a clustering algorithm, producing two clusters per old color.
Vertices colored gray and yellow by WL are put into the same cluster, as well as green and light blue
ones, as their neighbor color multisets only differ by one element each.

4 Gradual Weisfeiler-Leman Refinement123

As a different approach to the refinement step of the Weisfeiler-Leman algorithm, we essentially124

replace the injective relabeling function with a non-injective one. We do this by allowing vertices125

with differing neighbor color multisets to be assigned the same color under some conditions. Through126

this, the number of colors per iteration can be limited, allowing to obtain a more gradual refinement127

of colors. To reach the same stable coloring as the original Weisfeiler-Leman algorithm, the function128

has to assure that vertices with differing colors in one iteration will get differing colors in future129

iterations and that in each iteration at least one color is split up, if possible.130

We first define the property necessary to reach the stable coloring of the original Weisfeiler-Leman131

algorithm and discuss connections to the original as well as other vertex refinement algorithms. Then132

we provide a realization of such a function by means of clustering, which is used in our experimental133

evaluation. Figure 2 illustrates our idea. It depicts the initial coloring, the result of the first iteration134

of WL and a possible result of the first iteration of the gradual Weisfeiler-Leman refinement (GWL),135

when restricting the maximum number of new colors to 2 by clustering the neighbor color multisets.136

Update Functions. Using the same approach as the Weisfeiler-Leman algorithm, the color of a
vertex is updated iteratively according to the colors of its neighbors. Let Ti denote a color hierarchy
belonging to G and ni(v) = {{πTi(x) | x ∈ N(v)}} the neighbor color multiset of v in iteration i.
We use a similar update strategy, but generalize it using a special type of function:

∀v ∈ V (G) : ci+1(v) = πTi+1(v),with Ti+1 = f(G, Ti),
where f is a refining, neighborhood preserving function.137

A refining, neighborhood preserving (renep) function f maps a pair (G, Ti) to a tree Ti+1, such that138

Condition 1. Ti ⊆ Ti+1139

Condition 2. Ti = Ti+1, iff ∀v, w ∈ V (G) : v ≈πTi
w ⇒ ni(v) = ni(w)140

Condition 3. Ti ( Ti+1 ⇒ πTi+1 ≺ πTi141

Condition 4. ∀v, w ∈ V (G) : (v ≈πTi
w ∧ ni(v) = ni(w))⇒ v ≈πTi+1

w142

The conditions assure, that the coloring πTi+1
is a strict refinement of πTi , if there exists a strict143

refinement: Condition 1 assures that the new coloring is a refinement of the old one. Condition 2144

assures that the tree (and in turn the coloring) only stays the same, iff the stable coloring is reached,145

while Condition 3 assures that, if the trees are not equal, πTi+1
is a strict refinement of πTi . Without146

this condition it would be possible to obtain a tree, that fulfills Condition 1 but does not strictly refine147

the coloring (for example by adding one child to each leaf). Condition 4 assures that vertices, that are148

indistinguishable regarding their color and their neighbor color multiset, get the same color (as in the149

original Weisfeiler-Leman algorithm).150

We call this new approach gradual Weisfeiler-Leman refinement (GWL refinement). Since f is a151

renep function, it is assured that at least one color is split into at least two new colors, if the stable152

coloring is not yet reached. This property and its implications are explored in the following section.153

Usually, the refinement is computed simultaneously for multiple graphs. This can be realized by using154

the disjoint union of all graphs as input. Note that this will have an influence on the function f , since155

refinements might differ based on the vertices involved. This is a typical case of transductive learning,156

4
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because the algorithm has to run on all graphs and if a new graph is encountered, the algorithm has to157

run again on the enlarged graph. To counteract this, one could only run the algorithm on the training158

set and keep track of the coloring choices. Then for new graphs, the vertices are colored with the159

most similar colors.160

4.1 Equivalence of the Stable Colorings161

The gradual color refinement will never assign two vertices the same color, if their colors differed in162

the previous iteration, since we require the coloring to be a refinement of the previous one. We can163

show that the stable coloring obtained by GWL refinement using any renep function is equal to the164

unique coarsest stable coloring, which is obtained by the original Weisfeiler-Leman algorithm.165

Theorem 5 ([19], Proposition 3). For every coloring π of V (G), there is a unique coarsest stable166

coloring p that refines π.167

This means GWL with any renep function, should it reach a coarsest stable coloring, will reach this168

unique coarsest stable coloring. It remains to show that GWL will reach a coarsest stable coloring.169

Theorem 6. For all G the GWL refinement using any renep function will find the unique coarsest170

stable coloring of V (G).171

Proof. Let πT = {p1, . . . , pn} be the stable coloring obtained from GWL on the initial coloring172

π0. Assume there exists another stable coloring π′ = {p′1, . . . , p′m} with πT ≺ π′ 4 π0, so m < n.173

Then ∃v, w ∈ V (G) : (v ≈π′ w ∧ v 6≈πT w) and since Condition 4 applies n(v) 6= n(w), which174

contradicts the assumption that π′ is stable.175

The original Weisfeiler-Leman refinement can be realized by using the renep function with⇔ instead176

of⇒ in Condition 4. This ensures that vertices get assigned the same color, iff they previously had177

the same color and their neighborhood color multisets do not differ. Since this procedure splits all178

colors, that can be split up, it is the fastest converging possible renep function (because only direct179

neighborhood is considered). A trivial upper bound for the maximum number of Weisfeiler-Leman180

iterations needed is
∣∣V (G)

∣∣−1 and there are infinitely many graphs on which this number of iterations181

is required for convergence [18]. We obtain the same upper bound for GWL.182

Theorem 7. The maximum number of iterations needed to reach the stable coloring using GWL183

refinement is
∣∣V (G)

∣∣− 1.184

Proof. The function we consider is a renep function. It follows that, prior to reaching the stable185

coloring, at least one color is split into at least two new colors in every iteration. Since vertices that186

had different colors at any step will also have different colors in the following iterations, the number187

of colors increases in every step. Hence, after at most
∣∣V (G)

∣∣ − 1 steps, each vertex has a unique188

color, which is a stable coloring.189

Sequential Weisfeiler-Leman. For optimizing the running time of the Weisfeiler-Leman algorithm,190

sequential refinement strategies have been proposed [19–21], which lead to the same stable coloring191

as the original WL. Our presentation follows Berkholz et al. [19], who provide implementation192

details and a thorough complexity analysis. Sequential WL manages a stack containing the colors193

that still have to be processed. All initial colors are added to this stack. In each step, the next194

color c from the stack is used to refine the current coloring π (and generate a new coloring π′)195

using the following update strategy: ∀v, w ∈ V (G) : v ≈π′ w ⇔
∣∣{{x | x ∈ N(v) ∧ π(x) = c}}

∣∣ =196 ∣∣{{x | x ∈ N(w) ∧ π(x) = c}}
∣∣ ∧ v ≈π w. Note that π′ ≺ π is not guaranteed. For colors that are197

split, all new colors are added to the stack with exception of the largest color class. This is shown to198

be sufficient for generating the coarsest stable coloring [19].199

Sequential Weisfeiler-Leman can be realized by our GWL with the restriction, that in sequential200

WL, some refinement operations might not produce strict refinements. We need to skip these in our201

approach (since renep functions have to produce strict refinements as long as the coloring is not stable).202

The renep function has to fulfill ∀v, w ∈ V (G) : v ≈πTi+1
w ⇔

∣∣{{x | x ∈ N(v) ∧ πTi(x) = c}}
∣∣ =203 ∣∣{{x | x ∈ N(w) ∧ πTi(x) = c}}

∣∣ ∧ v ≈πTi
w, where c is the next color in the stack that produces a204

strict refinement.205

5
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4.2 Running Time206

The running time of the gradual Weisfeiler-Leman refinement depends on the cost of the update207

function used.208

Theorem 8. The running time for the gradual Weisfeiler-Leman refinement is O(h · tu(
∣∣V (G)

∣∣)),209

where h is the number of iterations and tu(n) is the time needed to compute the renep function for n210

elements.211

The update function used in the original Weisfeiler-Leman refinement can be computed in time212

O(
∣∣V (G)

∣∣+
∣∣E(G)

∣∣) in the worst-case by sorting the neighbor color multisets using bucket sort [2].213

4.3 Discussion of Suitable Update Functions214

The update function of the original Weisfeiler-Leman refinement provides a fast way to reach the215

stable coloring, but in machine learning tasks a more fine grained vertex similarity is needed. A216

suitable update function restricts the number of new colors to a manageable amount, while still217

fulfilling the requirements of a renep function. Clustering the neighborhood multisets of the vertices,218

and letting the clusters imply the new colors, is an intuitive way to restrict the number of colors per219

iteration and assign similar neighborhoods the same new color. We discuss how to realize a renep220

function using clustering.221

Whether two vertices, that currently have the same color, will be assigned the same color in the next222

step, depends on two factors: If they have the same neighbor color multiset, they have to remain in223

one color group. If their neighbor color multisets differ, however, the renep function can decide to224

either separate them or not (provided any new colors are generated to fulfill Condition 3). We propose225

clustering the neighbor color multisets separately for each old color and let the clusters imply new226

colors. If a clustering function guarantees to produce at least two clusters for inputs with at least two227

distinct objects, we obtain a renep function.228

Although various clustering algorithms are available, we identified k-means as a convenient choice229

because of its efficiency and controllability of the number of clusters. In order to apply k-means to230

multisets of colors, we represent them as (sparse) vectors, where each entry counts the number of231

neighbors with a specific color. The above method using k-means clustering with k > 1 satisfies the232

requirements of a renep function. Of course, if the number of elements to cluster is less than or equal233

to k, the clustering can be omitted and each element can be assigned its own cluster. The number of234

clusters in iteration i is bounded by |L| · ki, since each color can split into at most k new colors in235

each iteration and the initial coloring has at most|L| colors.236

5 Applications237

The gradual Weisfeiler-Leman refinement provides a more fine-grained approach to capture vertex238

similarity, where two vertices are considered more similar, the longer it takes until they get assigned239

different colors. This makes the approach applicable not only to vertex classification, but also in graph240

kernels and as a vertex similarity measure for graph matching. We further describe these possible241

applications in the following and evaluate them against the state-of-the-art methods in Section 6.242

Graph Kernels. The idea of the GWL subtree kernel is essentially the same as the Weisfeiler-243

Leman subtree kernel [2], but instead of using the original Weisfeiler-Leman algorithm, the GWL244

algorithm is used to generate the features. We use the definition given in Equation (1) replacing245

the Weisfeiler-Leman colorings with the coloring from the GWL algorithm. The Weisfeiler-Leman246

optimal assignment kernel [5] is obtained from an optimal assignment between the vertices of two247

graphs regarding a vertex similarity obtained from a color hierarchy. We replace the Weisfeiler-Leman248

color hierarchy used originally by the one from our gradual refinement. We evaluate the performance249

of our newly proposed kernels in Section 6.250

Tree Metrics for Approximating the Graph Edit Distance. The graph edit distance, a general251

distance measurement for graphs, is usually approximated due to its complexity. Many approxima-252

tions find an optimal assignment between the vertices of the two graphs and derive a (sub-optimal)253

edit path from this assignment. Naturally, the cost of such an edit path is an upper bound for the254

graph edit distance. An optimal assignment can be computed in linear time, if the underlying cost255

6
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function is a tree metric [22], which means an approximation of the graph edit distance can be found256

in linear time, given a tree metric on the vertices. The color hierarchy, see Figure 1, produced by257

the original Weisfeiler-Leman refinement, as well as our gradual variant, can be interpreted as such258

a tree metric. Lin [22] approximated the graph edit distance as described above. We can again259

replace the original color hierarchy by the one produced by our gradual Weisfeiler-Leman refinement.260

Appendix I includes a more detailed explanation on how to approximate the graph edit distance using261

assignments. We evaluate this approximation of the graph edit distance regarding its accuracy in262

knn-classification against the state-of-the-art and the original approach.263

6 Experimental Evaluation264

We evaluate the proposed approach regarding its applicability in graph kernels, as the gradual265

Weisfeiler-Leman subtree kernel (GWL) and the gradual Weisfeiler-Leman optimal assignment266

kernel (GWLOA), as well as its usefulness as a tree metric for approximating the graph edit distance.267

Specifically, we address the following research questions:268

Q1 Can our kernels compete with state-of-the-art methods regarding classification accuracy on269

real-world and synthetic datasets?270

Q2 Which refinement speed is appropriate and are there dataset-specific differences?271

Q3 How do our kernels compare to the state-of-the-art methods in terms of running time?272

Q4 Is the vertex similarity obtained from GWL refinement suitable for learning with approximated273

graph edit distance?274

We compare to the Weisfeiler-Leman subtree kernel (WLST) [2], the Weisfeiler-Leman optimal275

assignment kernel (WLOA) [5], as well as RWL* [14], the approximation of the relaxed Weisfeiler-276

Leman subtree kernel, and the deep Weisfeiler-Leman kernel (DWL) [12]. We do not compare to [4],277

since the kernel showed results similar to the WLOA kernel. We compare the graph edit distance278

approximation using our tree metric GWLT to the original approach Lin [22] and state-of-the-art279

method BGM [23].280

6.1 Setup281

As discussed in Section 4.3 we used k-means clustering in our new approach. If for any color less282

than k different vectors were present in the clustering step, each distinct vector got its own cluster.283

We implemented our GWL, GWLOA and also the original WLST and WLOA in Java. We used the284

RWL* and DWL Python implementations provided by the authors. Note that in contrast to the other285

approaches, this RWL* uses multi-threading.286

For evaluation, we used the C-SVM implementation LIBSVM [24] and report average classification287

accuracies obtained by 10-fold nested cross-validation repeated 10 times with random fold assign-288

ments. The parameters of the SVM and the kernels were optimized by the inner cross-validation289

on the current training fold using grid search. We chose C ∈ {10−3, 10−2, . . . , 103} for the SVM,290

h ∈ {0, . . . , 10} for WLST, WLOA, GWL and GWLOA and k-means with k ∈ {2, 4, 8, 16}. For291

RWL* we used h ∈ {1, . . . , 4} and default values for the other parameters. In DWL the window292

size w and dimension d were set to 25, since this generally worked best out of the combinations293

from d,w ∈ {5, 25, 50} and no defaults were provided. We used the default settings for the other294

parameters and again h ∈ {1, . . . , 10}. The running time experiments were conducted on an Intel295

Xeon Gold 6130 machine at 2.1 GHz with 96 GB RAM. For evaluating the approximation of the296

graph edit distance, we compare the 1-nn classification accuracy and used the Java implementation of297

Lin provided by the authors and implemented our approach GWLT, as well as BGM, also in Java for298

a fair comparison.299

Extension to Edge Labels. The original Weisfeiler-Leman algorithm can be extended to respect300

edge labels by updating the colors according to ci+1(v) = z(ci(v), {{(l(u, v), ci(u)) | u ∈ N(v)}}).301

All kernels used in the comparison use a similar strategy to incorporate edge labels if present.302

Datasets. We used several real-world datasets from the TUDataset [25] and the EGO-Nets303

datasets [14] for our experiments. See Appendix B and F for an overview of the datasets, as304

well as additional synthetic datasets and corresponding results. We selected these datasets as they305
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Table 1: Average classification accuracy and standard deviation (highest accuracies marked in bold).

Kernel PTC_FM KKI EGO-1 EGO-2 EGO-3 EGO-4

WLST 64.16 ±1.30 49.97 ±2.88 51.30 ±2.42 57.15 ±1.61 56.15 ±1.67 53.40 ±1.77
DWL 64.18 ±1.46 50.93 ±2.87 55.80 ±1.35 56.50 ±1.64 55.90 ±1.64 53.25 ±2.81
RWL* 62.43 ±1.46 46.54 ±4.03 65.60 ±2.74 70.20 ±1.36 67.60 ±1.07 74.25 ±2.12
WLOA 62.34 ±1.39 48.72 ±4.05 55.95 ±1.11 60.30 ±2.00 54.25 ±1.35 52.30 ±2.29

GWL 62.61 ±1.94 57.79 ±3.95 67.95 ±2.05 73.65 ±1.86 65.45 ±1.88 77.45 ±1.97
GWLOA 64.58 ±1.77 47.47 ±2.41 69.80 ±1.65 72.40 ±2.52 67.45 ±1.69 75.35 ±1.67

COLLAB DD IMDB-B MSRC_9 NCI1 REDDIT-B

WLST 78.98 ±0.22 79.00 ±0.52 72.01 ±0.80 90.13 ±0.75 85.96 ±0.18 80.81 ±0.52
DWL 78.93 ±0.18 78.92 ±0.40 72.36 ±0.56 90.50 ±0.76 85.68 ±0.18 80.83 ±0.40
RWL* 77.94 ±0.38 77.52 ±0.65 72.96 ±0.86 88.86 ±0.89 79.45 ±0.32 77.69 ±0.31
WLOA 80.81 ±0.22 79.44 ±0.31 72.60 ±0.89 90.68 ±0.92 86.29 ±0.13 89.40 ±0.14

GWL 80.62 ±0.33 79.00 ±0.81 73.66 ±1.25 88.32 ±1.20 85.33 ±0.35 86.46 ±0.35
GWLOA 81.30 ±0.29 78.49 ±0.57 72.88 ±0.79 91.27 ±1.06 85.36 ±0.36 89.98 ±0.34

cover a wide range of applications, consisting of both molecule datasets and graphs derived from306

social networks. See Appendix C for the number of Weisfeiler-Leman iterations needed to reach the307

stable coloring for each dataset.308

6.2 Results309

In the following, we present the classification accuracy, as well as running time, of the different310

kernel methods. We investigate the parameter selection for our algorithm and discuss the application311

of our approach for approximating the graph edit distance.312

Q1: Classification Accuracy. Table 1 shows the classification accuracy of the different kernels.313

While on some datasets our new approaches do not outcompete all state-of-the-art methods, they314

are more accurate in most cases, in some cases even with a large margin to the second-placed (for315

example on KKI, EGO-1 or EGO-4). While RWL* is better than our approaches on some datasets,316

the running time of this method is much higher, cf. Q3. WLOA also produces very good results on317

many datasets, but cannot compete on the EGO-Nets and synthetic datasets (see Appendix F). For318

molecular graphs (PTC_FM, NCI) we see no significant improvements, which can be explained by319

their small degree and sensitivity of molecular properties to small changes. Overall, our method320

provides the highest accuracy on 9 of 12 datasets and is close to the best accuracy for the others.321

Q2: Parameter Selection. For GWL and GWLOA two parameters have to be chosen: The number322

of iterations h and the number k of clusters in k-means. We investigate which choices lead to the best323

classification accuracy. Figure 3 shows the number of times, a specific parameter combination was324

selected as it provided the best accuracy for the test set. Here, we only show the parameter selection325

for some of the datasets. The results for the other datasets, as well as the parameter selection for326

WLST and WLOA, can be found in Appendix D. We can see that for GWL and most datasets the327

best k is in {2, 4, 8} and on those datasets classification accuracy of GWL exceeds that of WLST. On328

datasets on which GWL performed worse than WLST, the best choice for parameters is not clear329

and it seems like a larger k might be beneficial for improving the classification accuracy. Similar330

tendencies can be observed for GWLOA.331

Q3: Running Time. Figure 4 shows the time needed for computing the feature vectors using the332

different kernels (for results on the other datasets and the influence of the parameter k on running333

time see Appendix E and G). RWL* and DWL are much slower than the other kernels, while only334

RWL* leads to minor improvements in classification accuracy on few datasets. While our approach is335

only slightly slower than WLST/WLOA, it yields great improvements on the classification accuracy336

on most datasets, cf. Q1.337

Q4: Learning with Approximated Graph Edit Distance. Table 2 compares the 1-nn classifi-338

cation accuracy of our approach when approximating the graph edit distance to the original [22]339
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Figure 3: Number of times a parameter combination of GWL and GWLOA was selected from
k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10} based on the accuracy achieved on the test set.
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Figure 4: Running time in milliseconds for computing the feature vectors for all graphs of a dataset
using the different methods. Note that RWL* uses multi-threading, while the other methods do not.
Missing values for RWL* and DWL in the larger datasets are due to timeout.

and another state-of-the-art method based on bipartite graph matching [23]. Our approach clearly340

outcompetes both methods on all datasets. In Appendix J we investigate the approximation quality341

for similar graphs (which are important to k-nn classification) further.342

7 Conclusions343

We proposed a general framework for iterative vertex refinement generalizing the popular Weisfeiler-344

Leman algorithm and discussed connections to other vertex refinement strategies. Based on this, we345

proposed two new graph kernels and showed that they outperform the original Weisfeiler-Leman346

subtree kernel and similar state-of-the-art approaches in terms of classification accuracy in almost all347

cases, while keeping the running time much lower than comparable methods. We also investigated348

the application of our method to approximating the graph edit distance, where we again outperformed349

the state-of-the-art methods.350

In further research it might be interesting to systematically compare our approach to graph neural351

networks, since their message passing scheme is similar to the update strategy of the WL algorithm.352

Moreover, other renep functions can be explored, for example, by using other clustering strategies, or353

by developing new concepts for inexact neighborhood comparison.354

Table 2: Average classification accuracy and standard deviation (highest accuracies marked in bold).

Method PTC_FM MSRC_9 KKI EGO-1 EGO-2 EGO-3 EGO-4

BGM 60.14 ±1.50 72.13 ±1.28 43.89 ±1.27 44.75 ±1.05 42.05 ±1.25 out of time out of time
Lin 62.38 ±1.08 81.36 ±0.64 55.18 ±2.44 40.40 ±1.17 31.65 ±1.07 26.60 ±0.94 36.55 ±1.72

GWLT 63.19 ±0.11 85.97 ±0.59 55.18 ±2.44 56.20 ±1.42 47.90 ±1.28 36.40 ±1.04 47.90 ±1.32
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Table 3: Datasets with discrete vertex and edge labels and their statistics [25]. The EGO-Nets
datasets [14] are unlabeled.

Name |Graphs| |Classes| avg |V | avg |E| |LV | |LE|
KKI 83 2 26.96 48.42 190 −
PTC_FM 349 2 14.11 14.48 18 4

COLLAB 5000 3 74.49 2457.78 − −
DD 1178 2 284.32 715.66 82 −
IMDB-BINARY 1000 2 19.77 96.53 − −
MSRC_9 221 2 40.58 97.94 10 −
NCI1 4110 2 29.87 32.30 37 −
REDDIT-BINARY 2000 2 429.63 497.75 − −
EGO-1 200 4 138.97 593.53 − −
EGO-2 200 4 178.55 1444.86 − −
EGO-3 200 4 220.01 2613.49 − −
EGO-4 200 4 259.78 4135.80 − −

A Pseudocode444

Algorithm 1 shows the procedure of gradual Weisfeiler-Leman refinement. We start with an initial445

coloring (either uniform or based on the vertex labels) and then iteratively refine these colors using a446

renep function, h times.

Algorithm 1 Gradual Weisfeiler-Leman Refinement.

1: procedure GWL(G, h) . h is number of iterations
2: for all v ∈ V (G) do . Initial coloring
3: c0(v)← µ(v)

4: initialize T0 as described in Section 3
5: for i← 1, i ≤ h, i← i+ 1 do
6: Ti ← f(G, Ti−1) . Compute new colors
7: for all v ∈ V (G) do . Assign new colors
8: ci(v)← πTi(v)

447

B Datasets448

We used several real-world datasets from the TUDataset [25], the EGO-Nets datasets [14], as well449

as synthetic datasets for our experiments. See Table 3 for an overview of the real-world datasets.450

We selected these datasets as they cover a wide range of applications, consisting of both molecule451

datasets and graphs derived from social networks.452

The synthetic datasets were generated using the block graph generation method [14]. We generated 9453

synthetic datasets with two classes and 200 graphs in each class. For each dataset we first generated454

two seed graphs (one per class) with 16 vertices, that both are constructed from a tree by appending455

a single edge, so that their sets of vertex degrees are equal. For the dataset graphs each vertex of456

the seed graph was replaced by 8 vertices. Vertices generated from the same seed vertex, as well as457

from adjacent vertices are connected with probability p. m noise edges are then added randomly.458

We investigated the two cases p = 1.0 and m ∈ {0, 10, 20, 50, 100}, and p ∈ {1.0, 0.8, 0.6, 0.4, 0.2}459

and m = 0. We denote the datasets by S_p_m.460

C Number of Weisfeiler-Leman Iterations461

We investigate the number of WL iterations needed to reach the stable coloring in the various datasets.462

On the datasets with − entries (see Table 4) our algorithm, that checked whether the stable coloring463

is reached, did not finish in a reasonable time due to the size of the datasets/graphs. It can be seen464
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Table 4: Number of iterations needed to reach the stable coloring.

Dataset KKI PTC_FM COLLAB DD IMDB-B MSRC_9
WL 3 13 − − 3 3

Dataset NCI1 REDDIT-B EGO-1 EGO-2 EGO-3 EGO-4
WL 39 − 5 4 4 5
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Figure 5: With k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10}, we show the number of times a specific
parameter combination for GWL was selected as it provided the best accuracy for the test set.

that on most datasets the number of iterations needed to reach the stable coloring is very low. This465

means that after a few iterations we do not gain any new information when using for example the466

traditional WLST kernel.467

D Parameter Selection - Further Results468

Figures 5 and 6 show the parameter selection for the remaining datasets for GWL and GWLOA. In469

most datasets the choice is restricted to two or three values. For some of the datasets, the best choice470

seems to include k = 16. This might indicate that a larger k could be beneficial for increasing the471

accuracy.472

Figure 7 shows the parameter selection for WLST and WLOA. There is only one parameter, the473

number of WL iterations, for both kernels. We can see that indeed on most datasets, only few474

iterations are needed to gain the best possible accuracy. On datasets such as EGO-2, EGO-4 or NCI1,475

however, this is not the case. For NCI1 we can assume that we still gain information through more476

iterations, since we have not yet reached the stable coloring. For the EGO-datasets, this is surprising,477

since the stable coloring is reached after 4 (5) iterations. On the other hand, the classification accuracy478

reached is still not good.479
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Figure 6: With k ∈ {2, 4, 8, 16} and h ∈ {0, . . . , 10}, we show the number of times a specific
parameter combination for GWLOA was selected as it provided the best accuracy for the test set.
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Figure 7: With h ∈ {0, . . . , 10}, we show the number of times a specific parameter combination for
WLST and WLOA was selected as it provided the best accuracy for the test set.

0 1 2 3 4 5 6 7 8 9 10

101

103

105

107

T
im

e
in

m
s

EGO-2

0 1 2 3 4 5 6 7 8 9 10

101

103

105

107

EGO-3

0 1 2 3 4 5 6 7 8 9 10

101

103

105

107

EGO-4

0 1 2 3 4 5 6 7 8 9 10

102

104

106

REDDIT-BINARY

0 1 2 3 4 5 6 7 8 9 10

102

103

104

105

106

Iterations

T
im

e
in

m
s

NCI1

0 1 2 3 4 5 6 7 8 9 10

102

104

106

108

Iterations

DD

0 1 2 3 4 5 6 7 8 9 10

100

102

104

106

Iterations

MSRC 9

0 1 2 3 4 5 6 7 8 9 10

102

104

106

108

Iterations

COLLAB

WLST WLOA RWL* DWL GWLOA 8-Means GWL 8-Means

Figure 8: Running time in milliseconds for computing the feature vectors using the different methods.
Note that RWL* uses multi-threading, while the other methods do not. Missing values for RWL* and
DWL in the larger datasets are due to timeout.

E Running Time - Further Results480

Figure 8 shows the running time results for the remaining datasets. While the runtime of our approach481

exceeds that of DWL on some of the larger datasets, it enhances the classification accuracy a lot.482

F Results on Synthetic Datasets483

Table 5 shows the classification accuracy of the different methods on the synthetic datasets (generated484

as described in Appendix B), with the best accuracy for each dataset being marked in bold. We can485

see, while all kernels can perfectly learn on the datasets without noise, neither WLST, WLOA nor486

DWL can manage the noise included in the other datasets, having worse accuracy with increasing487

noise. While the decrease in accuracy with decreasing the edge probability is slightly worse than that488

of RWL*, our approach has a much lower running time.489
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Table 5: Average classification accuracy and standard deviation on the synthetic datasets.
Kernel S_1_0 S_1_10 S_1_20 S_1_50 S_1_100 S_0.8_0 S_0.6_0 S_0.4_0 S_0.2_0

WLST 100.00±0.00 98.68 ±0.34 61.93 ±1.08 54.55 ±0.68 49.78 ±1.18 50.65 ±1.57 48.10 ±1.10 51.98 ±1.40 42.65 ±1.80
DWL 100.00±0.00 98.70 ±0.31 62.10 ±0.98 43.83 ±1.66 51.40 ±0.94 49.80 ±2.01 46.88 ±1.89 49.05 ±1.98 42.85 ±1.98
RWL* 100.00±0.00 100.00±0.00 100.00±0.00 out of time 100.00±0.00 100.00±0.00 99.35 ±0.17 81.93 ±1.00 56.33 ±2.48
WLOA 100.00±0.00 97.65 ±0.44 60.85 ±1.65 47.50 ±1.83 50.23 ±1.24 49.45 ±1.47 48.08 ±1.92 43.23 ±1.21 50.53 ±1.92

GWL 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 92.20 ±0.97 72.53 ±1.78 53.58 ±1.71
GWLOA 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 94.95 ±0.59 72.03 ±1.66 50.90 ±2.63
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Figure 9: Running time in milliseconds for computing the feature vectors using the different values
for parameter k on our newly proposed methods.

G Influence of Parameter k on Running Time490

We investigate which effect the choice of k has on the running time. Figure 9 shows the time needed491

for computing the feature vectors using our kernels with k ∈ {2, 4, 8, 16}. The difference in running492

time between GWL and GWLOA is only marginal on most datasets, only on KKI and NCI1 a larger493

difference can be seen. As expected, the running time of both kernels increases with increasing k.494

Interestingly, for larger k, the running time does not increase much anymore, after a certain number495

of iterations, this might be because the stable coloring was reached by then.496

H Results on Larger Datasets497

GWL allows to generate explicit sparse feature vectors just as WLST. Therefore, these kernels can be498

used with a linear SVM, which is more efficient than a kernel SVM and makes the application to499

larger datasets feasible. We performed additional experiments with these kernels on larger synthetic500
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Table 6: Parameters used for generating the larger datasets.

Dataset p m |Graphs| b r

L1 1 200 10000 25 10
L2 1 100 20000 25 10
L3 1 200 20000 10 15
L4 1 400 20000 25 10

Table 7: Results on larger datasets with running time in seconds and |f | being the number of features
(for WLST we only give the order of magnitude).

Kernel L1 L2 L3 L4
time acc |f | time acc |f | time acc |f | time acc |f |

WLST 25 50.92 106 59 84.57 106 45 49.91 106 124 49.65 106

GWL 208 99.98 61 237 100.0 15 103 100.0 7 137 99.98 7

datasets using the linear SVM implementation LIBLINEAR [26]. The datasets were generated using501

the same method as described in Appendix B, but with different values for the number of vertices502

in the seed graphs, b, and number of vertices, each vertex in the seed graph is replaced by, r (see503

Table 6 for the values of the parameters). The experimental setup used in these experiments was as504

follows: We split the dataset randomly into a training, validation and test set and chose the parameter505

C ∈ {0.1, 1, 10}. We used h ∈ {1, . . . , 5} for both kernels and set k = 2 for all datasets.506

In Table 7 we report the running time and the number of features f obtained for the choice of h that507

gave the best classification accuracy (for GWL this choice was h = 2 for L4 and L5, h = 3 for L2508

and h = 5 for L1, for WLST it was h = 2 for all datasets except L4, on which it was h = 5). We509

noticed that running the SVM with the feature vectors generated by WLST took much more time510

than GWL, which can be explained by the number of features each algorithm produced: For GWL511

the number is restricted by the choice of parameters, but for WLST the number of features is only512

restricted by the number of vertices in the dataset. In WLST the number of features exceeded 106 for513

h ≥ 2. For a small increase in running time in generating the feature vectors, GWL provides not only514

a much better classification accuracy than WLST, it also generates less features, but more meaningful515

ones.516

I Approximating the Graph Edit Distance using Optimal Assignments517

The graph edit distance (GED), a commonly used distance measure for graphs, is defined as the518

cost of transforming one graph into the other using edit operations, i.e. deleting or inserting an519

isolated vertex or an edge, or relabeling any of the two. An edit path between G and H is a sequence520

(e1, e2, . . . , ek) of edit operations that transforms G into H . This means, that applying all operations521

in the edit path to G, yields a graph G′ that is isomorphic to H .522

Edit operations have non-negative costs assigned to them by a cost function c and the GED of two
graphs is defined as the cost of a cheapest edit path between them:

GED(G,H) = min


k∑
i=1

c(ei) | (e1, . . . , ek) ∈ Υ(G,H)

 ,

where Υ(G,H) denotes the set of all possible edit paths from G to H .523

Since computing the GED is NP-hard [27], it is often approximated; often an optimal assignment524

between the vertices of the graphs is computed and a (suboptimal) edit path is derived from this525

assignment [23]. Figure 10 shows two graphs, an assignment between their vertices indicated by526

matching numbers, and a corresponding edit path.527

If the cost function is a tree metric, such an assignment can be computed in linear time [22] (as528

opposed to cubic runtime for arbitrary cost functions). The color hierarchy produced by for example529

GWLT can be interpreted as such a tree metric, which means it can be used to find an optimal530
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1 12 2

3 34 4

G H

Figure 10: Two graphs G and H with an assignment between their vertices (vertices with matching
numbers are assigned to each other) and an edit path derived from this assignment.
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Figure 11: Approximation quality of GWLT compared to Lin [22]. Marks below the gray diagonal
indicate that GWLT had a better approximation, while marks above indicate the same for Lin.

assignment between the vertices and in turn approximate the graph edit distance. Given a tree T ,531

representing a tree metric, an optimal assignment between two sets A and B can be computed as532

follows: Let φ be a function that associates all elements with their node in the tree (for GWLT this533

means, that we associate each vertex with its "newest" color). Then deconstruct T fully (until there534

are no leaves left) by repeating these steps:535

1. Pick a random leaf l.536

2. Assign as many elements of A associated with l to elements of B associated with l as possible.537

3. Re-associate remaining elements to the parent of l.538

4. Delete l from T .539

The resulting assignment is optimal and can be used to derive an edit path as above.540

J Comparison of Approximation Quality541

We investigate the accuracy of our method further, by comparing the approximation of Lin [22] to542

our method GWLT directly. Figure 11 shows the approximations in comparison. Only graph pairs,543

on which at least one of the methods returned a distance below a cutoff threshold are depicted to lay544

an emphasis on the more important cases of graphs that are similar.545
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