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ABSTRACT

In this paper, we consider federated reinforcement learning for tabular episodic
Markov Decision Processes (MDP) where, under the coordination of a central
server, multiple agents collaboratively explore the environment and learn an op-
timal policy without sharing their raw data. While linear speedup in the number
of agents has been achieved for some metrics, such as convergence rate and sam-
ple complexity, in similar settings, it is unclear whether it is possible to design
a model-free algorithm to achieve linear regret speedup with low communication
cost. We propose two federated Q-Learning algorithms termed as FedQ-Hoeffding
and FedQ-Bernstein, respectively, and show that the corresponding total regrets
achieve a linear speedup compared with their single-agent counterparts when the
time horizon is sufficiently large, while the communication cost scales logarithmi-
cally in the total number of time steps T . Those results rely on an event-triggered
synchronization mechanism between the agents and the server, a novel step size
selection when the server aggregates the local estimates of the state-action values
to form the global estimates, and a set of new concentration inequalities to bound
the sum of non-martingale differences. This is the first work showing that linear
regret speedup and logarithmic communication cost can be achieved by model-
free algorithms in federated reinforcement learning.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a distributed machine learning framework, where
a large number of clients collectively engage in model training and accelerate the learning process,
under the coordination of a central server. Notably, this approach keeps raw data confined to local
devices and only communicates model updates between the clients and the server, thereby dimin-
ishing the potential for data exposure risks and reducing communication costs. As a result of these
advantages, FL is gaining traction across various domains, including healthcare, telecommunica-
tions, retail, and personalized advertising.

On a different note, Reinforcement Learning (RL) (Sutton & Barto, 2018) is a subfield of machine
learning focused on the intricate domain of sequential decision-making. Often modeled as a Markov
Decision Process (MDP), the primary objective of RL is to obtain an optimal policy through sequen-
tial interactions with the previously unknown environment. RL has exhibited superhuman perfor-
mances in various applications, such as games (Silver et al., 2016; 2017; 2018; Vinyals et al., 2019),
robotics (Kober et al., 2013; Gu et al., 2017), and autonomous driving (Yurtsever et al., 2020), and
garnered increasing attentions in different domains.

However, training an RL agent often requires large amounts of data, due to the inherent high di-
mensional state and action spaces (Akkaya et al., 2019; Kalashnikov et al., 2018), and sequentially
generating such training data is very time-consuming (Nair et al., 2015). It thus has inspired a line of
research that aims to extend the FL principle to the RL setting. The FL framework allows the agents
to collaboratively train their decision-making models with limited information exchange between
the agents, thereby accelerating the learning process and reducing communication costs. Among
them, some model-based algorithms (e.g., Chen et al. (2023)) and policy-based algorithms (e.g.,
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Fan et al. (2021)) have already exhibited speedup with respect to the number of agents for learning
regret or convergence rate.

Also, there is a collection of research focusing on model-free federated RL algorithms, which have
shown encouraging results. Such algorithms build upon the classical value-based algorithms such
as Q-learning (Watkins, 1989), which directly learns the optimal policy without estimating the un-
derlying model. Among them, Jin et al. (2022) considered a heterogeneous setting where the agents
interact with environments with different but known transition dynamics, and the objective is to ob-
tain a policy that maximizes the overall performance in all environments. It proposes two federated
RL algorithms, including a Q-learning-based algorithm called QAvg, and proves their convergence.
Liu & Olshevsky (2023) investigated distributed TD-learning with linear function approximation
and achieves linear convergence speedup under the assumption that the samples are generated in an
identical and independently distributed (i.i.d.) fashion. Khodadadian et al. (2022) proposed feder-
ated versions of TD-learning and Q-learning and proved a linear convergence speedup with respect
to the number of agents for both algorithms under Markovian sampling. Woo et al. (2023) stud-
ied infinite-horizon tabular Markov decision processes (MDP) and proposed both the synchronous
and asynchronous variants of federated Q-learning. Both algorithms exhibit a linear speedup in the
sample complexity. We note that under the aforementioned algorithms, the clients do not adap-
tively update their exploration policy during the learning process. As a result, they do not have any
theoretical guarantees on the total regret among the agents1.

In this work, we aim to answer the following question:

Is it possible to design a federated model-free RL algorithm that enjoys both linear regret speedup
and low communication cost?

We give an affirmative answer to this question under the tabular episodic MDP setting. Specifically,
we assume a central server and M local agents exist in the system, where each agent interacts with
an episodic MDP with S states, A actions, and H steps in each episode independently. The server
coordinates the behavior of the agents by designating their exploration policies, while the clients
execute the policies, collect trajectories, and form “local updates”. The local updates will be sent to
the server periodically to form “global updates” and refine the exploration policy. Our contributions
can be summarized as follows.

• Algorithmic Design. We propose two federated variants of the Q-learning algorithm (Jin et al.,
2018), termed as FedQ-Hoeffding and FedQ-Bernstein, respectively. Those two algorithms fea-
ture the following elements in their design: 1) Adaptive exploration policy selection. In order to
achieve linear regret speedup, it becomes necessary to adaptively select the exploration policy for
all clients, which is in stark contrast to the static sampling policy adopted in Khodadadian et al.
(2022); Woo et al. (2023). 2) Event-triggered policy switching and communication. On the other
hand, to reduce the communication cost, it is desirable to keep the exploration policy switching
to a minimum extent. This motivates us to adopt an event-triggered policy switching and commu-
nication mechanism, where communication and subsequent policy switching only happen when a
certain condition is satisfied. This naturally partitions the learning process into rounds. 3) Equal
weight assignment for global aggregation. When the central server updates the global estimates
of the Q-value for a given state-action pair (x, a) at step h, we assign equal weights for all new
visits to the tuple (x, a, h) within the current round. As a result, local agents do not need to send
the collected trajectories to the server. Instead, it only needs to send the empirical average of the
estimated values of the next states after visiting (x, a, h) to the server.

• Performance Guarantees. Thanks to the careful design of the policy switching, communica-
tion, and global aggregation mechanisms, FedQ-Hoeffding and FedQ-Bernstein provably achieve
linear regret speedup in the number of agents compared with their single-agent counterparts (Jin
et al., 2018; Bai et al., 2019) when the total number of steps T is sufficiently large, while the
communication cost scales in O(M2H4S2A log(T/M)). To the best of our knowledge, those are
the first model-free federated RL algorithms that achieve linear regret speedup with logarithmic
communication cost. We compare the regret and communication costs under multi-agent tabular
episodic MDPs in Table 1.

1A comprehensive literature review is provided in Appendix A.
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Table 1: Comparison of Related Algorithms

Type Algorithm (Reference) Regret Communication cost

Model-based
Multi-batch RL (Zhang et al., 2022) Õ(

√
H2SAMT ) -

APEVE (Qiao et al., 2022) Õ(
√
H4S2AMT ) -

Byzan-UCBVI (Chen et al., 2023) Õ(
√
H3S2AMT ) O(M2H2S2A2 log T )

Model-free

Concurrent Q-UCB2H (Bai et al., 2019) Õ(
√
H4SAMT ) O(MT )

Concurrent Q-UCB2B (Bai et al., 2019) Õ(
√
H3SAMT ) O(MT )

Concurrent UCB-Advantage (Zhang et al., 2020) Õ(
√
H2SAMT ) O(MT )

FedQ-Hoeffding (this work) Õ(
√
H4SAMT ) O(M2H4S2A log(T/M))

FedQ-Bernstein (this work) Õ(
√
H3SAMT ) O(M2H4S2A log(T/M))

H: number of steps per episode; T : total number of steps; S: number of states; A: number of actions; M : number of agents. -: not discussed.

• Technical Novelty. While the equal weight assignment during global aggregation is critical to
reducing the communication cost in our design, it also leads to a non-trivial challenge for the
corresponding theoretical analysis. This is because the specific weight assigned to each new visit
depends on the total number of visits between two model aggregation points, which is not causally
known when (x, a, h) is visited. As a result, the weights assigned to all visits of (x, a, h) do
not form a martingale difference sequence. Such non-martingale property makes the cumula-
tive estimation error in the global estimates of the value functions difficult to track. In order to
characterize the concentration of the sum of non-martingale differences, we relate the non-
martingale difference sequence with another martingale difference sequence within each round.
Due to the common factor between those two sequences in each round, we are then able to bound
their differences roundwisely. We believe that the techniques developed for proving concentration
inequalities on the sum of non-martingale differences will be useful in future analysis of other
model-free federated RL algorithms.

2 BACKGROUND AND PROBLEM FORMULATION

Notations. Throughout this paper, we assume that 0/0 = 0. For any C ∈ N, we use [C] to denote
the set {1, 2, . . . C}. We use I[x] to denote the indicator function, which equals 1 when the event x
is true and equals 0 otherwise.

2.1 PRELIMINARIES

We first introduce the mathematical model and background on Markov decision processes.

Tabular Episodic Markov Decision Process (MDP). A tabular episodic MDP is denoted asM :=
(S,A, H,P, r), where S is the set of states with |S| = S,A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {Ph}Hh=1 is the transition kernel so that Ph(· | x, a)
characterizes the distribution over the next state given the state action pair (x, a) at step h, and
r := {rh}Hh=1 is the collection of reward functions. In this work, we assume rh(x, a) ∈ [0, 1] is
a deterministic function of (x, a), while the results can be easily extended to the case when rh is
random.

In each episode ofM, an initial state x1 is selected arbitrarily by an adversary. Then, at each step
h ∈ [H], an agent observes state xh ∈ S , picks an action ah ∈ A, receives reward rh = rh(xh, ah)
and then transits to next state xh+1. The episode ends when an absorbing state xH+1 is reached.

Policy, State Value Functions and Action Value Functions. A policy π is a collection of H
functions

{
πh : S → ∆A}

h∈[H]
, where ∆A is the set of probability distributions over A. A policy

is deterministic if for any x ∈ S, πh(x) concentrates all the probability mass on an action a ∈ A. In
this case, we simply denote πh(x) = a.

We use V π
h : S → R to denote the state value function at step h under policy π so that V π

h (x) equals
the expected return under policy π starting from xh = x. Mathematically,

V π
h (x) :=

H∑
h′=h

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) |xh = x] .
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Accordingly, we also use Qπ
h : S ×A → R to denote the action value function at step h, i.e.,

Qπ
h(x, a) := rh(s, a) +

H∑
h′=h+1

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) |xh = x, ah = a] .

Since the state and action spaces and the horizon are all finite, there always exists an optimal policy
π⋆ that achieves the optimal value V ⋆

h (x) = supπ V
π
h (x) = V π∗

h (x) for all x ∈ S and h ∈ [H]
(Azar et al., 2017). For ease of exposition, we denote [PhVh+1] (x, a) := Ex′∼Ph(·|x,a)Vh+1 (x

′).
Then, the Bellman equation and the Bellman optimality equation can be expressed as: V π

h (x) = Ea∼πh(x)[Q
π
h(x, a)]

Qπ
h(x, a) := (rh + PhV

π
h+1)(x, a)

V π
H+1(x) = 0, ∀x ∈ S

and

 V ⋆
h (x) = maxa∈A Q⋆

h(x, a)
Q⋆

h(x, a) :=
(
rh + PhV

⋆
h+1

)
(x, a)

V ⋆
H+1(x) = 0, ∀x ∈ S.

(1)

2.2 THE FEDERATED RL FRAMEWORK

In this work, we consider a federated RL setting with a central server and M agents, each interacting
with an independent copy of the MDPM in parallel. The agents can communicate with the server
periodically. Depending on the specific algorithm design, the agents may send different information
(e.g., reward rh, or estimated V -values Vh) to the central server. Upon receiving the local informa-
tion, the central server then aggregates and broadcasts certain information to the clients to coordinate
their exploration. Note that, just as in FL, communication is one of the major bottlenecks, and the
algorithm has to be conscious of its usage. In this work, we define the communication cost of an
algorithm as the number of scalars (integers or real numbers) communicated between the server and
clients. We also make the assumption that there is no latency during the communications, and the
agents and server are fully synchronized (McMahan et al., 2017).

Let πm,s
h be the policy adopted by agent m at step h in the s-th episode, and xm,s

1 be the corre-
sponding initial state. Then, the overall learning regret of the M clients over T = HJ steps can be
expressed as

Regret(T ) =
∑

m∈[M ]

J∑
s=1

(
V ⋆
1 (x

m,s
1 )− V

πm,s
h

1 (xm,s
1 )

)
.

Here, J is the number of episodes and stays the same across different agents due to the synchroniza-
tion assumption.

3 ALGORITHM DESIGN

In this section, we elaborate on our model-free federated RL algorithm termed as FedQ-Hoeffding.
The Bernstein-type algorithm, termed as FedQ-Bernstein, will be introduced afterward.

3.1 THE FEDQ-HOEFFDING ALGORITHM

The algorithm proceeds in rounds, indexed by k ∈ [K]. Round k consists of nk episodes for each
agent, where the specific value of nk will be determined later. Before we proceed, we first introduce
the following notations. For the j-th (j ∈ [nk]) episode in the k-th round, we use xm,k,j

1 to denote
the initial state for the m-th agent, and use {(xm,k,j

h , am,k,j
h , rm,k,j

h )Hh=1} to denote the correspond-
ing trajectory. Denote nm,k

h (x, a) as the total number of times that the state-action pair (x, a) has

been visited at step h during round k by agent m, i.e., nm,k
h (x, a) =

∑nk

j′=1 I{(x
m,k,j′

h , am,k,j′

h ) =

(x, a)}, and let nk
h(x, a) =

∑M
m=1 n

m,k
h (x, a), i.e., the total number of visits for (x, a) at step h

during round k among all agents. We also denote Nk
h (x, a) as the total number of visits for (x, a, h)

among all agents before round k, i.e, Nk
h (x, a) =

∑M
m=1

∑k−1
k′=1

∑nk′

j=1 I{(x
m,k′,j
h , am,k′,j

h ) =

(x, a)}.
We also use {V k

h : S → R}Hh=1 and {Qk
h : S ×A → R}Hh=1 to denote the “global” estimates of the

state value function and action value function before the beginning of round k. Meanwhile, we use
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vm,k
h+1(x, a) to denote the “local” estimate of the expected return starting at step h+ 1 at agent m in

round k given (xh, ah) = (x, a), and use vkh+1(x, a) to denote the corresponding global estimate.

We then specify each individual component of the algorithm as follows.

Coordinated Exploration for Agents. At the beginning of round k, the server decides a determin-
istic policy πk = {πk

h}Hh=1, and then broadcasts it along with {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h
to all of the agents. When k = 1, N1

h(x, a) = 0, Q1
h(x, a) = V 1

h (x) = H,∀(x, a, h) ∈ S ×A× [H]
and π1 is an arbitrary deterministic policy.

Once receiving such information, the agents will execute policy πk and start collecting trajectories.

Event-Triggered Termination of Exploration. During exploration, every agent m will mon-
itor nm,k

h (x, a), i.e., the total number of visits for each (x, a, h) triple within the current
round. For any agent m, at the end of each episode, if any (x, a, h) has been visited by
max

{
1, ⌊ 1

MH(H+1)N
k
h (x, a)⌋

}
times by agent m, the agent will send a signal to the server, which

will then request all agents to abort the exploration.

The termination condition guarantees that for any (x, a, h, k) ∈ S ×A× [H]× [K],

nm,k
h (x, a) ≤ max

{
1,

⌊
Nk

h (x, a)

MH(H + 1)

⌋}
, (2)

and for each k ∈ [K], there exists at least one agent m such that equality is met for a (x, a, h,m)-
tuple. The inequality limits the number of visits in a round and is important for introducing our
server-side information aggregation design shortly. Meanwhile, the existence of equality guarantees
that a sufficient number of new samples will be generated in a round, which is the key to the proof
of Theorem 4.2 about the low communication cost.

Local Updating of the Estimated Expected Return. Each agent updates the local estimate of the
expected return vm,k

h+1(x, a) at the end of round k as follows:

vm,k
h+1(x, a) =

1

nm,k
h (x, a)

nk∑
j=1

V k
h+1

(
xm,k,j
h+1

)
I{(xm,k,j

h , am,k,j
h ) = (x, a)},∀h ∈ [H],

i.e., for each (x, a) visited at step h during round k, vm,k
h+1 is obtained by taking the empirical average

of the global estimates of the value of the next visited state in the current round k.

Next, each agent m sends {rh(x, πk
h(x))}x,h,{nm,k

h (x, πk
h(x))}x,h and {vm,k

h+1(x, π
k
h(x))}x,h to the

central server for aggregation.

Server-side Information Aggregation. Denote αt = H+1
H+t , θ00 = 1, θ0t = 0 for t ≥ 1, and

θit = αi

∏t
i′=i+1(1−αi′),∀ 1 ≤ i ≤ t. We also denote αc(t1, t2) =

∏t2
t=t1

(1−αt) for any positive
integers t1 < t2.

Then, after receiving the information sent by the agents, for each (x, a, h) tuple visited by the agents,
the server sets tk−1 = Nk

h (x, a), t
k = Nk+1

h (x, a), αagg = 1− αc(tk−1 + 1, tk) and βk(x, a, h) =

2
∑tk

t=tk−1+1 θ
t
tkbt for some confidence bound bt to be determined later. When there is no ambiguity,

we will also use βk to represent βk(x, a, h). Then the server updates the global estimate of the value
functions according to one of the following two cases.

• Case 1: Nk
h (x, a) < 2MH(H + 1) =: i0. Due to Equation (2), this case implies that each

client can visit each (x, a) pair at step h at most once. Then, we denote 1 ≤ m1 < m2 . . . <

mtk−tk−1 ≤ M as the agent indices with nm,k
h (x, a) > 0. The server then updates the global

estimate of action values as follows:

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αaggrh(x, a) +

tk−tk−1∑
t=1

θt
k−1+t
tk

vmt,k
h+1 (x, a) + βk/2. (3)

• Case 2: Nk
h (x, a) ≥ i0. In this case, the central server calculates vkh+1(x, a) as

vkh+1(x, a) =
1

nk
h(x, a)

M∑
m=1

vm,k
h+1(x, a)n

m,k
h (x, a)
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and updates the Q-estimate as

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αagg

(
rh(x, a) + vkh+1(x, a)

)
+ βk/2. (4)

After finishing updating the estimated Q function, the central server updates the estimated value
function and the policy as follows:

V k+1
h (x) = min

{
H,max

a′∈A
Qk+1

h (x, a′)

}
, ∀(x, h) ∈ S × [H], (5)

πk+1
h (x) = argmax

a′∈A
Qk+1

h (x, a′) ,∀(x, h) ∈ S × [H]. (6)

The algorithm then proceeds to round k + 1.

Algorithms 1 and 2 formally present the Hoeffding-type design. Inputs K0, T0 in Algorithms 1 are
termination conditions where K0 limits the total number of rounds and T0 limits the total number of
samples generated by all the agents before the last round.

Algorithm 1 FedQ-Hoeffding (Central Server)
1: Input: T0,K0 ∈ N+.
2: Initialization: k = 1, N1

h(x, a) = 0, Q1
h(x, a) = V 1

h (x) = H,∀(x, a, h) ∈ S × A × [H] and
π1 =

{
π1
h : S → A

}
h∈[H]

is an arbitrary deterministic policy.

3: while H
∑k−1

k′=1 Mnk′
< T0 & k ≤ K0 do

4: Broadcast πk, {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h to all clients.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive {rh(x, πk

h(x))}x,h,{nm,k
h (x, πk

h(x))}x,h,m and {vm,k
h+1(x, π

k
h(x))}x,h,m from clients.

7: Calculate Nk+1
h (x, a), nk

h(x, a), v
k
h+1(x, a),∀(x, h) ∈ S × [H] with a = πk

h(x).
8: for (x, a, h) ∈ S ×A× [H] do
9: if a ̸= πk

h(x) or nk
h(x, a) = 0 then

10: Qk+1
h (x, a)← Qk

h(x, a).
11: else if Nk

h (x, a) < i0 then
12: Update Qk+1

h (x, a) according to Equation (3).
13: else
14: Update Qk+1

h (x, a) according to Equation (4).
15: end if
16: end for
17: Update V k+1

h and πk+1 according to Equation (5) and Equation (6).
18: k ← k + 1.
19: end while

Algorithm 2 FedQ-Hoeffding (Agent m in round k)
1: nm

h (x, a) = vmh+1(x, a) = rh(x, a) = 0,∀(x, a, h) ∈ S ×A× [H].
2: Receive πk, {Nk

h (x, π
k
h(x))}x,h and {V k

h (x)}x,h from the central server.
3: while no abortion signal from the central server do
4: while nm

h (xh, ah) < max
{
1, ⌊ 1

MH(H+1)N
k
h (xh, ah)⌋

}
,∀(x, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(xh, ah, rh)}Hh=1 with ah = πk
h(xh).

6: nm
h (xh, ah) ← nm

h (xh, ah) + 1, vmh+1(xh, ah) ← vmh+1(xh, ah) + V k
h+1(xh+1), and

rh(xh, ah)← rh,∀h ∈ [H].
7: end while
8: Send an abortion signal to the central server.
9: end while

10: nm,k
h (x, a)← nm

h (x, a), vm,k
h+1(x, a)←

vm
h+1(x,a)

nm
h (x,a) ,∀(x, h) ∈ S × [H] with a = πk

h(x).

11: Send {rh(x, πk
h(x))}x,h,{nm,k

h (x, πk
h(x))}x,h and {vm,k

h+1(x, π
k
h(x))}x,h to the central server.
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3.2 INTUITION BEHIND THE ALGORITHM DESIGN

Q-estimate Update in Single-agent Setting. Before we elaborate the intuition behind our algorithm
design, we first provide a brief review of the Q-value estimate updating step under the Q-UCB2H
algorithm (Bai et al., 2019) in the single-agent setting. Similar to FedQ-Hoeffding, Q-UCB2H also
has a round-based design, where the agent updates the value function estimates at the end of each
round. With a slight abuse of the notation, we use the same symbols as in Section 3.1 to denote the
quantities in the single-agent setting.

In round k, for a given triple (x, a, h) such that nk(x, a) > 0, we denote the next states for all of
the visits within the round as {xh+1,t}t

k

t=tk−1+1. Then, the Q-estimate is updated sequentially and
recursively for each visit as

Qh(x, a)← (1− αt)Qh(x, a) + αt(rh(x, a) + V k
h+1(xh+1,t) + bt), t = tk−1 + 1, . . . tk. (7)

As a result, at the end of round k, we have

Qk+1
h (x, a) = αc(tk−1 + 1, tk)Qk

h(x, a) +

tk∑
t=tk−1+1

θttk
(
rh(x, a) + V k

h+1(xh+1,t)
)
+ βk/2. (8)

If we treat rh(x, a) + V k
h+1(xh+1,t) as a new estimate of the Qh(x, a) induced by one visit within

round k, then, all new samples are assigned with different weights θttk . Together with the weight

assigned for the old estimate Qk
h(x, a), it satisfies that αc(tk−1 + 1, tk) +

∑tk

t=tk−1+1 θ
t
tk = 1.

Major Challenge in Federated Setting. The sequential updating rule in Equation (7) relies on full
accessibility of the trajectories to the agent, which is infeasible for the central server in the feder-
ated setting due to the high communication cost. Instead of sharing the raw data, in Algorithm 2,
the local agents only send {vm,k

h+1(x, a)}Mm=1 to the server. Since this is the sample average of the
estimated values over all states visited after (x, a, h), it does not preserve the temporal structure of
the trajectories. It thus becomes impossible for the server to infer the next state for each visit and
sequentially update the global estimate as in Equation (7) in general.

Equal Weight Assignment for Q-estimate Aggregation. We overcome the aforementioned chal-
lenge through a two-case design and new weight assignment for each visit.

In the first case, we have Nk
h (x, a) < i0. Equation (2) indicates that each client visits (x, a, h) at

most once, which implies that vmt,k
h+1 in Equation (3) is exactly V k

h+1(xh+1,t). Thus, Equation (3) is
a sequential update and is the same as Equation (8). We also remark that the design of the first case
aims at early-stage accuracy and shares similar technical motivations as Bai et al. (2019).

The second case shows the key difference between our algorithm and non-federated algorithms.
Since the temporal structure is no longer preserved, we cannot track the next state for a given visit
to (x, a, h), and it thus becomes impossible to assign a different weight to each new visit as in
Equation (8). To resolve this issue, we choose to assign all visits with the same weight, while
ensuring the total weight assigned to all visits unchanged, i.e.,

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) +

tk∑
t=tk−1+1

αagg

nk
h(x, a)

(
rh(x, a) + V k

h+1(xh+1,t)
)
+ βk/2,

which is equivalent to the updating rule in Equation (4).

4 PERFORMANCE GUARANTEES

Next, we provide regret upper bound for FedQ-Hoeffding as follows.

Theorem 4.1 (Regret Upper Bound for FedQ-Hoeffding). Let C̃ = 1/(H(H+1)), ι = max{ι0, ι1}
where ι0 = log(2SA(T0 + HM)(1 + C̃)/p), ι1 = log 2K0SAH(T0/H+M)(1+C̃)

p , and p ∈ (0, 1).

Define bt = c
√
H3ι/t. Under Algorithms 1 and 2, there exists a positive constant c > 0 such that,

for any K ∈ [K0] and p ∈ (0, 1), with probability at least 1− p,

Regret(T ) ≤ O
(√

H4ιMTSA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
, (9)
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where T = H
∑K

k=1 n
k is the total number of steps in the first K rounds.

Theorem 4.1 indicates that the total regret scales as O(
√
H4ιMTSA) + Õ(Mpoly(H,S,A))2.

The overhead term Õ(Mpoly(H,S,A)) is contributed by the O(M) samples collected in the first
stage, i.e., the burn-in cost. Such a burn-in cost is arguably inevitable in federated RL (e.g., Woo
et al. (2023)). When M = 1, our result recovers those in Jin et al. (2018) and Bai et al. (2019).
In the general federated setting, our algorithm enjoys a linear speedup in terms of M when T ≥
Ω(Mpoly(H,S,A)) and the first term dominates the burn-in cost.

Proof Sketch of Theorem 4.1. First, for any given (x, a, h) ∈ S×A×[H], we assign a global visiting
index i to each local visit before starting the (k+1)-th round, and denote the weight assigned to the
i-th visit as θ̃itk with tk = Nk+1

h (x, a). Specifically, for visits within the same round k′, we index
them by i ∈ [Nk′

h (x, a) + 1 : Nk′+1
h (x, a)] := Ik′

according to a pre-defined order. Then, for all
visits within the first case, θ̃itk equals to θitk , and for all visits within round k′ in the second case,
θ̃itk =

∑
i∈Ik′ θitk/n

k′

h (x, a).

The proof mainly consists of two major steps. Step 1 is to bound the global estimation error Qk+1
h −

Q⋆
h for each round k. Based on the recursive updating rule, we can show that, with high probability,

0 ≤ Qk+1
h (x, a)−Q⋆

h(x, a) ≤ θ0tkH +

k∑
k′=1

∑
i∈Ik′

θ̃itk(V
k′

h+1 − V ⋆
h+1)(xh+1,i) + βtk ,

with βtk =
∑tk

i=1 θ
i
tkbi. As shown in Lemma C.2, it suffices to bound

∣∣∣∑tk

i=1 θ̃
i
tkXi

∣∣∣ where Xi =

V ⋆
h+1(xh+1,i) − E

[
V ⋆
h+1(xh+1)|(xh, ah) = (x, a)

]
. Similar to the single-agent setting (Jin et al.,

2018), {Xi}∞i=1 is a martingale difference sequence. However, since our weight assignment for the
i-th visit depends on the total number of visits in the same round, which is determined after that
round completes, {θ̃itk}i does not preserve the original martingale structure in {θitk}i. Therefore, it
necessitates novel approaches to bound the sum of non-martingale differences. We would like to
emphasize that the techniques required to bound those non-martingale differences are fundamentally
different from the commonly used techniques in federated learning (FL), which usually construct
an “averaged parameter update path” and then bound each local term’s “drift” from it. This is
because such bounding techniques in FL rely on certain assumptions that do not exist in federated
RL. Due to the inherent randomness in the environment, even if the same policy is taken at all
local agents, it may result in very different trajectories. Thus, it is hard to obtain an easy-to-track
“averaged parameter update path” in federated RL, or a tight bound on the local terms’ drifts from
such averaged parameter update path. We overcome this challenge by relating {θ̃itk}i with {θitk}i.
Instead of bounding the local drift θ̃itk − θitk in each time step, we choose to group the “drift”
terms based on the corresponding rounds and then leverage the round-wise equal weight assignment
adopted in our algorithm to obtain a tight bound. The detailed analysis is elaborated in Lemma C.3.

Built upon the estimation error bound obtained in Step 1, Step 2 then utilizes the recursive Bellman
equation to relate the total learning error among all agents in round k at step h with that at step
h+ 1 (see Appendix C.3), which directly translates into a regret upper bound. The detailed proof is
deferred to Appendix C.

Next, we discuss the communication cost under Algorithms 1 and 2 as follows.
Theorem 4.2 (Communication Cost). Under Algorithms 1 and 2, for a given number of steps T , the
total number of rounds must satisfy

K ≤ max

 HSA

log
(
1 + 1

2MH(H+1)

) log
T

H2(H + 1)M
+H2(H + 1)MSA,H2(H + 1)SAM

 .

Theorem 4.2 indicates that, when T is sufficiently large, K = O
(
MH3SA log(T/M)

)
. Since the

total number of communicated scalars is O(MHS) in each round, the total communication cost
scales in O(M2H4S2A log(T/M)).

2Õ ignores logarithmic factors.
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Proof Sketch of Theorem 4.2. Due to the fact that the equality in Equation (2) is met for at least one
agent, by the Pigeonhole principle, during the first K rounds, there exists one tuple (x, a, h,m)
such that the equality in Equation (2) holds for at least Ω(K/(HSAM)) rounds. In these rounds,
as (x, a, h) are visited at least once in each round, at most O(i0) rounds belong to the first case.
So, when K is large, there are at least Ω(K/(HSAM)) rounds in the second case and nk

h(x, a) =

Ô(Nk
h (x, a)) in these rounds. Thus we have HNK+1

h (x, a)/M , which is smaller than or equal to T ,
and roughly exponential in K when K is large. A detailed proof can be found in Appendix D.

5 EXTENSION TO BERNSTEIN-TYPE ALGORITHM

The Bernstein-type algorithm differs from FedQ-Hoeffding on the construction of the upper confi-
dence bound. Similar to the design in Jin et al. (2018), we define

βt(x, a, h) = c′ min

{√
Hι

t
(W t(x, a, h) +H) + ι

√
H7SA+

√
MSAH6

t
,

√
H3ι

t

}
, (10)

in which c′ > 0 is a positive constant and W t(x, a, h) is a variance estimator of Xis whose specific
form is introduced in Appendix E. FedQ-Bernstein then replaces βk in Equation (3) and Equation (4)
by β̃ = βtk(x, a, h)− αc(tk−1 + 1, tk)βtk−1(x, a, h). In terms of communication, during round k,
in addition to all the quantities sent in Algorithm 2, each agent m sends {µm,k

h (x, πk
h(x))}x,h to the

central server where µm,k
h (x, a) = 1

nm,k
h (x,a)

∑nk

j=1

[
V k
h+1

(
xm,k,j
h+1

)]2
I[(xm,k,j

h , am,k,j
h ) = (x, a)].

The complete algorithm description can be found in Appendix E.

As FedQ-Bernstein uses tighter upper confidence bounds compared with FedQ-Hoeffding, it enjoys
a reduced regret upper bound, as stated in Theorem 5.1 below.

Theorem 5.1 (Regret Upper Bound for FedQ-Bernstein). Let C̃ = 1/(H(H+1)), ι = max{ι0, ι1}
with ι0 = log(2SA(T0 +HM)(1 + C̃)/p), ι1 = log 2K0SAH(T0/H+M)(1+C̃)

p , and p ∈ (0, 1). For
Algorithms 3 and 4 in Appendix E with the upper confidence bound defined in Equation (10), there
exists a constant c′ > 0 such that, for any K ∈ [K0], p ∈ (0, 1), with probability at least 1− p,

Regret(T ) ≤ O
(
MH2SA+H4SA(M − 1) +HSA(M − 1)

√
H3ι

+ι2
√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAMTι2

)
.

Here, T = HJ and J is the total number of of episodes generated by an agent in the first K rounds.

Theorem 5.1 improves the regret upper bound in Theorem 4.1 by a factor of
√
H , and also enjoys a

linear speedup in M compared with its single-agent counterparts (Jin et al., 2018; Bai et al., 2019)
when T ≥ Ω̃(Mpoly(H,S,A)) and the first term becomes the dominating term. Here Ω̃ hides a log
factor that takes the form log2(MTpoly(H,S,A))).

We also remark that the upper bound in Theorem 4.2 applies to FedQ-Bernstein as well. Since the
amount of shared data is O(MHS) in each round for both algorithms, FedQ-Bernstein has the same
order of communication cost upper bound as FedQ-Hoeffding.

6 CONCLUSION

In this paper, we have developed model-free algorithms in federated reinforcement learning with
provably linear regret speedup and logarithmic communication cost. More specifically, two feder-
ated Q-learning algorithms - FedQ-Hoeffding and FedQ-Bernstein - have been proposed, and we
proved that they achieve regret of Õ(

√
H4SAMT ) and Õ(

√
H3SAMT ) respectively with com-

munication cost O(M2H4S2A log(T/M)). Technically, our algorithm design features a novel
equal weight assignment during global information aggregation, and we developed new approaches
to characterizing the concentration properties for non-martingale differences, which could be of
broader applications for other RL problems.
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policy gradient methods for distributed reinforcement learning. IEEE Transactions on Control of
Network Systems, 9(2):917–929, 2021a.

Yiding Chen, Xuezhou Zhang, Kaiqing Zhang, Mengdi Wang, and Xiaojin Zhu. Byzantine-robust
online and offline distributed reinforcement learning. In International Conference on Artificial
Intelligence and Statistics, pp. 3230–3269. PMLR, 2023.

Ziyi Chen, Yi Zhou, and Rongrong Chen. Multi-agent off-policy tdc with near-optimal sample
and communication complexity. In 2021 55th Asilomar Conference on Signals, Systems, and
Computers, pp. 504–508. IEEE, 2021b.

Ziyi Chen, Yi Zhou, Rong-Rong Chen, and Shaofeng Zou. Sample and communication-efficient
decentralized actor-critic algorithms with finite-time analysis. In International Conference on
Machine Learning, pp. 3794–3834. PMLR, 2022.

3https://openreview.net/attachment?id=fe6ANBxcKM&name=supplementary_
material

10

https://openreview.net/attachment?id=fe6ANBxcKM&name=supplementary_material
https://openreview.net/attachment?id=fe6ANBxcKM&name=supplementary_material


Published as a conference paper at ICLR 2024

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards account-
able reinforcement learning. In International Conference on Machine Learning, pp. 1507–1516.
PMLR, 2019.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed td (0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on
Machine Learning, pp. 1626–1635. PMLR, 2019.

Thinh T Doan, Siva Theja Maguluri, and Justin Romberg. Finite-time performance of distributed
temporal-difference learning with linear function approximation. SIAM Journal on Mathematics
of Data Science, 3(1):298–320, 2021.

Abhimanyu Dubey and Alex Pentland. Private and Byzantine-proof cooperative decision-making.
arXiv preprint arXiv:2205.14174, 2022.

Abhimanyu Dubey and AlexSandy’ Pentland. Differentially-private federated linear bandits. Ad-
vances in Neural Information Processing Systems, 33:6003–6014, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International Conference on Machine Learning,
pp. 1407–1416. PMLR, 2018.

Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan Kian Hsiang
Low. Fault-tolerant federated reinforcement learning with theoretical guarantee. Advances in
Neural Information Processing Systems, 34:1007–1021, 2021.

Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Cheston Tan, and Bryan Kian Hsiang Low. Fedhql:
Federated heterogeneous q-learning. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 2810–2812, 2023.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
Advances in Neural Information Processing Systems, 32, 2019.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3389–3396. IEEE, 2017.

Zhaohan Guo and Emma Brunskill. Concurrent pac rl. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 29, pp. 2624–2630, 2015.

Jiafan He, Tianhao Wang, Yifei Min, and Quanquan Gu. A simple and provably efficient algorithm
for asynchronous federated contextual linear bandits. arXiv preprint arXiv:2207.03106, 2022.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in Neural Information Processing Systems, 34:27057–27068, 2021.

Ruiquan Huang, Huanyu Zhang, Luca Melis, Milan Shen, Meisam Hejazinia, and Jing Yang. Fed-
erated linear contextual bandits with user-level differential privacy. In International Conference
on Machine Learning, pp. 14060–14095. PMLR, 2023.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in Neural Information Processing Systems, 31, 2018.

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Federated reinforcement
learning with environment heterogeneity. In International Conference on Artificial Intelligence
and Statistics, pp. 18–37. PMLR, 2022.

Sham Kakade, Mengdi Wang, and Lin F Yang. Variance reduction methods for sublinear reinforce-
ment learning. arXiv preprint arXiv:1802.09184, 2018.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

11



Published as a conference paper at ICLR 2024

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under markovian sampling. In International Conference on Machine
Learning, pp. 10997–11057. PMLR, 2022.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Chuanhao Li and Hongning Wang. Asynchronous upper confidence bound algorithms for federated
linear bandits. In International Conference on Artificial Intelligence and Statistics, pp. 6529–
6553. PMLR, 2022.

Fengjiao Li, Xingyu Zhou, and Bo Ji. Differentially private linear bandits with partial distributed
feedback. In 2022 20th International Symposium on Modeling and Optimization in Mobile, Ad
hoc, and Wireless Networks (WiOpt), pp. 41–48. IEEE, 2022a.

Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
to regret-optimal model-free reinforcement learning. Advances in Neural Information Processing
Systems, 34:17762–17776, 2021.

Tan Li, Linqi Song, and Christina Fragouli. Federated recommendation system via differential
privacy. In 2020 IEEE International Symposium on Information Theory (ISIT), pp. 2592–2597.
IEEE, 2020.

Wenjie Li, Qifan Song, Jean Honorio, and Guang Lin. Federated x-armed bandit. arXiv preprint
arXiv:2205.15268, 2022b.

Rui Liu and Alex Olshevsky. Distributed td (0) with almost no communication. IEEE Control
Systems Letters, 2023.

Shicheng Liu and Minghui Zhu. Distributed inverse constrained reinforcement learning for multi-
agent systems. Advances in Neural Information Processing Systems, 35:33444–33456, 2022.

Shicheng Liu and Minghui Zhu. Learning multi-agent behaviors from distributed and streaming
demonstrations. Advances in Neural Information Processing Systems, 36, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, volume 54, pp. 1273–
1282. PMLR, 2017.

Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momen-
tum q-learning: Correcting the bias without forgetting. In International Conference on Machine
Learning, pp. 7609–7618. PMLR, 2021.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937. PMLR, 2016.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit prob-
lems. The Annals of Statistics, 44(2):660 – 681, 2016.

Dan Qiao, Ming Yin, Ming Min, and Yu-Xiang Wang. Sample-efficient reinforcement learning with
loglog (t) switching cost. In International Conference on Machine Learning, pp. 18031–18061.
PMLR, 2022.

Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Towards understanding asynchronous
advantage actor-critic: Convergence and linear speedup. IEEE Transactions on Signal Processing,
71:2579–2594, 2023a.

12



Published as a conference paper at ICLR 2024

Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Towards understanding asynchronous
advantage actor-critic: Convergence and linear speedup. IEEE Transactions on Signal Processing,
2023b.

Chengshuai Shi and Cong Shen. Federated multi-armed bandits. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 9603–9611, 2021.

Chengshuai Shi, Cong Shen, and Jing Yang. Federated multi-armed bandits with personalization.
In Proceedings of the 24rd International Conference on Artificial Intelligence and Statistics (AIS-
TATS), April 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Jun Sun, Gang Wang, Georgios B Giannakis, Qinmin Yang, and Zaiyue Yang. Finite-time analysis
of decentralized temporal-difference learning with linear function approximation. In International
Conference on Artificial Intelligence and Statistics, pp. 4485–4495. PMLR, 2020.

R Sutton and A Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
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A RELATED WORKS

Single-agent episodic MDPs. Significant contributions have been made in both model-based and
model-free frameworks. In the model-based category, a series of algorithms have been proposed
by Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade et al. (2018), Agarwal
et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019), and Zhang et al. (2021), with more
recent contributions from Zhou et al. (2023) and Zhang et al. (2023). Notably, Zhang et al. (2023)
proved that a modified version of MVP (proposed by Zhang et al. (2021)) achieves a regret of
Õ
(
min{

√
SAH2T , T}

)
which matches the minimax lower bound. Within the model-free frame-

work, Jin et al. (2018) proposed a Q-learning with UCB exploration algorithm, achieving regret of
Õ
(√

SAH3T
)

, which has been advanced further by Yang et al. (2021), Zhang et al. (2020), Li
et al. (2021) and Ménard et al. (2021). The latter three have introduced algorithms that achieve
minimax regret of Õ

(√
SAH2T

)
.

Federated and distributed RL. Existing literature on federated and distributed RL algorithms sheds
light on different aspects. Guo & Brunskill (2015) showed that applying concurrent RL to identical
MDPs can linearly speed up sample complexity. Agarwal et al. (2021) proposed a parallel RL
algorithm with low communication cost. Jin et al. (2022), Khodadadian et al. (2022), Fan et al.
(2023) and Woo et al. (2023) investigated federated Q-learning algorithms in different settings. Fan
et al. (2021), Wu et al. (2021) and Chen et al. (2023) focused on robustness. Particularly, Chen
et al. (2023) proposed algorithms in both offline and online settings, obtaining near-optimal sample
complexities and achieving a superior robustness guarantee. Doan et al. (2019), Doan et al. (2021),
Chen et al. (2021b), Sun et al. (2020), Wai (2020), Wang et al. (2020a), Zeng et al. (2021) and Liu
& Olshevsky (2023) analyzed the convergence of decentralized temporal difference algorithms. Fan
et al. (2021) and Chen et al. (2021a) studied communication-efficient policy gradient algorithms.
Shen et al. (2023b), Shen et al. (2023a) and Chen et al. (2022) have analyzed the convergence of
distributed actor-critic algorithms. Assran et al. (2019), Espeholt et al. (2018) and Mnih et al. (2016)
explored federated actor-learner architectures. Liu & Zhu (2022) and Liu & Zhu (2024) explored
distributed inverse reinforcement learning.

RL with low switching cost and batched RL. Research in RL with low-switching cost aims to
minimize the number of policy switching while maintaining comparable regret bounds to its fully
adaptive counterparts and can be applied to federated RL. In batched RL (e.g., Perchet et al. (2016),
Gao et al. (2019)), the agent sets the number of batches and length of each batch upfront, aiming
for fewer batches and lower regret. Bai et al. (2019) first introduced the problem of RL with low-
switching cost and proposed a Q-learning algorithm with lazy update, achieving Õ(SAH3 log T )
switching costs. This work was advanced by Zhang et al. (2020), which improved the regret upper
bound. Besides, Wang et al. (2021) studied the problem of RL under the adaptivity constraint.
Recently, Qiao et al. (2022) proposed a model-based algorithm with Õ(log log T ) switching costs.
Zhang et al. (2022) proposed a batched RL algorithm that is well-suited for the federated setting.

Federated/distributed bandits. Federated bandits with low communication costs have been studied
extensively recently in the literature Wang et al. (2020b); Li & Wang (2022); Shi & Shen (2021); Shi
et al. (2021); Huang et al. (2021); Wang et al. (2022); He et al. (2022); Li et al. (2022b). Shi & Shen
(2021) and Shi et al. (2021) investigated efficient client-server communication and coordination
protocols for federated MAB without and with personalization, respectively. Wang et al. (2020b)
investigated communication-efficient distributed linear bandits, while Huang et al. (2021) studied
federated linear contextual bandits. Li & Wang (2022) focused on the asynchronous communication
protocol.

When data privacy is explicitly considered, Li et al. (2020); Zhu et al. (2021) studied federated
bandits with item-level differential privacy (DP) guarantee. Dubey & Pentland (2022) considered
private and byzantine-proof cooperative decision making in multi-armed bandits. Dubey & Pentland
(2020); Zhou & Chowdhury (2023) considered the linear contextual bandit model with joint DP
guarantee. Huang et al. (2023) recently investigated linear contextual bandits under user-level DP
constraints. Private distributed bandits with partial feedback was also studied in Li et al. (2022a).
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B AUXILIARY LEMMAS

In this section, we introduce some useful lemmas which will be used in the proofs. Before starting,
we describe the global indexing mechanism mentioned in Section 4. Global visiting indices i =
1, 2 . . . are assigned, based on the chronological order, to the visits of any given (x, a, h) ∈ S×A×
[H]. With this, we can establish a map between the global visiting index i, and k,m, j, where k is
the round index, m is the agent index and j is the episode index for a given round and a given agent.
For (x, a, h), we define functions that recover k,m, j from i as kh(i;x, a),mh(i;x, a), jh(i;x, a).
When there is no ambiguity, we will use the simplified notations ki,mi, ji. The visiting indices
are utilized to construct a sequence, ensuring that quantities with smaller indices are observed prior
to those with larger indices. Under the synchronization and zero-latency assumption, we have the
following formulas for mi, ki, ji.

kh(i;x, a) = sup
{
k ∈ N+ : Nk

h (x, a) < i
}
,

jh(i;x, a) = sup

j ∈ N+ :

j−1∑
j′=1

M∑
m=1

I
[
(x, a) = (xm,ki,j′

h , am,ki,j′

h )
]
< i−Nki

h (x, a)

 ,

mh(i;x, a) = sup

{
m ∈ N+ :

m−1∑
m′=1

I
[
(x, a) = (xm′,ki,ji

h , am
′,ki,ji

h )
]

< i−Nki

h (x, a)−
ji−1∑
j′=1

M∑
m=1

I
[
(x, a) = (xm,ki,j′

h , am,ki,j′

h )
] .

We also introduce a new notation T̂ = MT that represents the total number of samples generated
by all the agents.

Next, we begin to introduce the lemmas. First, Lemma B.1 establishes some relationships between
some quantities used in Algorithms 1 and 2.

Lemma B.1. Denote C̃ = 1/(H(H + 1)). The following relationships hold for both algorithms.

(a) K ≤ K0.

(b) NK
h (x, a) ≤ T0/H .

(c) For any (x, a, h, k) ∈ S ×A× [H]× [K], we have

nm,k
h (x, a) ≤ max

{
1,

C̃Nk
h (x, a)

M

}
,∀m ∈ [M ]. (11)

and
nk
h(x, a) ≤ max{M, C̃Nk

h (x, a)}. (12)

If Nk
h (x, a) ≥ i0,

nk
h(x, a) ≤ C̃Nk

h (x, a).

(d) For any (x, a, h) ∈ S ×A× [H], NK+1
h (x, a) ≤ (1 + C̃)T0/H +M .

(e) T̂ ≤ (1 + C̃)T0 +HM .

Proof of Lemma B.1. (a)-(c) are obvious given Algorithms 1 and 4. (d) and (e) can be directly
obtained from (b) and (c).

Next, Lemma B.2 provides some properties about θit’s.

Lemma B.2. (Lemma 4.1 in Jin et al. (2018) and beyond) The following properties hold for all
t ∈ N+ for both algorithms.
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(a) 1/
√
t ≤

∑t
i=1 θ

i
t/
√
i ≤ 2/

√
t, which implies that βt ∈ [2c

√
H3ι/t, 4c

√
H3ι/t], ∀t ∈

N+.

(b) maxi∈[t] θ
i
t ≤ 2H/t.

(c)
∑t

i=1

(
θit
)2 ≤ 2H/t.

(d)
∑∞

t=i θ
i
t = 1 + 1/H.

(e) For any t ∈ N+ and i ∈ [t]− {t}, θi+1
t /θit = 1 +H/i > 1.

(f) For both algorithms, for any t ∈ N+ and (x, a, h) ∈ S × A × [H], if i1, i2 ∈ [t],
kh(i1, x, a) = kh(i2, x, a) and N

kh(i1,x,a)
h (x, a) ≥ i0 we have that θi1t /θi2t ≤ exp(1/H).

Proof of Lemma B.2. (a)-(e) are obvious based on θit’s definition and Lemma 4.1 in Jin et al. (2018).
For (f), denoting t0 = N

kh(i1,x,a)
h (x, a) + 1 and t1 = N

kh(i1,x,a)+1
h (x, a), based on (e), we have

θi1t /θi2t ≤ θt1t /θt0t =

t1−1∏
t′=t0

(1 +H/t′).

Based on (c) in Lemma B.1, we further have that
t1−1∏
t′=t0

(1 +H/t′) ≤ (1 +H/t0)
t1−t0 ≤ exp(H(t1 − t0)/t0) ≤ exp(1/H).

Next, we rigorously define the weights θ̃it mentioned in Section 4. For any (x, a, h,K ′) ∈ S ×A×
[H]× [K], we let t = NK′

h (x, a) and i ∈ [t]
⋃
{0}. Letting t′ = Nki

h (x, a) and t′′ = Nki+1
h (x, a),

we denote

θ̃it(x, a, h) = θitI[t′ < i0] +
1− αc(t′ + 1, t′′)

t′′ − t′
αc(t′′ + 1, t)I[t′ ≥ i0],

and we will use the simplified notation θ̃it when there is no ambiguity. Lemma B.3 provides proper-
ties of θ̃it and its relationship with θit.
Lemma B.3. The following relationships hold for any (x, a, h,K ′) ∈ S × A × [H] × [K] with
t = NK′

h (x, a) for both algorithms.

(a) θ̃it(x, a, h) = θ̃it′(x, a, h)α
c(t′ + 1, t) with t′ = N

kh(i;x,a)+1
h (x, a).

(b) For any i1, i2 ∈ [t], if kh(i1, x, a) = kh(i2, x, a) and N
kh(i1,x,a)
h (x, a) ≥ i0, we have that

θ̃i1t (x, a, h) = θ̃i2t (x, a, h).

(c) For any k′ ≤ K ′, we have that

Nk′+1
h (x,a)∑

i′=Nk′
h (x,a)+1

θ̃i
′

t (x, a, h) =

Nk′+1
h (x,a)∑

i′=Nk′
h (x,a)+1

θi
′

t ,

which indicates that
t∑

i=1

θ̃it = I[t > 0].

(d) For any i ∈ [t], when N
ki(x,a,h)
h (x, a) ≥ i0, we have that

(1 +H/(1 +Ni))
1−ni ≤ θ̃it/θ

i
t ≤ (1 +H/(1 +Ni))

ni−1
,

in which Ni = N
kh(i,x,a)
h (x, a) and ni = n

kh(i,x,a)
h (x, a).
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(e) For any i ∈ [t], when N
ki(x,a,h)
h (x, a) ≥ i0, we have that

θ̃it/θ
i
t ≤ exp(1/H).

Proof of Lemma B.3. (a)-(c) can be obtained directly through the definition of θ̃it. Next, we prove
(d) and (e). Denote t0 = N

kh(i,x,a)
h (x, a) + 1 and t1 = N

kh(i,x,a)+1
h (x, a). By (c) and (e) in

Lemma B.2, we have that θt0t1/θ
t1
t1 ≤ θ̃it/θ

i
t ≤ θt1t1/θ

t0
t1 . Then, (d) can be proved by noticing that

θt1t1/θ
t0
t1 ≤ (1 +H/(1 +Ni))

ni−1. This implies that (e) holds because of (c) in Lemma B.1.

C PROOF OF THEOREM 4.1

C.1 ROBUSTNESS AGAINST ASYNCHRONIZATION

In this subsection, we discuss a more general situation for Algorithms 1 and 2, where agent m
generates nm,k episodes during round k. We no longer assume that nm,k has the same value nk for
different clients. The difference can be caused by latency (the time gap between an agent sending
an abortion signal and other agents receiving the signal) and asynchronization (the heterogeneity
among clients on the computation speed and process of collecting trajectories). In this case, for K
rounds, the total number of samples generated by all the clients is

T̂ = H

K∑
k=1

M∑
m=1

nm,k.

Thus, we generalize the notation T = T̂ /M , which characterizes the mean number of samples
generated by an agent. Accordingly, the definition of Regret(T ) can be generalized as

Regret(T ) =
K∑

k=1

M∑
m=1

nm,k∑
j=1

V ⋆
1 (x

m,k,j
1 )− V πk

1 (xm,k,j
1 ),

Similarly, the definitions of nm,k
h (x, a), Nm,k

h (x, a), vm,k
h (x, a) are also generalized by replacing∑nk

j=1 with
∑nm,k

j=1 .

We note that Algorithms 1 and 2 naturally accommodate such asynchronicity. Therefore, in the
following analysis of the regret, we adopt the general notation nm,k. However, for the proof of
Theorem 4.2 pertaining to communication, we will maintain the synchronization assumption that
nm,k = nk,∀m ∈ [M ].

C.2 BOUNDS ON Qk
h −Q⋆

h

Lemma C.1. For Algorithms 1 and 2, there exists a positive constant c > 0 such that, for any
p ∈ (0, 1), the following relationship holds for all (x, a, h,K ′) ∈ S×A×[H]×[K] with probability
at least 1− p:

0 ≤ QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + βt, (13)

in which t = NK′

h (x, a).

We first provide Lemma C.2 to formally state Equation (14) and Equation (15), which establish the
relationship between Qk

h and Q⋆
h. The proof is the same as the proof of Equation (4.3) in Jin et al.

(2018).
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Lemma C.2. For the Hoeffding-type Algorithms 1 and 2 , for all (x, a, h,K ′) ∈ S×A× [H]× [K],
denoting t = NK′

h (x, a), we have

QK′

h (x, a) = θ0tH +

t∑
i=1

θ̃it

(
rh(x, a) + V ki

h+1(x
mi,ki,ji

h+1 )
)
+

t∑
i=1

θitbi, (14)

Q⋆
h(x, a) = θ̃0tQ

⋆
h +

t∑
i=1

θ̃it

(
rh(x, a) +

([
PhV

⋆
h+1

]
(x, a)− Ẽx,a,h,iV

⋆
h+1

)
+ Ẽx,a,h,iV

⋆
h+1

)
.

Furthermore, we have

(QK′

h −Q⋆
h)(x, a) = θ̃0t (H −Q⋆

h(x, a)) +

t∑
i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1

+

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) +

t∑
i=1

θitbi, (15)

(QK′

h −Q⋆
h)(x, a) = θ̃0t (H −Q⋆

h(x, a)) +

t∑
i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1

in which

Ex,a,hV
⋆
h+1 = Ex,a,hV

⋆
h+1(xh+1) = E

[
V ⋆
h+1(xh+1)|(xh, ah) = (x, a)

]
,

Ẽx,a,h,iV
⋆
h+1 = Ẽx,a,h,iV

⋆
h+1(xh+1) = V ⋆

h+1(x
mi,ki,ji

h+1 ).

With this lemma, we derive a probabilistic upper bound for |
∑t

i=1 θ̃
i
tXi| with Xi = (Ẽx,a,h,i −

Ex,a,h)V
⋆
h+1 in Lemma C.3.

Lemma C.3. There exists c0 > 0 such that, for any p ∈ (0, 1), with probability at least 1 − p, the
following relationship holds for all (x, a, h,K ′) ∈ S ×A× [H]× [K] with t = NK′

h (x, a):∣∣∣∣∣
t∑

i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1)

∣∣∣∣∣ ≤ c0
√

H3ι/t. (16)

Proof. For a given (x, a, h) ∈ S ×A× [H], denote Xi(x, a, h) = (Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1).

When there is no ambiguity, we use the simplified notation Xi = Xi(x, a, h). We know that
{Xi}∞i=1 is a sequence of martingale differences with |Xi| ≤ H . We decompose the summation
as follows:

t∑
i=1

θ̃itXi =

t∑
i=1

θitXi +

t∑
i=1

(θ̃it − θit)Xi.

Note that t ≤ T0/H .

First, we focus on the first term. By Azuma-Hoeffding Inequality, for any given (x, a, h) ∈ S×A×
[H] and a given t′ ∈ N+, for any p ∈ (0, 1), with probability 1−p, there exists a numerical constant
c1 > 0 such that ∣∣∣∣∣∣

t′∑
i=1

θit′Xi

∣∣∣∣∣∣ ≤ c1H

√√√√( t′∑
i=1

(θit′)
2

)
log

2

p
,

which indicates that
∣∣∣∑t′

i=1 θ
i
t′Xi

∣∣∣ ≤ c1√
2

√
(H3/t′) log 2

p based on (c) in Lemma B.2.

By considering all the possible combinations (x, a, h, t′) ∈ S × A × [H] × [T0/H], with a union
bound and the realization of t = t′, we have, for any p ∈ (0, 1), with at probability at least 1 − p,
the following relationship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K]:∣∣∣∣∣

t∑
i=1

θitXi

∣∣∣∣∣ ≤ c1√
2

√
(H3/t) log

2SAT0

p
≤ c1√

2

√
ι0H3/t.
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We then focus on the second term
∑t

i=1(θ̃
i
t−θit)Xi. For any given (x, a, h, ks) ∈ S×A×[H]×[K],

we consider the part with samples generated by the ks-th round, which is

t3∑
i=t2

(θ̃it3 − θit3)Xi,

in which t2 = Nks

h (x, a) + 1, t3 = Nks+1
h (x, a). We can control the second term by controlling

|
∑t3

i=t2
(θ̃it3 − θit3)Xi| for all ks ∈ [K].

We have
t∑

i=1

(θ̃it − θit)Xi =

K′−1∑
ks=1

[
t∏

t′=t3+1

(1− αt′)

]
t3∑

i=t2

(θ̃it3 − θit3)Xi. (17)

To begin with, we prove that there exists a numerical constant c3 > 0 such that√√√√ t3∑
i=t2

(θ̃it3 − θit3)
2 ≤ c3

t3∑
t′=t2

θt
′

t3/
√
t′. (18)

This relationship obviously holds when Nks

h (x, a) < i0 as LHS = 0. When Nks

h (x, a) ≥ i0, we
have √√√√ t3∑

i=t2

(θ̃it3 − θit3)
2 ≤ O

√√√√ t3∑
i=t2

H2(t3 − t2)2

t22
(θit3)

2

 ≤ O

(
H(t3 − t2)

3/2

t2
θt2t3

)
,

where the first inequality comes from (d) in Lemma B.3 and the second one comes from (f) in
Lemma B.2.

We also have that

O

(
H(t3 − t2)

3/2

t2
θt2t3

)
= O

(
H(t3 − t2)

1/2

√
t2

(t3 − t2)θ
t2
t3/
√
t2

)
= O

(
t3∑

t′=t2

θt
′

t3/
√
t′

)
,

where the second relationship comes from (f) in Lemma B.2. This completes the proof of Equa-
tion (18).

Next, we proceed with discussions conditioning on all the information before starting the ks-th
round, which means that Nks

h (x, a) and t2 can be treated as constants. If Nks

h (x, a) < i0, this
quantity is equal to 0. Otherwise, given any t′3 ≥ t2 and i ∈ [t2, t

′
3], we denote

θ̂t′3 =

1− t′3∏
t′=t2

(1− αt′)

 /(t′3 − t2 + 1),

Therefore, in the expression
∑t′3

i=t2
(θ̂t′3 − θit′3

)Xi, we can treat {Xt2 , Xt2+1 . . . Xt′3
} as martingale

differences and θit′3
s and θ̂t′3 as constants. Hence, by Azuma-Hoeffding Inequality, there exists a

positive numerical constant c2 such that, for any p ∈ (0, 1), with probability at least 1− p,∣∣∣∣∣∣
t′3∑

i=t2

(θ̂t′3 − θit′3)Xi

∣∣∣∣∣∣ ≤ c2H

√√√√log
2

p

t′3∑
i=t2

(θ̂t′3 − θit′3
)2.

By considering all possible values of t′3 with a union bound, we have that with probability at least
1−p, the following relationship holds simultaneously for any t2 ≤ t3 ≤ t2+(1+C̃)T0/H+M−1.∣∣∣∣∣∣

t′3∑
i=t2

(θ̂t′3 − θit′3)Xi

∣∣∣∣∣∣ ≤ c2H

√√√√log
2(T0/H +M)(1 + C̃)

p

t′3∑
i=t2

(θ̂t′3 − θit′3
)2.
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So, noticing that θ̂t′3 = θ̃it3 when t′3 = t3 and i ∈ [t2, t3] and applying Equation (18), we have that,
for any ks ∈ N+ and any p ∈ (0, 1), with probability at least 1− p,∣∣∣∣∣

t3∑
i=t2

(θ̃it3 − θit3)Xi

∣∣∣∣∣ ≤ c2c3H

√
log

2(T0/H +M)(1 + C̃)

p

t3∑
i=t2

θit3/
√
i.

We apply the union bound and claim that for any p ∈ (0, 1), the following relationship holds with
probability at least 1− p for all (x, a, h, ks) ∈ S ×A× [H]× [K0].∣∣∣∣∣

t3∑
i=t2

(θ̃it3 − θit3)Xi

∣∣∣∣∣ ≤ c2c3H

√
log

2SAHK0(T0/H +M)(1 + C̃)

p

t3∑
i=t2

θit3/
√
i

= c2c3H
√
ι1

t3∑
i=t2

θit3/
√
i.

Under this event, with Equation (17), we have that∣∣∣∣∣
t∑

i=1

(θ̃it − θit)Xi

∣∣∣∣∣ ≤ c2c3H

t∑
i=1

√
ι1θ

i
t/
√
i. (19)

By (a) in Lemma B.2, we have
∑t

i=1 θ
i
t/
√
i ≤

√
4/t. Combining the results for the two terms

completes the proof.

Finally, we provide the proof for Lemma C.1.

Proof of Lemma C.1. We pick c = c0 such that the event in Lemma C.3 holds. Under the event
given in Lemma C.3 and noting Equation (15), we claim the conclusion by using the same proof as
that for Lemma 4.3 in Jin et al. (2018).

C.3 PROOF OF THEOREM 4.1

Having proved Lemma C.1, we turn our attention to demonstrating the remaining parts of the proof.
We use nm,k to denote the number of episodes by agent m in round k.

We first provide some additional notations. Define

δkh =

M∑
m=1

nm,k∑
j=1

(
V k
h − V πk

h

)
(xm,k,j

h ),

ϕk
h =

M∑
m=1

nm,k∑
j=1

(
V k
h − V ⋆

h

)
(xm,k,j

h ),∀h ∈ [H + 1],

in which δkH+1 = ϕk
H+1 = 0. We also define

ξkh+1 =

M∑
m=1

nm,k∑
j=1

(P− P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ), h ∈ [H]

with ξkH+1 = 0. Here,

(P)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) = E

[(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h+1 )|(πk, xm,k,j
h , am,k,j

h )
]
,

and
(P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) =

(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h+1 ).

We first provide a Lemma related to ξkh+1.
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Lemma C.4. There exists a numerical constant c5 > 0 such that, for any p ∈ (0, 1), with probability
at least 1− p, ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ c5H
√
T̂ ι, (20)

where Ch = exp(3(h− 1)/H).

Proof. Denote V (m, k, j, h) = Ch(P − P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) and use

∑
m,k,j,h as

a simplified notation for
∑K

k=1

∑M
m=1

∑nm,k

j=1

∑H−1
h=1 . The quantity of interest can be rewritten as∑

m,k,j,h V (m, k, j, h), with |V (m, k, j, h)| ≤ O(H) as Ch ≤ exp(3).

Let Ṽ (̃i) be the ĩ-th term in the summation that contains T̂ (H − 1)/H terms, in which the order
follows a “round first, episode second, step third, agent fourth” rule. Then the sequence {Ṽ (̃i)}
is a martingale difference. By Azuma-Hoeffding Inequality, for any p ∈ (0, 1) and t ∈ N+, with
probability at least 1− p, ∣∣∣∣∣∣

t∑
ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O

(
H

√
t log

2

p

)
.

Then by applying a union bound over t ∈ [(1 + C̃)T0 + HM ] and knowing that T̂ (H − 1)/H ≤
T0(1 + C̃) + HM due to (e) in Lemma B.1, we have that, for any p ∈ (0, 1), with probability at
least 1− p, ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ =
∣∣∣∣∣∣
T̂ (H−1)/H∑

ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O(H
√

T̂ ι).

This completes the proof.

Noticing that Regret(T ) ≤
∑K

k=1 δ
k
1 due to Regret(T ) =

∑K
k=1 δ

k
1 −

∑K
k=1 ϕ

k
1 and ϕk

1 ≥ 0 shown
in Equation (13), we attempt to establish a probability upper bound for

∑K
k=1 δ

k
1 . First, we have

δkh ≤
M∑

m=1

nm,k∑
j=1

(Qk
h −Q⋆

h)(x
m,k,j
h , am,k,j

h ) +

M∑
m=1

nm,k∑
j=1

(Q⋆
h −Qπk

h )(xm,k,j
h , am,k,j

h ), (21)

which holds because V πk

h (xm,k,j
h ) = Qπk

h (xm,k,j
h , am,k,j

h ) and

V k
h

(
xm,k,j
h

)
≤ max

a′∈A
Qk

h

(
xm,k,j
h , a′

)
= Qk

h

(
xm,k,j
h , am,k,j

h

)
.

Next, we attempt to bound the terms in RHS of Equation (21) separately. Our discussions are
based on the events outlined in Lemma C.1. For any given h, denote tm,k,j

h = Nk
h (x

m,k,j
h , am,k,j

h )
and the corresponding k,m, j (round index, agent index, and episode index) for the i-th global
visiting for (xm,k,j

h , am,k,j
h , h) are km,k,j

i,h ,mm,k,j
i,h , jm,k,j

i,h , i = 1, 2 . . . tm,k,j
h . For the first term, due

to Equation (13), we have

M∑
m=1

nm,k∑
j=1

(Qk
h −Q⋆

h)(x
m,k,j
h , am,k,j

h )

≤
M∑

m=1

nm,k∑
j=1

θ̃0
tm,k,j
h

H +

M∑
m=1

nm,k∑
j=1

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

+

M∑
m=1

nm,k∑
j=1

βtm,k,j
h

. (22)
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For the second term, due to Equation (1),

M∑
m=1

nm,k∑
j=1

(Q⋆
h −Qπk

h )(xm,k,j
h , am,k,j

h ) = δkh+1 − ϕk
h+1 + ξkh+1. (23)

Next, we try to find some bounds related to
∑K

k=1 δ
k
h. For notation simplicity, we use

∑
m,k,j to

represent
∑K

k=1

∑M
m=1

∑nm,k

j=1 . We can prove the following relationships with details referred to
Appendix C.4:∑

m,k,j

θ̃0
tm,k,j
h

H ≤MHSA. (24)

∑
m,k,j

tm,k,j
h∑
i=1

θi
tm,k,j
h

(V
km,k,j
i

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i

h+1 ) ≤ e3/H
K∑

k=1

ϕk
h+1 +O(H3SA(M − 1)).

(25)

K∑
k=1

M∑
m=1

nm,k
h∑
j=1

βtm,k,j
h

≤ O(
√
H2ιT̂SA+ SA(M − 1)

√
H3ι). (26)

Combining Equations (22) to (26), we have that for any h ∈ [H],

K∑
k=1

δkh ≤ exp(3/H)

K∑
k=1

ϕk
h+1 +

K∑
k=1

δkh+1 −
K∑

k=1

ϕk
h+1 +

K∑
k=1

ξkh+1

+O
(√

H2ιT̂SA+ SA(M − 1)
√
H3ι+MHSA+H3SA(M − 1)

)
.

Noticing that δkh ≥ ϕk
h,∀(h, k) ∈ [H] × [K] due to the optimality of π⋆ and exp(3/H)H = O(1),

by recursions on 1, 2 . . . H , we have
K∑

k=1

δk1 ≤
H−1∑
h=1

Ch

K∑
k=1

ξkh+1

+O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
,

in which Ch = exp(3(h− 1)/H). With Lemma C.4, we can also show that, with high probability,∣∣∣∣∣
K∑

k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ O(H
√

T̂ ι). (27)

This indicates that
∑K

k=1 δ
k
1 = O(

√
H4ιT̂SA+HSA(M−1)

√
H3ι+MH2SA+H4SA(M−1)).

With these discussions, we have already shown that, under the intersection of events given in Lemma
C.1 and Lemma C.4,

Regret(T ) ≤
K∑

k=1

δk1

≤ O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
.

By replacing p for the events in Lemma C.1 and Lemma C.4 with p/2, we finish the proof.

C.4 PROOFS OF EQUATIONS (24) TO (26)

In this subsection, we try to give bounds the terms in RHS of Equation (21) separately. We make
discussions based on the intersection of events given in Lemma C.1 and Lemma C.4. Under these
events, we have already shown that Equation (22), Equation (23) and Equation (27) hold. So, we
will provide the proof by establishing Equations (24) to (26).

23



Published as a conference paper at ICLR 2024

Proof of Equation (24). First, we note that∑
m,k,j

θ̃0
tm,k,j
h

H ≤
∑
m,k,j

H · I[tm,k,j
h = 0].

For each (x, a, h) ∈ S×A×[H], we consider all the rounds indexed as 0 < k1 < k2 < ... satisfying
the condition nk

h(x, a) > 0. Here, kss are simplified notations for functions of (x, a, h), and we use
the simplified notations when there is no ambiguity and the stated meaning of these notations is
applicable only to the proof of Equation (24). So,∑

m,k,j

I[tm,k,j
h = 0]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ nk1

h (x, a).

As Nk1

h (x, a) = 0, due to Equation (12), we have nk1

h (x, a) ≤M . Therefore,∑
m,k,j

θ̃0
tm,k,j
h

H =
∑

(x,a)∈S×A

∑
m,k,j

HI[tm,k,j
h = 0]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤MHSA.

This completes the proof for Equation (24).

Proof of Equation (25). We denote i1 = (M−1)H(H+1) and split the summation into two parts:

∑
k,m,j

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

=
∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

+
∑
m,k,j

I[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ).

To bound the first term, we first notice that∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) ≤ H ·
∑
m,k,j

I[0 < tm,k,j
h ≤ i1]

due to the fact that (V
km,k,j
i,h

h+1 −V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) ≤ H and
∑tm,k,j

h
i=1 θ̃i

tm,k,j
h

= I[tm,k,j
h > 0] given

in (c) in Lemma B.3. For every (x, a, h) ∈ S × A × [H], suppose that k′ is the round index such
that Nk′

h (x, a) ≤ i1 and Nk′+1
h (x, a) > i1, and k′′ is the round index such that Nk′′

h (x, a) = 0 and
Nk′′+1

h (x, a) > 0. Here, k′ and k′′ are simplified notations for functions of (x, a, h), and we use the
simplified notations when there is no ambiguity and the stated meaning is only valid in the proof of
Equation (25).

We have ∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ i1 + nk′

h (x, a)− nk′′

h (x, a).

As nk′′

h (x, a) ≥ 1 and nk′

h (x, a) ≤M due to Nk′

h (x, a) < i0 and Equation (12),∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ i1 + (M − 1) = O

(
H2(M − 1)

)
.

So, ∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

≤ H
∑

(x,a)∈S×A

∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)]

= O
(
H3SA(M − 1)

)
. (28)
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To bound the second term, we first notice that V
km,k,j
i,h

h+1 − V ⋆
h+1 ≥ 0 due to Equation (13). Then we

regroup the summations in a different way. For every (m′, k′, j′), the term (V k′

h+1−V ⋆
h+1)(x

m′,k′,j′

h+1 )

appears in the term I[tm,k,j
h > i1]

∑tm,k,j
h
i=1 θi

tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) for (k,m, j) if

and only if k > k′ and (xm,k,j
h , am,k,j

h ) = (xm′,k′,j′

h , am
′,k′,j′

h ). Thus, for each (m′, k′, j′), we
denote (x, a) = (xm′,k′,j′

h , am
′,k′,j′

h ). We consider all the later round indices k′ = k0 < k1 <

k2 < ... that satisfy ns = nks

h (x, a) > 0, s ∈ N. Here, ks’s are simplified notations for functions
of (m′, k′, j′, h), and we use the simplified notations when there is no ambiguity and the stated
meaning is only valid in proof of Equation (25). Then, the coefficient of summation related to
(m′, k′, j′) can be upper bounded by

∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

,

in which i′ is the global visiting number for (x, a, h) at (m′, k′, j′), which means that (m′, k′, j′) =
mh(i

′;x, a), kh(i
′;x, a), jh(i

′;x, a).

First, based on (e) in Lemma B.3, we have that
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ exp(1/H)

∞∑
s=1

I[Nks

h (x, a) > i1]nsθ
i′

Nks
h (x,a)

.

We know that, Nks

h (x, a) + ns = N
ks+1

h (x, a), i′ ≤ Nk1

h (x, a), and by (d) in Lemma B.2,∑∞
i=i′ θ

i′

i = (1 + 1/H). Therefore, if we can find C ′ > 1 such that

C ′ ≥ max
(i′,i′′)∈Ã

θi
′

Nks
h (x,a)

θi
′

Nks
h (x,a)+i′′

,∀(x, a, h, s) ∈ S ×A× [H]× N,

where Ã = {(i′, i′′) ∈ N2 : Nks

h (x, a) > i1, 0 < i′′ < ns}, we can have
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ C ′ exp(2/H).

Next, we prove that, for any (i′, i′′) ∈ Ã, if Nks

h (x, a) > i1,

θi
′

Nks
h (x,a)

θi
′

Nks
h (x,a)+i′′

≤
θi

′

Nks
h (x,a)

θi
′

Nks
h (x,a)+ns−1

=

Nks
h (x,a)+ns−1∏

d=Nks
h (x,a)+1

(1− αd)
−1

≤ (1− αd0)
1−ns

≤ exp(1/H),

in which d0 = Nks

h (x, a) + 1 so that we can let C ′ = exp(1/H). The first inequality holds because
θit = αi

∏t
i′=i+1(1 − αi′) is a decreasing function with respect to t. The equality follows from

the definition of θit. The second inequality holds because αt =
H+1
H+t is a decreasing function with

respect to t. Then we focus on the last inequality. According to the definition of αt, we have

(1− αd0
)1−ns =

(
1− H + 1

H +Nks

h (x, a) + 1

)1−ns

=

(
1 +

H + 1

Nks

h (x, a)

)ns−1

.

If Nks

h (x, a) > MH(H + 1), according to Equation (12), we have that ns ≤
Nks

h (x,a)

H(H+1) . Then we
have (

1 +
H + 1

Nks

h (x, a)

)ns−1

≤

(
1 +

H + 1

Nks

h (x, a)

)N
ks
h

(x,a)

H(H+1)

≤ exp(1/H).
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If i1 < Nks

h (x, a) ≤MH(H + 1), we can prove that(
1 +

H + 1

Nks

h (x, a)

)ns−1
(a)

≤

(
1 +

H + 1

Nks

h (x, a)

)M−1

(b)
<

(
1 +

1

H(M − 1)

)M−1

≤ exp(1/H)

where (a) holds because according to Equation (12) we have ns ≤ M and (b) holds because
Nki

h (x, a) > (M − 1)H(H + 1).

Putting the two cases together, we have
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ exp(1/H) exp(2/H) ≤ exp(3/H).

Then we conclude that

∑
m,k,j

I[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

≤ exp

(
3

H

) ∑
m′,k′,j′

(
V k′

h+1 − V ⋆
h+1

)
(xm′,k′,j′

h+1 )

= exp

(
3

H

) K∑
k=1

ϕk
h+1.

Combining with Equation (28), we complete the proof for Equation (25).

Proof of Equation (26). We split the summation into two parts:∑
m,k,j

βtm,k,j
h

=
∑
m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] +

∑
m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ].

For every pair (x, a, h), we consider all the rounds indexed as 0 < k1 < k2 < ... satisfying the
condition ns = nks

h (x, a) > 0. Suppose that kp is the round index such that Nkp

h (x, a) ≤ M − 1

and N
kp+1(x,a,h)
h (x, a) > M − 1. Here, kss and p are simplified notations for functions of (x, a, h),

and we use the simplified notations when there is no ambiguity and the stated meaning is only valid
in the proof of Equation (26).

To bound the first term, we use the fact that βtm,k,j
h

≤ O(1)
√
H3ι. Then we have∑

m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] ≤ O(1)

√
H3ι

∑
m,k,j

I[0 < tm,k,j
h ≤M − 1]

and ∑
m,k,j

I[0 < tm,k,j
h ≤M − 1] ≤

∑
(x,a)∈S×A

(
M − 1 + n

kp

h (x, a)− nk1

h (x, a)
)
.

It is straightforward that nk1

h (x, a) ≥ 1. Additionally, due to Equation (12), we can establish that
n
kp

h (x, a) ≤M . Therefore∑
m,k,j

I[0 < tm,k,j
h ≤M − 1] ≤ 2SA(M − 1)

and ∑
m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] = O(SA(M − 1)

√
H3ι). (29)
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To establish bounds for the second term, we define some notions first. For every pair (x, a, h) ∈
S × A × [H], we consider all the rounds indexed as 0 < k̃1 < k̃2 < ... < k̃g ≤ K satisfying
nk̃s

h (x, a) > 0, N k̃1

h (x, a) ≥M and N k̃1−1
h (x, a) < M . Here, k̃ss and g are simplified notations for

functions of (x, a, h), and we use the simplified notations when there is no ambiguity and the stated
meaning is only valid in proof of Equation (26). Then we have∑

m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ] = O(1)

∑
(x,a)∈S×A

g∑
s=1

nk̃s

h (x, a)

√
H3ι

N k̃s

h (x, a)
.

Firstly, we prove that

∑
(x,a)∈S×A

g∑
s=1

nk̃s
h (x,a)∑
j′′=1

√
H3ι

N k̃s

h (x, a) + j′′ − 1
= O(1)

∑
(x,a)∈S×A

√
H3ι(N

k̃g

h (x, a) + n
k̃g

h (x, a)− 1)

= O(1)
∑

(x,a)∈S×A

√
H3ιNK+1

h (x, a)

(a)

≤ O(
√
H2ιT̂SA)

where (a) holds because of the concavity of f(x) =
√
H3ιx and the fact that∑

(x,a)∈S×A NK+1
h (x, a) ≤ T̂ /H .

Then we bound
1

/√
N k̃s

h (x,a)

1

/√
N k̃s

h (x,a)+d

. If we can find some numerical constant C ′′ > 1 such that

C ′′ ≥ max
(j,d)∈B̃

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

,∀(x, a, h) ∈ S ×A× [H],

in which B̃ = {(s, d) ∈ N2 : 1 ≤ s ≤ g, 1 ≤ d ≤ nk̃s

h (x, a)− 1}, then we can have∑
m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ] = O(1)

∑
(x,a)∈S×A

g∑
s=1

nk̃s

h (x, a)

√
H3ι

N k̃s

h (x, a)

≤ O(C ′′)
∑

(x,a)∈S×A

g∑
s=1

nk̃s
h (x,a)∑
j′′=1

√
H3ι

N k̃s

h (x, a) + j′′ − 1

= O(
√
H2ιT̂SA). (30)

Next, we will prove that we can choose C ′′ =
√
2. We notice that

max
d∈[nk̃s

h (x,a)−1]

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

=

√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
.

If M ≤ N k̃s

h (x, a) < i0, according to Equation (12), ñj(x, a) ≤M , which indicates that√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
≤
√
2.

If N k̃j(x,a,h)
h (x, a) ≥ i0, according to Equation (12), nk̃s

h (x, a) ≤ C̃N k̃s

h (x, a)√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
≤
√

1 + C̃ ≤
√
2.

So, we can choose C ′′ =
√
2.

Combining Equation (29) and Equation (30), we obtain Equation (26).
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D PROOF OF THEOREM 4.2

Proof of Theorem 4.2. This theorem is proved under the synchronization assumption, i.e., nm,k =
nk,∀m ∈ [M ]. We only need to prove that when k ≥ H2(H + 1)SAM ,[(

1 +
1

2H(H + 1)M

)⌈K/(HSA)⌉−H(H+1)M
]
H2(H + 1)M2 ≤ T̂ .

For each k ∈ [K], there exists at least one (x,m, h) ∈ S × [M ] × [H] with a = πk
h(x) such that

equality in Equation (11) holds. Thus, there exist at least K different tuples of (x, a, h,m, k) ∈ S ×
A× [H]× [M ]× [K] such that equality in Equation (11) holds. Define setK to have all the different
k’s satisfying that there exists m ∈ [M ] such that the equality in Equation (11) holds. Then, by
Pigeonhole principle, there must exist a triple (x, a, h) ∈ S×A×[H] such that |K| ≥ ⌈K/(HSA)⌉.
We order the elements of K as 0 < k1 < k2 . . . < kg ≤ K, where g ≥ ⌈K/(HSA)⌉. We also
denote Ns = Nks+1

h (x, a), ms as the first agent index such that equality in Equation (11) holds, and
ns = nms,ks

h (x, a). Due to the synchronization assumption, we have

T̂ ≥ HM

g∑
s=1

ns. (31)

When Ns ≥ H(H + 1)M , we have that

Ns ≥
s∑

s′=1

ns′ , ns+1 ≥ C̃Ns/(2M)

due to Equation (11) and
⌊

s′

H(H+1)M

⌋
≥ s′

2H(H+1)M ,∀s′ ≥M(H + 1)H.

Thus, we have that
∑H(H+1)M

s=1 ns ≥ H(H + 1)M and

s+1∑
s′=1

ns′ ≥
s∑

s′=1

ns′ + C̃Ns/(2M) ≥ (1 + C̃/(2M))

s∑
s′=1

ns′ , s ≥ H(H + 1)M.

Therefore,
g∑

s′=1

ns′ ≥
[(

1 + C̃/(2M)
)g−H(H+1)M

]
H(H + 1)M

≥
[(

1 + C̃/(2M)
)⌈K/(HSA)⌉−H(H+1)M

]
H(H + 1)M.

Combining with Equation (31), we have[(
1 +

1

2H(H + 1)M

)⌈K/(HSA)⌉−H(H+1)M
]
H2(H + 1)M2 ≤ T̂ ,

which directly leads to the conclusion.

E THE BERNSTEIN-TYPE ALGORITHM

E.1 ALGORITHM DESIGN

The Bernstein-type algorithm differs from the Hoeffding-type algorithm Algorithms 1 and 2, in that
it selects the upper confidence bound based on a variance estimator of Xi, akin to the approach used
in the Bernstein-type algorithm in Jin et al. (2018). This is done to determine a probability upper
bound of |

∑t
i=1 θ

i
tXi|. In this subsection, we first introduce the algorithm design.
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To facilitate understanding, we introduce additional notations exclusive to Bernstein-type algo-
rithms, supplementing the already provided notations for the Hoeffding-type algorithm.

µm,k
h (x, a) =

1

nm,k
h (x, a)

nm,k∑
j=1

[
V k
h+1

(
xm,k,j
h+1

)]2
I[(xm,k,j

h , am,k,j
h ) = (x, a)].

µk
h(x, a) =

1

Nk+1
h (x, a)−Nk

h (x, a)

M∑
m=1

µm,k
h (x, a)nm,k

h (x, a).

Here, µm,k
h (x, a) is the sample mean of

[
V k
h+1(x

m,k,j
h+1 )

]2
for all the visits of (x, a, h) for the m−th

agent during the k−th round and µk
h(x, a) corresponds to the mean for all the visits during the k−th

round. We emphasize here that we adopt the general notation nm,k in the definition of µm,k
h . We

define Wk(x, a, h) to denote the sample variance of all the visits before the k−th round, calculated
using V ki

h+1(x
mi,ki,ji

h+1 ), i.e.

Wk(x, a, h) =
1

Nk
h (x, a)

Nk
h (x,a)∑
i=1

V ki

h+1(x
mi,ki,ji

h+1 )− 1

Nk
h (x, a)

Nk
h (x,a)∑
i′=1

V ki

h+1(x
mi,ki,ji

h+1 )

2

.

We can find that

Wk(x, a, h) =
1

Nk
h (x, a)

k−1∑
k′=1

µk′

h (x, a)nk′

h (x, a)−

[
1

Nk
h (x, a)

k−1∑
k′=1

vk
′

h+1(x, a)n
k′

h (x, a)

]2
,

which means that this quantity can be calculated efficiently in practice in the following way. Define

W1,k(x, a, h) =

k−1∑
k′=1

µk′

h (x, a)nk′

h (x, a),W2,k(x, a, h) =

k−1∑
k′=1

vk
′

h+1(x, a)n
k′

h (x, a), (32)

we have that
W1,k+1(x, a, h) = W1,k(x, a, h) + µk

h(x, a)n
k
h(x, a), (33)

W2,k+1(x, a, h) = W2,k(x, a, h) + vkh+1(x, a)n
k
h(x, a) (34)

and

Wk+1(x, a, h) =
W1,k+1(x, a, h)

Nk+1
h (x, a)

−

[
W2,k+1(x, a, h)

Nk+1
h (x, a)

]2
. (35)

This indicates that the central server, by actively maintaining and updating the quantities W1,k and
W2,k and systematically collecting nm,k

h s, µm,k
h s and vm,k

h+1s, is able to compute Wk+1.

Next, we define

βt(x, a, h) = c′

(
min

{√
Hι

t
(Wkt+1(x, a, h) +H) + ι

√
H7SA+

√
MSAH6

t
,

√
H3ι

t

})
,

in which c′ > 0 is a positive constant. Here, Wkt+1(x, a, h) = W t(x, a, h) which is mentioned in
Section 5. With this, the upper confidence bound bt(x, a, h) for a single visit is determined by

βt(x, a, h) = 2

t∑
i=1

θitbt(x, a, h),

which can be calculated as follows:

b1(x, a, h) :=
β1(x, a, h)

2
,

bt(x, a, h) :=
βt(x, a, h)− (1− αt)βt−1(x, a, h)

2αt
.
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When there is no ambiguity, we adopt the simplified notation b̃t = bt(x, a, h) and β̃t = βt(x, a, h).
In the Bernstein-type algorithm, we let β̃ = βtk(x, a, h)−αc(tk−1 +1, tk)βtk−1(x, a, h) in replace
of βk in Equation (3) and Equation (4). We know that β̃t ≤ βt when c = c′, indicating that the
Bernstein-type algorithm operates with a smaller upper confidence bound.

Next, we will delve into certain components of the algorithm in round k. We remark that we dis-
cuss our algorithm based on the general situation where there is no necessity for zero latency and
synchronization assumptions. In this general scenario, agent m generates nm,k episodes in round k.

Coordinated Exploration for Agents. At the beginning of round k, the server decides a determin-
istic policy πk = {πk

h}Hh=1, and then broadcasts it along with {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h
to all of the agents. When k = 1, N1

h(x, a) = 0, Q1
h(x, a) = V 1

h (x) = H,∀(x, a, h) ∈ S ×A× [H]
and π1 is an arbitrary deterministic policy.

Once receiving such information, the agents will execute policy πk and start collecting trajectories.

Event-Triggered Termination of Exploration. During exploration, every agent m will monitor
nm,k
h (x, a), i.e., the total number of visits for each (x, a, h) triple within the current round. For any

agent m, at the end of each episode, it sequentially conducts two procedures. First, if any (x, a, h)

has been visited by max
{
1, ⌊ C̃MNk

h (x, a)⌋
}

times by agent m, it will abort its own exploration and
send an abortion signal to the server and other clients. Second, it checks whether it has received an
abortion signal. If so, it will abort its exploration. We remark that Equation (2) still holds, and for
any k ∈ [K], there exists a tuple (x, a, h) such that the equality is met.

Local Updating of the Estimated Expected Return. Each agent updates the local esti-
mate of the expected return vm,k

h+1(x, a) at the end of round k. Next, each agent m sends
{rh(x, πk

h(x))}x,h,{nm,k
h (x, πk

h(x))}x,h, {vm,k
h+1(x, π

k
h(x))}x,h and {µm,k

h (x, πk
h(x))}x,h to the cen-

tral server for aggregation.

Server-side Information Aggregation. After receiving the information sent by the agents, for each
(x, a, h) tuple visited by the agents, the server first calculates W1,k+1(x, a, h), W2,k+1(x, a, h) and
Wk+1(x, a, h) based on Equation (32), Equation (33), Equation (34) and Equation (35) for each pair
(x, h) with a = πk

h(x). Then it sets tk−1 = Nk
h (x, a), t

k = Nk+1
h (x, a), αagg = 1−αc(tk−1+1, tk)

and β̃ = βtk(x, a, h)− αc(tk−1 + 1, tk)βtk−1(x, a, h), and updates the global estimate of the value
functions according to one of the following two cases.

• Case 1: Nk
h (x, a) < i0. Due to Equation (2), this case implies that each client can visit each

(x, a) pair at step h at most once. Then, we denote 1 ≤ m1 < m2 . . . < mtk−tk−1 ≤ M as the
agent indices with nm,k

h (x, a) > 0. The server then updates the global estimate of action values
as follows:

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αaggrh(x, a) +

tk−tk−1∑
t=1

θt
k−1+t
tk

vmt,k
h+1 (x, a) + β̃/2. (36)

• Case 2: Nk
h (x, a) ≥ i0. In this case, the central server calculates vkh+1(x, a) as and updates the

Q-estimate as

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αagg

(
rh(x, a) + vkh+1(x, a)

)
+ β̃/2. (37)

After finishing updating the estimated Q function, the central server updates the estimated value
function and the policy based on Equations (5) and (6). The algorithm then proceeds to round k+1.

Algorithms 3 and 4 formally present the Bernstein-type design. Inputs K0 and T0 in Algorithms
3 are termination conditions, where K0 limits the total number of rounds and T0 limits the total
number of samples generated by all the agents before the last round.

We provide some remarks. First, the coordinated exploration for agents is designed based on the
general situation where nm,k might be different across different agents, and clients share µm,k

h s in
addition to the information shared during the coordinated exploration in the Hoeffding-type Algo-
rithm 2. Second, the information aggregation at the central server differs from that in the Hoeffding-
type Algorithm 1, in terms of specifying β̃ to set the upper confidence bound and in maintaining
W1,k,W2,k and Wk.
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Algorithm 3 FedQ-Bernstein (Central Server)
1: Input: T0,K0 ∈ N+.
2: Initialization: k = 1, N1

h(x, a) = W1,k(x, a, h) = W2,k(x, a, h) = 0, Q1
h(x, a) = V 1

h (x) =
H,∀(x, a, h) ∈ S×A× [H] and π1 =

{
π1
h : S → A

}
h∈[H]

is an arbitrary deterministic policy.

3: while H
∑k−1

k′=1 Mnk′
< T0 & k ≤ K0 do

4: Broadcast πk, {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h to all clients.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive {rh(x, πk

h(x))}x,h,{nm,k
h (x, πk

h(x))}x,h,m, {vm,k
h+1(x, π

k
h(x))}x,h,m and

{µm,k
h (x, πk

h(x))}x,h,m from clients.
7: Calculate Nk+1

h (x, a), nk
h(x, a), v

k
h+1(x, a),∀(x, h) ∈ S × [H] with a = πk

h(x).
8: Calculate Wk(x, a, h),Wk+1(x, a, h),W1,k+1(x, a, h),W2,k+1(x, a, h), ∀(x, h) ∈ S × [H]

with a = πk
h(x) based on Equation (32), Equation (33), Equation (34) and Equation (35).

9: for (x, a, h) ∈ S ×A× [H] do
10: if a ̸= πk

h(x) or nk
h(x, a) = 0 then

11: Qk+1
h (x, a)← Qk

h(x, a).
12: else if Nk

h (x, a) < i0 then
13: Update Qk+1

h (x, a) according to Equation (36).
14: else
15: Update Qk+1

h (x, a) according to Equation (37).
16: end if
17: end for
18: Update V k+1

h and πk+1 according to Equation (5) and Equation (6).
19: k ← k + 1.
20: end while

Algorithm 4 FedQ-Bernstein (Agent m in round k)
1: nm

h (x, a) = vmh+1(x, a) = rh(x, a) = µm
h (x, a) = 0,∀(x, a, h) ∈ S ×A× [H].

2: Receive πk, {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h from the central server.
3: while no abortion signal from the central server do
4: while nm

h (xh, ah) < max
{
1, ⌊ C̃MNk

h (xh, ah)⌋
}
,∀(x, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(xh, ah, rh)}Hh=1 with ah = πk
h(xh).

6: nm
h (xh, ah) ← nm

h (xh, ah) + 1, vmh+1(xh, ah) ← vmh+1(xh, ah) + V k
h+1(xh+1),

µm
h (xh, ah)← µm

h (xh, ah) +
[
V k
h+1(xh+1)

]2
, and rh(xh, ah)← rh,∀h ∈ [H].

7: end while
8: Send an abortion signal to the central server.
9: end while

10: nm,k
h (x, a) ← nm

h (x, a), vm,k
h+1(x, a) ← vmh+1(x, a)/n

m
h (x, a) and µm,k

h (x, a) ←
µm
h (x, a)/nm

h (x, a),∀(x, h) ∈ S × [H] with a = πk
h(x).

11: Send {rh(x, πk
h(x))}x,h,{nm,k

h (x, πk
h(x))}x,h, {µm,k

h (x, πk
h(x))}x,h and {vm,k

h+1(x, π
k
h(x))}x,h

to the central server.

E.2 PROOF OF THEOREM 5.1

In this subsection, we provide proof for Theorem 5.1 which provides the regret of Algorithms 3
and 4.

E.2.1 BOUNDS ON Qk
h −Q⋆

h

We first try to provide a Lemma that has stronger results than Lemma C.1.

Lemma E.1. Using Algorithms 3 and 4, there exists a positive constant c′ > 0 such that, for any
p ∈ (0, 1), the following relationship holds simultaneously for all (x, a, h,K ′) ∈ S×A× [H]× [K]
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with probability at least 1− p.

0 ≤ QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + βt(x, a, h), (38)

in which t = NK′

h (x, a).

The remaining content of Appendix E.2.1 is dedicated to proving this Lemma. First, we can easily
find that Lemma C.2 still holds with bt, βt replaced by b̃t, β̃t, and Lemma C.3 still holds. Next, due
to Equation (16) and Equation (15) with bt, βt replaced, we can easily obtain a similar one-sided
result summarized in the following Lemma.

Lemma E.2. Using the Bernstein-type algorithm, there exists a positive constant c′0 > 0 such
that, for any p ∈ (0, 1), the following relationship holds simultaneously for all (x, a, h,K ′) ∈
S ×A× [H]× [K] with probability at least 1− p.

QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + c′0
√

H3ι/t, (39)

in which t = NK′

h (x, a).

Proof. This relationship can be directly obtained from Equation (16) and Equation (15) with bt, βt

replaced.

With this, we can introduce the following technical Lemma.

Lemma E.3. Suppose that Equation (39) holds. For any given K ′ ∈ N, denote
∑K′

m,k,j =∑K′

k=1

∑M
m=1

∑nm,k
h

j=1 and w = vec({wmkj}) with m ∈ [M ], k ∈ [K ′], j ∈ [nm,k] be a non-negative
vector. Then there exists a numerical constant c′1 > 0 such that, for all (h,K ′) ∈ [H]× [K],

K′∑
m,k,j

wmkj

(
V k
h (xm,k,j

h )− V ⋆
h (x

m,k,j
h )

)
≤ c′1

(
∥w∥∞MSA

√
H5ι+

√
SA∥w∥∞∥w∥1H5ι+H4SA(M − 1)∥w∥∞

)
. (40)

Proof. We denote
Ṽ m,k,j
h = V k

h (xm,k,j
h )− V ⋆

h (x
m,k,j
h ).

Noticing that Qk
h

(
xm,k,j
h , am,k,j

h

)
≥ V k

h

(
xm,k,j
h

)
and Q⋆

h

(
xm,k,j
h , am,k,j

h

)
=

maxa∈A Q⋆
h

(
xm,k,j
h

)
≤ V ⋆

h

(
xm,k,j
h

)
, letting k = K ′ and (x, a) = (xm,k,j

h , am,k,j
h ), we

have that

Ṽ m,k,j
h ≤ θ0

tm,k,j
h

H +

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 + c′0

√
H3ι/tm,k,j

h .

Taking the summation with regard to k from 1 to K ′ and noticing that θ0
tm,k,j
h

= I[tm,k,j
h > 0], we

have

K′∑
m,k,j

wmkj Ṽ
m,k,j
h ≤ H

K′∑
m,k,j

wmkjI[tm,k,j
h = 0] +

∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θi
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1

+

K′∑
m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
.

Next, we find upper bounds with regard to the three terms.
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Step 1: finding an upper bound for H
∑K′

m,k,j wmkjI[tm,k,j
h = 0]. Noticing that wmkj ≤ ∥w∥∞,

using the same way as Proof of Equation (24) in Appendix C.4, we can find that

H
∑
m,k,j

wmkjI[tm,k,j
h = 0] ≤MHSA∥w∥∞.

Step 2: finding an upper bound for
∑K′

m,k,j wmkj

∑tm,k,j
h
i=1 θ̃i

tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 . Similar to Proof of

Equation (25) in Appendix C.4, with i1 = (M − 1)H(H + 1), we still split it into two parts as
follows:

K′∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 =

K′∑
m,k,j

wmkjI[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1

+

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 .

For the first part, applying wmkj ≤ ∥w∥∞, using the same way as Proof of Equation (25) in Ap-
pendix C.4, we can find that

K′∑
m,k,j

wmkjI[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 ≤ O(H3SA(M − 1)∥w∥∞).

For the second part, we regroup the summations in a different way. For every (m′, k′, j′), the term

Ṽ m′,k′,j′

h+1 appears in the term wmkjI[tm,k,j
h > i1]

∑tm,k,j
h
i=1 θi

tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 for (k,m, j) if and

only if K ′ ≥ k > k′ and (xm,k,j
h , am,k,j

h ) = (xm′,k′,j′

h , am
′,k′,j′

h ). So, for each (m′, k′, j′), we
denote (x, a) = (xm′,k′,j′

h , am
′,k′,j′

h ). We consider all the later round indices k′ = k0 < k1 < k2 <

... < kg ≤ K ′ that satisfy ns = nks

h (x, a) > 0, s ∈ N. Here, kss and g are simplified notations
for functions of (m′, k′, j′, h), and we use the simplified notations when there is no ambiguity and
the stated meaning is only valid in proof of step 2. So, the summation of coefficients related to
(m′, k′, j′) equals to

w̃m′k′j′ =

g∑
s=1

 Nks
h (x,a)+ns∑

i=Nks
h (x,a)+1

w(mkj)m,k,j
i,h

 I[Nks

h (x, a) > i1]θ̃
i′

Nks
h (x,a)

,

in which i′ is the global visiting number for (x, a, h) at (m′, k′, j′), which means that (m′, k′, j′) =
mh(i

′;x, a), kh(i
′;x, a), jh(i

′;x, a). This means that

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 =

K′∑
m′,k′,j′

w̃m′k′j′ Ṽ
m′,k′,j′

h+1 .

Denote w̃ = vec({w̃m′k′j′}), we have that

∥w̃∥1 =

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

≤
K′∑

m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

≤ ∥w∥1

due to (c) in Lemma B.3. We can also find that

w̃m′k′j′ ≤
g∑

s=1

ns∥w∥∞I[Nks

h (x, a) > i1]θ̃
i′

Nks
h (x,a)

≤ exp(3/H)∥w∥∞,

where the proof of the last inequality is the same as the Proof of Equation (25). Combining the two
parts, we have that

K′∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 ≤
K′∑

m′,k′,j′

w̃m′k′j′ Ṽ
m′,k′,j′

h+1 +O
(
H3SA(M − 1)∥w∥∞

)
.
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Step 3: finding an upper bound for
∑K′

m,k,j wmkjΩ

(√
H3ι

tm,k,j
h

)
. We split it into two parts as fol-

lows.
K′∑

m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
=

K′∑
m,k,j

wmkjI[0 < tm,k,j
h ≤M − 1]Ω

(√
H3ι

tm,k,j
h

)

+

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
.

For the first part, applying that wmkj ≤ ∥w∥∞, similar to Proof of Equation (26) in Appendix C.4,
we have that

K′∑
m,k,j

wmkjI[0 < tm,k,j
h ≤M − 1]Ω

(√
H3ι

tm,k,j
h

)
= Ω

(
∥w∥∞SA(M − 1)

√
H3ι

)
.

For the second part, we denote w′
k(x, a, h) =

∑M
m=1

∑nm,k

j=1 wmkjI[(xm,k,j
h , am,k,j

h ) = (x, a)]. We
also introduce the following notation. For every pair (x, a, h) ∈ S × A × [H], we consider all the
rounds indexed as 0 < k̃1 < k̃2 < ... < k̃g ≤ K satisfying nk̃s

h (x, a) > 0, N k̃1

h (x, a) ≥ M and
N k̃1−1

h (x, a) < M . Here, k̃ss and g are simplified notations for functions of (x, a, h), and we use
the simplified notations when there is no ambiguity and the stated meaning is only valid in proof of
step 3. Then we have

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
= Ω(1)

∑
(x,a)∈S×A

g∑
s=1

w′
k̃s
(x, a, h)

√
H3ι

N k̃s

h (x, a)
.

We also define that

w′(i, x, a, h) = w′
k̃s
(x, a, h)/nk̃s

h (x, a),∀i ∈ N+, j ∈ [N k̃s

h (x, a), N k̃s

h (x, a) + nk̃s

h (x, a)− 1],

which indicates that
w′(j, x, a, h) ≤ ∥w∥∞.

Similar to Proof of Equation (26), we have that

√
2 ≥ max

(j,d)∈B̃

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

,∀(x, a, h) ∈ S ×A× [H],

in which B̃ = {(s, d) ∈ N2 : 1 ≤ s ≤ g, 1 ≤ d ≤ nk̃s

h (x, a)− 1}. So we have

∑
(x,a)∈S×A

g∑
s=1

w′
k̃s
(x, a, h)

√
H3ι

N k̃s

h (x, a)
= O(1)

∑
(x,a)∈S×A

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h)
√
H3ι/i

with ∑
(x,a)∈S×A

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h) ≤ ∥w∥1.

Denote w′′(x, a, h) = ∥w∥∞
⌈∑N

k̃g+1

h (x,a)−1

i=N
k̃1
h (x,a)

w′(i, x, a, h)/∥w∥∞
⌉

, which indicates that

w′′(x, a, h) ≤
N

k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h) + ∥w∥∞
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so that ∑
(x,a)∈S×A

w′′(x, a, h) ≤ ∥w∥1 + SA∥w∥∞.

Then by letting the mass related to {w′(i, x, a, h)}i concentrate at large values for {
√
H3ι/i}i as

much as possible, we have

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h)
√
H3ι/i ≤ ∥w∥∞

N
k1
h (x,a)+w′′(x,a,h)/∥w∥∞−1∑

i=N
k1
h (x,a)

√
H3ι/i

= O
(√

H3ιw′′(x, a, h)∥w∥∞
)
.

By the concavity of f(x) =
√
H3ιx, we have

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
≤

∑
(x,a)∈S×A

O
(√

H3ιw′′(x, a, h)∥w∥∞
)

≤
(√

H3SAι(∥w∥1 + SA∥w∥∞)∥w∥∞
)

=
(√

H3SAι∥w∥1∥w∥∞ + SA∥w∥∞
√
H3ι

)
.

To conclude, for step 3, we have that

K′∑
m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
≤ O

(√
H3SAι∥w∥1∥w∥∞ +MSA∥w∥∞

√
H3ι

)
.

Combining the results for the three different steps, we have∑
m,k,j

wmkj Ṽ
m,k,j
h ≤

∑
m,k,j

w̃mkj Ṽ
m,k,j
h+1 +O

(√
H3SAι∥w∥1∥w∥∞

+MSA∥w∥∞
√
H3ι+H3SA(M − 1)∥w∥∞

)
,

with ∥w∥1 ≤ exp(3/H)∥w̃∥1 and ∥w∥∞ ≤ ∥w̃∥∞. So, by recursions with regard to h, h+1 . . . H ,
we can get the result.

Next, we will establish relationships between Wk(x, a, h) and
[
VhV

⋆
h+1

]
(x, a), in which[

VhV
⋆
h+1

]
(x, a) is a variance operator define below. We also need these definitions for any

(x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a).[
PhV

⋆
h+1

]
(x, a) = E[V ⋆

h+1(xh+1)|(xh, ah) = (x, a)].[
VhV

⋆
h+1

]
(x, a) = Ex′∼Ph(·|x,a)

[
V ⋆
h+1 (x

′)−
[
PhV

⋆
h+1

]
(x, a)

]2
=: P1

Here, P1 depends on (x, a, h) and we will use the simplified notation when there is no ambiguity.

1

t

t∑
ĩ=1

[
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
=: P2.

1

t

t∑
ĩ=1

[
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− 1

t

t∑
i′=1

V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)]2
=: P3

WK′(x, a, h) =
1

t

t∑
i=1

[
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− 1

t

t∑
i′=1

V
kh(i

′;x,a)
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)]2
=: P4.

Here, P2, P3, P4 depend on (x, a, h, k) and we use the simplified notations when there is no ambi-
guity. The following Lemmas establish the closeness of these quantities to illustrate the closeness
between WK′(x, a, h) and

[
VhV

⋆
h+1

]
(x, a).
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Lemma E.4. For any p ∈ (0, 1) with probability at least 1− p, the following holds simultaneously
for all (x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a).

|P1 − P2| ≤ O
(
H2
√
ι/t
)
.

Proof. We have that
{[

V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
− P1

}∞

i=1

is a martingale dif-

ference bounded by O(H2), and the random variable t ≤ T0/H(1 + C̃). By Azuma-Hoeffding
Inequality, for any given (x, a, h) ∈ S × A × [H] and a given t′ ∈ N+, for any p ∈ (0, 1), with
probability 1− p,

1

t′

∣∣∣∣∣∣
t′∑

i=1

([
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
− P1

)∣∣∣∣∣∣ ≤ O

(
H2

√
1

t′
log

2

p

)
.

By considering all the possible combinations (x, a, h, t′) ∈ S ×A× [H]×
[
[T0(1 + C̃)/H +M ]

]
,

with a union bound and the realization of t = t′, we can claim the conclusion.

Lemma E.5. For any p ∈ (0, 1) with least 1− p probability, the following holds simultaneously for
all (x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a):

|P2 − P3| ≤ O
(
H2
√
ι/t
)
.

Proof. We can find that

|P2 − P3| ≤ O

(
H

∣∣∣∣∣1t
t∑

i′=1

V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

∣∣∣∣∣
)
.

Knowing that
{
V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

}∞

i′=1
is a martingale difference

bounded by O(H), using the same procedure as proof for Lemma E.4, we can claim the result.

For |P3 − P4|, similar to the proof of Lemma C.3 in Jin et al. (2018), we have

|P3 − P4| ≤ O

(
H

t

t∑
i=1

∣∣∣V kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

)∣∣∣) .

We mark an event Equation (41) here, which means that the difference is always non-negative.

Event(K ′) =

{
t∑

i=1

∣∣∣V ki

h+1

(
xmi,ki,ji

h+1

)
− V ⋆

h+1

(
xmi,ki,ji

h+1

)∣∣∣
=

t∑
i=1

(
V ki

h+1

(
xm,ki,ji

h+1

)
− V ⋆

h+1

(
xmi,ki,ji

h+1

))
,∀(x, a, h) ∈ S ×A× [H]

}
.

(41)
We do not need a new statistical lemma to prove that it holds with high probability. It will be shown
to hold automatically based on some other statistical events that hold with high probability later.
Under this event, we need to find an upper bound for

1

t

t∑
i=1

(
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

))
.

Under the event of Equation (39), based on Lemma E.3, letting wmkj = 1
t I[(x

m,k,j
h , am,k,j

h ) =
(x, a)], we have that

1

t

t∑
i=1

(
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

))
≤ O

(
MSA

t

√
H5ι+

√
SA

t
H5ι+H4SA(M − 1)

1

t

)
,
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which indicates that, under the intersections of the events of Equation (39), and
⋂K′

k=1 Event(k), for
any (x, a, h) ∈ S ×A× [H], we have

|P3 − P4| ≤ O

(
MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
.

To conclude about the relationship between Wk(x, a, h) and
[
VhV

⋆
h+1

]
(x, a), we have that, under

the interaction of the events of Equation (39),
⋂K′

k=1 Event(k), Lemma E.4 and Lemma E.5, we have
∀(x, a, h, k) ∈ S ×A× [H]× [K ′],

|Wk(x, a, h)−
[
VhV

⋆
h+1

]
(x, a)|

≤ O

(
MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
. (42)

With this relationship, we can provide the new concentration results. Similar to the proof of Lemma
C.3, for a given (x, a, h) ∈ S ×A× [H], we decompose the summation

∑t
i=1 θ̃

i
tXi as follows.

t∑
i=1

θ̃itXi =

t∑
i=1

θitXi +

t∑
i=1

(θ̃it − θit)Xi.

Equation (19) has already provided an upper bound for all (x, a, h,K ′) ∈ S × A × [H] × [K] for
the second summation. Next, we focus on

∣∣∣∑t
i=1 θ

i
tXi

∣∣∣. By Azuma-Bernstein Inequality, for any
fixed t′ ∈ N+ and fixed (x, a, h) ∈ S ×A× [H], for any p ∈ (0, 1), with probability at least 1− p,
we have that ∣∣∣∣∣∣

t′∑
i=1

θit′Xi

∣∣∣∣∣∣ ≤ O

(√
1

t′
H
[
VhV ⋆

h+1

]
(x, a) log

2

p
+

1

t′
H2 log

2

p

)
.

After considering the union bound with regard to (x, a, h) ∈ S × A × [H] and t′ ≤ T0/H , we can
claim the following conclusion: for any p ∈ (0, 1), with probability at least 1 − p, the following
relationship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K],∣∣∣∣∣

t∑
i=1

θitXi

∣∣∣∣∣ ≤ O

(√
ι

t′
H
[
VhV ⋆

h+1

]
(x, a) +

ι

t
H2

)
, t = NK′

h (x, a). (43)

The intersection of events of Equation (43) and Equation (19) indicates that the following relation-
ship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K] with t = NK′

h (x, a):∣∣∣∣∣
t∑

i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1)

∣∣∣∣∣ ≤ O

(√
ι

t
H
[
VhV ⋆

h+1

]
(x, a) +

ι

t
H2 +

√
Hι/t

)
. (44)

Combining with the event of Equation (42) for K ′ replaced by K ′ + 1, we have that∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1)

)∣∣∣∣∣
≤ O


√√√√ ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)

+
ι

t
H2 +

√
Hι/t

)
.
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Due to 2
√

H7SAι
t ≤ H + H6SAι

t , we have that

O


√√√√ ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
≤ O

(√
ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+H +

SAH6ι

t
+

(M − 1)SAH5

t

))

≤ O

(√
ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+H +

SAH6ι

t
+

(M − 1)SAH5

t

))
.

Noticing that
MSA

t

√
H7ι+

(M − 1)SAH5

t
= O

(
MSA

t
H5ι

)
,

we have ∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1) + r

(m,k,j)h(i;x,a)
h − rh(x, a)

)∣∣∣∣∣
≤ O

(√
Hι

t
(WK′+1(x, a, h) +H) + ι

√
H7SA+

√
MSAH6

t

)
, (45)

which indicates that∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1)

)∣∣∣∣∣ ≤ βt(x, a, h)/2

when combining with Equation (39) and c′ is large enough.

Finally, we are ready to provide proof for Lemma E.1. We let c′ to be large enough and Will provide
discussion under the intersections of events for Equation (19), Equation (39), Lemma E.4, Lemma
E.5 and Equation (43). We know that these events hold simultaneously with probability 1 − cpp
for some cp > 0. Next, we will prove Equation (38) by induction. It obviously holds that for all
(x, a, h) ∈ S × A × [H] when K ′ = 1. We suppose that it holds for every K ′ ≤ K ′

0. When
K ′ = K ′

0 + 1, LHS of Equation (38) indicates that
⋂K′

0+1
k=1 Event(k) holds. By the discussion

above, this indicates that Equation (45) holds for K ′
0 +1, by recursions on H,H − 1, . . . , 1 (similar

to the proof of Lemma 4.3 in Jin et al. (2018)), we can prove that Equation (38) holds for all
(x, a, h) ∈ S × A× [H] for K ′

0 + 1. This finishes the induction. After we replace p with p/cp, we
finish the proof.

E.2.2 REMAINING PARTS FOR PROVING THEOREM 5.1

Next, we begin to discuss the overall complexity. Similar to Lemma C.5 in Jin et al. (2018), we will
provide the following Lemma.
Lemma E.6. For any p ∈ (0, 1), with probability at least 1− p,∑

m,k,j,h

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h ) ≤ O(HT̂ +H3ι).

Proof. We assign an order for all the episodes based on the “round first, episode second, agent third”
rule and suppose m(i), k(i), j(i) recovers the agent index, round index and within round episode
index for the i−th episode. Denote Ri =

∑H
h=1 VhV

πk

h+1(x
(m,k,j)(i)
h , a

(m,k,j)(i)
h ) and Fi−1 be the

σ−field generated by the information before the i−th episode. Similar to the proof of Lemma C.5
in Jin et al. (2018), we have

E[Ri|Fi−1] ≤ H2,

0 ≤ Ri ≤ H3,
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Var[Ri|Fi−1] ≤ H5.

So, by Azuma-Hoeffding Inequality based on
∑t

i=1 Ri with regard to the filtration {Fi}∞i=1 and a
union bound for t ≤ T0(1 + C̃)/H +M , we conclude that

∑
m,k,j,h

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h ) =

T̂ /H∑
i=1

Ri ≤ O(HT̂ +H3ι).

We also provide a Lemma that focuses on the concentration of ξkh.
Lemma E.7. For any p ∈ (0, 1), with probability at least 1 − p, the following relationships holds
simultaneously: ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=h′

ξkh+1

∣∣∣∣∣ ≤ O(H
√

T̂ ι),∀h′ ∈ [H], (46)∣∣∣∣∣
K∑

k=1

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ O(H
√
T̂ ι), (47)

in which Ch = exp(3(h− 1)/H).

Proof. We first focus on the first event. Denote V (m, k, j, h) = Ch(P −
P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) and a simplified notation

∑
m,k,j,h:h′ =∑K

k=1

∑M
m=1

∑nm,k

j=1

∑H−1
h=h′ . The quantity we focus on can be rewritten as∑

m,k,j,h:h′

V (m, k, j, h),

with |V (m, k, j, h)| ≤ O(H) as Ch ≤ exp(3). Let Ṽ (̃i) be the ĩ−th term in the summation that
contains T̂ (H − h′)/H terms, in which the order follows a “round first, episode second, step third,
agent fourth” rule. Then the sequence {Ṽ (̃i)} is a martingale difference. By Azuma-Hoeffding
Inequality, for any p ∈ (0, 1) and t ∈ N+, with probability at least 1− p,∣∣∣∣∣∣

t∑
ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O
(
H
√
t
)
.

Then by applying a union bound with regard to h′ ∈ [H − 1] and all possible t which is divisible
by H − h′ and knowing that T̂ (H − h′)/H ≤ T0(1 + C̃) + HM due to (e) in Lemma B.1, we
can claim that, for any p ∈ (0, 1), with probability at least 1 − p, the following relationship holds
simultaneously: ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=h′

ξkh+1

∣∣∣∣∣ =
∣∣∣∣∣∣
T̂ (H−h′)/H∑

ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O(H
√
T̂ ι),∀h′ ∈ [H].

The second event can be analyzed similarly for the same conclusion. By combining these two events
and re-scaling p, we can claim the result.

Next, we try to find the upper bound for the regret. We pick c′ to be large enough and discuss
based on the intersection of events of Equation (19), Equation (39), Lemma E.4, Lemma E.5, Equa-
tion (43), Lemma E.7, Lemma E.1 and Lemma E.6. They hold simultaneously with probability at
least 1 − c′pp where c′p > 0 is a numerical constant and indicates Equation (42). Similar to the
discussions in Proof of Theorem 4.1, we can claim that for ∀h ∈ [H],

K∑
k=1

δkh ≤ O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
, (48)
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due to βt(x, a, h) = O(
√

H3ι/t). In addition, due to the relationship
K∑

k=1

δkh ≤ exp(3/H)

K∑
k=1

δkh+1 +

K∑
k=1

ξkh+1 +O(1)
∑
k,m,j

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

+O
(
MHSA+H3SA(M − 1)

)
,

which can be obtained similar to the situation in Appendix C.3 for Proof of Theorem 4.1, denoting∑
k,m,j,h =

∑
k,m,j

∑H
h=1, we have

K∑
k=1

δk1 ≤ O(MH2SA+H4SA(M−1)+
√
H2T̂ ι)+O(1)

∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) (49)

We will bound the last term by splitting it into two parts.∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) =
∑

k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≤M − 1]

+
∑

k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≥M ].

For the first part, knowing that βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) ≤ O(
√
H3ι), using the similar technique

as Proof of Equation (26), we have that∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≤M − 1] ≤ O

(
HSA(M − 1)

√
H3ι

)
.

For the second part, we have that∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≥M ]

≤
∑

k,m,j,h

O

(√
Hι

tm,k,j
h

(Wk+1(x
m,k,j
h , am,k,j

h , h) +H) + ι

√
H7SA+

√
MSAH6

tm,k,j
h

)
· I[tm,k,j

h ≥M ].

Later on, we use another simplified notation
∑

k,m,j,h:M =
∑

k,m,j,h I[t
m,k,j
h ≥ M ]. Using the

same technique of finding C ′′ in Equation (26), we can find that∑
k,m,j,h:M

1/tm,k,j
h ≤ O(1)

∑
(x,a,h)∈S×A×[H]

NK+1
h (x,a)−1∑

i=M

1/i ≤ HSAι (50)

and ∑
k,m,j,h:M

1/

√
tm,k,j
h ≤ O(1)

∑
(x,a,h)∈S×A×[H]

NK+1
h (x,a)−1∑

i=M

1/i ≤
√

HSAT̂ . (51)

So, we have ∑
k,m,j,h:M

ι

√
H7SA+

√
MSAH6

tm,k,j
h

≤ ι2HSA
(√

H7SA+
√
MSAH6

)
.

We also have∑
k,m,j,h:M

(√
H

tm,k,j
h

(Wk(x
m,k,j
h , am,k,j

h , h) +H)

)

≤ O(1)

√√√√√
 ∑

m,k,j,h:M

(Wk+1(x
m,k,j
h , am,k,j

h , h) +H)

 ∑
m,k,j,h:M

H

tm,k,j
h


≤ O(1)

√
H3SAT̂ ι+O(1)

√
H2SAι

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h),
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where the first inequality follows from Cauchy’s inequality and the second inequality is due to
Equation (50).

To conclude, we have∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

= O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8+

+
√

H3SAT̂ ι2 +
√
H2SAι2

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)

 . (52)

Next, we try to find an upper bound for√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h).

We know that

Wk(x, a, h) ≤ Vh

[
V πk

h+1

]
(x, a) +

∣∣[VhV
⋆
h+1

]
(x, a)−Wk(x, a, h)

∣∣
+
∣∣∣[VhV

⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ .
By Lemma E.6, √ ∑

m,k,j,h:M

Vh

[
V πk

h+1

]
(xm,k,j

h , am,k,j
h ) ≤ O

(√
HT̂ +H3ι

)
.

By Equation (42), denoting t̃m,k,j
h = Nk+1

h (xm,k,j
h , am,k,j

h ),√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−Wk+1(x

m,k,j
h , am,k,j

h , h)
∣∣∣

≤ O


√√√√√ ∑

m,k,j,h:M

MSA

t̃m,k,j
h

√
H7ι+

√
SAH7ι√
t̃m,k,j
h

+
(M − 1)SAH5

t̃m,k,j
h


 .

As t̃m,k,j
h ≥ tm,j,k

h , we have that√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−Wk+1(x

m,k,j
h , am,k,j

h , h)
∣∣∣

≤ O


√√√√√ ∑

m,k,j,h:M

MSA

tm,k,j
h

√
H7ι+

√
SAH7ι√
tm,k,j
h

+
(M − 1)SAH5

tm,k,j
h




= O

(√
MH4.5S2A2ι1.5 +H4SA

√
T̂ ι+ (M − 1)H6S2A2

)
,

where the last inequality is due to Equation (50) and Equation (51). We also have√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣
≤
√ ∑

m,k,j,h

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣.
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Next, we will show that, for any (x, a, h) ∈ S ×A× [H],∣∣∣[VhV
⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ ≤ O(H)
([

PhV
⋆
h+1

]
(x, a)−

[
PhV

πk

h+1

]
(x, a)

)
.

Suppose that u, v are random variables such that u follows the distribution of V ⋆
h+1(xh+1) under π⋆

when (xh, ah) = (x, a), and v follows the distribution of V πk

h+1(xh+1) under πk when (xh, ah) =
(x, a) and u ≥ v. The third requirement is reasonable because the distribution of xh+1 only depends
on (x, a) and V ⋆

h+1(xh+1) ≥ V πk

h+1(xh+1). We have that u, v ≤ H . So,∣∣∣[VhV
⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ = |Var(u)− Var(v)|

≤ |E(u2)− E(v2) + (Ev)2 − (Eu)2|
≤ |E(u− v)(u+ v) + (Ev − Eu)(Ev + Eu)|
≤ O(H)(|E(u− v)|+ E|u− v|)
= O(H)E(u− v).

This proves the conclusion. Using the conclusion, we can find that∑
m,k,j,h

∣∣∣[VhV
⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣
≤ O(H)

∑
m,k,j,h

([
PhV

⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
PhV

πk

h+1

]
(xm,k,j

h , am,k,j
h )

)

= O(H)

H∑
h=1

K∑
k=1

(δkh+1 − ϕk
h+1 + ξkh+1)

≤ O(H)

H∑
h=1

K∑
k=1

(δkh+1 + ξkh+1),

in which the last inequality is due to ϕk
h ≥ 0 based on Equation (38). By Equation (48) and Lemma

E.7, we have

O(H)

H∑
h=1

K∑
k=1

(δkh+1+ξkh+1) = O
(√

H8ιT̂SA+H3SA(M − 1)
√
H3ι+MH4SA+H6SA(M − 1)

)
.

So, we have∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)

≤ O
(
HT̂ +H3ι+MH4SA+

√
H8T̂ SAι+H6SA(M − 1) +H2SA(M − 1)

√
H5ι

)
+O

(
MS2A2

√
H9ι3 + SA

√
H8T̂ ι+ S2A2H6(M − 1)

)
= O

(
HT̂ +MH4.5S2A2ι1.5 +H4SA

√
T̂ ι+H6S2A2(M − 1)

)
,

where the last relationship is due to

(M − 1)H6S2A2 ≥ (M − 1)H6SA,H4SA
√
T̂ ι ≥

√
H8T̂ SAι

and

MS2A2
√
H9ι3 ≥MH4SA+H3ι+H2SA(M − 1)

√
H5ι.
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Inserting it into Equation (52), we have∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

= O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8+

+
√
H3SAT̂ ι2 +

√
H2SAι2

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)


= O

(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

+
√
MH6.5S3A3ι3.5 +

√
H6S2A2T̂ 0.5ι2.5 +

√
H8S3A3(M − 1)ι2

)
.

Due to √
MH8S3A3ι4 ≥

√
MH6.5S3A3ι3.5,√

H8S3A3(M − 1)ι2 ≤ ι2
√
MS3A3H8

and√
H6S2A2T̂ 0.5ι2.5 ≤ H4.5S1.5A1.5ι1.5 +

√
T̂ SAH3ι2 ≤ H4.5S1.5A1.5ι2 +

√
T̂ SAH3ι2,

we have ∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

≤ O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

)
.

Inserting it into Equation (49), we have

Regret(T ) ≤
K∑

k=1

δk1

= O
(
MH2SA+H4SA(M − 1) +HSA(M − 1)

√
H3ι

+ι2
√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

)
.

Finally, for the probability of the intersection of all the events, if we use p/c′p to replace p, we
complete the proof.

F NUMERICAL EXPERIMENTS

In this section, we conduct experiments in a synthetic environment to validate the theoretical per-
formances of FedQ-Hoeffding, FedQ-Beinstein, and compare with their single-user counterparts
UCB-H and UCB-B (Jin et al., 2018), respectively.

Synthetic Environment. We generate a synthetic environment to evaluate the proposed algorithms.
We set the number of states S to be 3, the number of actions A for each state to be 2, and the
episode length H to be 5. The reward rh(s, a) for each state-action pair and each step is generated
independently and uniformly at random from [0, 1]. We also generate the transition kernel Ph(· |
s, a) from an S-dimensional simplex independently and uniformly at random for each state-action
pair and each step. Such procedure guarantees that the synthetic environment is a proper tabular
MDP.

Under the given MDP, we set M = 10 and T/H = 3 × 104 for FedQ-Hoeffding, FedQ-Beinstein,
and T/H = 3× 105,M = 1 for UCB-H and UCB-B. Thus, the total number of episodes is 3× 105

for all four algorithms. We choose c = ι = 1 for all algorithms. For each episode, we randomly
choose the initial state uniformly from S states. We collect 10 sample paths under all algorithms
under the same MDP environment, and plot Regret(T )/

√
MT versus MT/H in Figure 1. The
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Figure 1: Regret comparison.

solid line represents the median of the 10 sample paths, while the shaded area shows the 10th and
90th percentiles. As we can see, both FedQ-Hoeffding and FedQ-Beinstein stay very close to their
single-agent counterpart, indicating that FedQ-Hoeffding achieves linear speedup with respect to the
number of clients M , as predicted by Theorem 4.1 and Theorem 5.1. Besides, as time progresses,
FedQ-Beinstein achieves lower regret than FedQ-Hoeffding, which is consistent with the theoretical
results as well.

We also track the number of communication rounds throughout the learning process under FedQ-
Hoeffding and FedQ-Bernstein, and plot the median profiles as well as the 10th and 90th percentiles
in Figure 2. Both curves exhibit sublinear growth, corroborating the theoretical result in Theo-
rem 4.2. Besides, the total number of communication rounds under FedQ-Bernstein becomes lower
than that under FedQ-Hoeffding as T becomes sufficiently large. This is because after the more
active early-stage exploration of FedQ-Bernstein, it reaches a more stable policy, under which the
synchronization triggered by (x, a, h)s that are less likely to be visited under the optimal policy
rarely happens.
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Figure 2: Total number of communication rounds as a function of T/H .
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