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A RELATED WORKS

Single-agent episodic MDPs. Significant contributions have been made in both model-based and
model-free frameworks. In the model-based category, a series of algorithms have been proposed
by Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade et al. (2018), Agarwal
et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019), and Zhang et al. (2021), with more
recent contributions from Zhou et al. (2023) and Zhang et al. (2023). Notably, Zhang et al. (2023)
proved that a modified version of MVP (proposed by Zhang et al. (2021)) achieves a regret of
Õ
(
min{

√
SAH2T , T}

)
which matches the minimax lower bound. Within the model-free frame-

work, Jin et al. (2018) proposed a Q-learning with UCB exploration algorithm, achieving regret of
Õ
(√

SAH3T
)

, which has been advanced further by Yang et al. (2021), Zhang et al. (2020), Li
et al. (2021) and Ménard et al. (2021). The latter three have introduced algorithms that achieve
minimax regret of Õ

(√
SAH2T

)
.

Federated and distributed RL. Existing literature on federated and distributed RL algorithms sheds
light on different aspects. Guo & Brunskill (2015) showed that applying concurrent RL to identical
MDPs can linearly speed up sample complexity. Agarwal et al. (2021) proposed a parallel RL
algorithm with low communication cost. Jin et al. (2022), Khodadadian et al. (2022), Fan et al.
(2023) and Woo et al. (2023) investigated federated Q-learning algorithms in different settings. Fan
et al. (2021), Wu et al. (2021) and Chen et al. (2023) focused on robustness. Particularly, Chen
et al. (2023) proposed algorithms in both offline and online settings, obtaining near-optimal sample
complexities and achieving a superior robustness guarantee. Doan et al. (2019), Doan et al. (2021),
Chen et al. (2021b), Sun et al. (2020), Wai (2020), Wang et al. (2020a), Zeng et al. (2021) and Liu
& Olshevsky (2023) analyzed the convergence of decentralized temporal difference algorithms. Fan
et al. (2021) and Chen et al. (2021a) studied communication-efficient policy gradient algorithms.
Shen et al. (2023b), Shen et al. (2023a) and Chen et al. (2022) have analyzed the convergence of
distributed actor-critic algorithms. Assran et al. (2019), Espeholt et al. (2018) and Mnih et al. (2016)
explored federated actor-learner architectures.

RL with low switching cost and batched RL. Research in RL with low-switching cost aims to
minimize the number of policy switching while maintaining comparable regret bounds to its fully
adaptive counterparts and can be applied to federated RL. In batched RL (e.g., Perchet et al. (2016),
Gao et al. (2019)), the agent sets the number of batches and length of each batch upfront, aiming
for fewer batches and lower regret. Bai et al. (2019) first introduced the problem of RL with low-
switching cost and proposed a Q-learning algorithm with lazy update, achieving Õ(SAH3 log T )
switching costs. This work was advanced by Zhang et al. (2020), which improved the regret upper
bound. Besides, Wang et al. (2021) studied the problem of RL under the adaptivity constraint.
Recently, Qiao et al. (2022) proposed a model-based algorithm with Õ(log log T ) switching costs.
Zhang et al. (2022) proposed a batched RL algorithm that is well-suited for the federated setting.

Federated/distributed bandits. Federated bandits with low communication costs have been studied
extensively recently in the literature Wang et al. (2020b); Li & Wang (2022); Shi & Shen (2021); Shi
et al. (2021); Huang et al. (2021); Wang et al. (2022); He et al. (2022); Li et al. (2022b). Shi & Shen
(2021) and Shi et al. (2021) investigated efficient client-server communication and coordination
protocols for federated MAB without and with personalization, respectively. Wang et al. (2020b)
investigated communication-efficient distributed linear bandits, while Huang et al. (2021) studied
federated linear contextual bandits. Li & Wang (2022) focused on the asynchronous communication
protocol.

When data privacy is explicitly considered, Li et al. (2020); Zhu et al. (2021) studied federated
bandits with item-level differential privacy (DP) guarantee. Dubey & Pentland (2022) considered
private and byzantine-proof cooperative decision making in multi-armed bandits. Dubey & Pentland
(2020); Zhou & Chowdhury (2023) considered the linear contextual bandit model with joint DP
guarantee. Huang et al. (2023) recently investigated linear contextual bandits under user-level DP
constraints. Private distributed bandits with partial feedback was also studied in Li et al. (2022a).
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B AUXILIARY LEMMAS

In this section, we introduce some useful lemmas which will be used in the proofs. Before starting,
we describe the global indexing mechanism mentioned in Section 4. Global visiting indices i =
1, 2 . . . are assigned, based on the chronological order, to the visits of any given (x, a, h) ∈ S×A×
[H]. With this, we can establish a map between the global visiting index i, and k,m, j, where k is
the round index, m is the agent index and j is the episode index for a given round and a given agent.
For (x, a, h), we define functions that recover k,m, j from i as kh(i;x, a),mh(i;x, a), jh(i;x, a).
When there is no ambiguity, we will use the simplified notations ki,mi, ji. The visiting indices
are utilized to construct a sequence, ensuring that quantities with smaller indices are observed prior
to those with larger indices. Under the synchronization and zero-latency assumption, we have the
following formulas for mi, ki, ji.

kh(i;x, a) = sup
{
k ∈ N+ : Nk

h (x, a) < i
}
,

jh(i;x, a) = sup

j ∈ N+ :

j−1∑
j′=1

M∑
m=1

I
[
(x, a) = (xm,ki,j′

h , am,ki,j′

h )
]
< i−Nki

h (x, a)

 ,

mh(i;x, a) = sup

{
m ∈ N+ :

m−1∑
m′=1

I
[
(x, a) = (xm′,ki,ji

h , am
′,ki,ji

h )
]

< i−Nki

h (x, a)−
ji−1∑
j′=1

M∑
m=1

I
[
(x, a) = (xm,ki,j′

h , am,ki,j′

h )
] .

We also introduce a new notation T̂ = MT that represents the total number of samples generated
by all the agents.

Next, we begin to introduce the lemmas. First, Lemma B.1 establishes some relationships between
some quantities used in Algorithms 1 and 2.

Lemma B.1. Denote C̃ = 1/(H(H + 1)). The following relationships hold for both algorithms.

(a) K ≤ K0.

(b) NK
h (x, a) ≤ T0/H .

(c) For any (x, a, h, k) ∈ S ×A× [H]× [K], we have

nm,k
h (x, a) ≤ max

{
1,

C̃Nk
h (x, a)

M

}
,∀m ∈ [M ]. (11)

and
nk
h(x, a) ≤ max{M, C̃Nk

h (x, a)}. (12)

If Nk
h (x, a) ≥ i0,

nk
h(x, a) ≤ C̃Nk

h (x, a).

(d) For any (x, a, h) ∈ S ×A× [H], NK+1
h (x, a) ≤ (1 + C̃)T0/H +M .

(e) T̂ ≤ (1 + C̃)T0 +HM .

Proof of Lemma B.1. (a)-(c) are obvious given Algorithms 1 and 4. (d) and (e) can be directly
obtained from (b) and (c).

Next, Lemma B.2 provides some properties about θit’s.

Lemma B.2. (Lemma 4.1 in Jin et al. (2018) and beyond) The following properties hold for all
t ∈ N+ for both algorithms.
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(a) 1/
√
t ≤

∑t
i=1 θ

i
t/
√
i ≤ 2/

√
t, which implies that βt ∈ [2c

√
H3ι/t, 4c

√
H3ι/t], ∀t ∈

N+.

(b) maxi∈[t] θ
i
t ≤ 2H/t.

(c)
∑t

i=1

(
θit
)2 ≤ 2H/t.

(d)
∑∞

t=i θ
i
t = 1 + 1/H.

(e) For any t ∈ N+ and i ∈ [t]− {t}, θi+1
t /θit = 1 +H/i > 1.

(f) For both algorithms, for any t ∈ N+ and (x, a, h) ∈ S × A × [H], if i1, i2 ∈ [t],
kh(i1, x, a) = kh(i2, x, a) and N

kh(i1,x,a)
h (x, a) ≥ i0 we have that θi1t /θi2t ≤ exp(1/H).

Proof of Lemma B.2. (a)-(e) are obvious based on θit’s definition and Lemma 4.1 in Jin et al. (2018).
For (f), denoting t0 = N

kh(i1,x,a)
h (x, a) + 1 and t1 = N

kh(i1,x,a)+1
h (x, a), based on (e), we have

θi1t /θi2t ≤ θt1t /θt0t =

t1−1∏
t′=t0

(1 +H/t′).

Based on (c) in Lemma B.1, we further have that
t1−1∏
t′=t0

(1 +H/t′) ≤ (1 +H/t0)
t1−t0 ≤ exp(H(t1 − t0)/t0) ≤ exp(1/H).

Next, we rigorously define the weights θ̃it mentioned in Section 4. For any (x, a, h,K ′) ∈ S ×A×
[H]× [K], we let t = NK′

h (x, a) and i ∈ [t]
⋃
{0}. Letting t′ = Nki

h (x, a) and t′′ = Nki+1
h (x, a),

we denote

θ̃it(x, a, h) = θitI[t′ < i0] +
1− αc(t′ + 1, t′′)

t′′ − t′
αc(t′′ + 1, t)I[t′ ≥ i0],

and we will use the simplified notation θ̃it when there is no ambiguity. Lemma B.3 provides proper-
ties of θ̃it and its relationship with θit.
Lemma B.3. The following relationships hold for any (x, a, h,K ′) ∈ S × A × [H] × [K] with
t = NK′

h (x, a) for both algorithms.

(a) θ̃it(x, a, h) = θ̃it′(x, a, h)α
c(t′ + 1, t) with t′ = N

kh(i;x,a)+1
h (x, a).

(b) For any i1, i2 ∈ [t], if kh(i1, x, a) = kh(i2, x, a) and N
kh(i1,x,a)
h (x, a) ≥ i0, we have that

θ̃i1t (x, a, h) = θ̃i2t (x, a, h).

(c) For any k′ ≤ K ′, we have that

Nk′+1
h (x,a)∑

i′=Nk′
h (x,a)+1

θ̃i
′

t (x, a, h) =

Nk′+1
h (x,a)∑

i′=Nk′
h (x,a)+1

θi
′

t ,

which indicates that
t∑

i=1

θ̃it = I[t > 0].

(d) For any i ∈ [t], when N
ki(x,a,h)
h (x, a) ≥ i0, we have that

(1 +H/(1 +Ni))
1−ni ≤ θ̃it/θ

i
t ≤ (1 +H/(1 +Ni))

ni−1
,

in which Ni = N
kh(i,x,a)
h (x, a) and ni = n

kh(i,x,a)
h (x, a).
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(e) For any i ∈ [t], when N
ki(x,a,h)
h (x, a) ≥ i0, we have that

θ̃it/θ
i
t ≤ exp(1/H).

Proof of Lemma B.3. (a)-(c) can be obtained directly through the definition of θ̃it. Next, we prove
(d) and (e). Denote t0 = N

kh(i,x,a)
h (x, a) + 1 and t1 = N

kh(i,x,a)+1
h (x, a). By (c) and (e) in

Lemma B.2, we have that θt0t1/θ
t1
t1 ≤ θ̃it/θ

i
t ≤ θt1t1/θ

t0
t1 . Then, (d) can be proved by noticing that

θt1t1/θ
t0
t1 ≤ (1 +H/(1 +Ni))

ni−1. This implies that (e) holds because of (c) in Lemma B.1.

C PROOF OF THEOREM 4.1

C.1 ROBUSTNESS AGAINST ASYNCHRONIZATION

In this subsection, we discuss a more general situation for Algorithms 1 and 2, where agent m
generates nm,k episodes during round k. We no longer assume that nm,k has the same value nk for
different clients. The difference can be caused by latency (the time gap between an agent sending
an abortion signal and other agents receiving the signal) and asynchronization (the heterogeneity
among clients on the computation speed and process of collecting trajectories). In this case, for K
rounds, the total number of samples generated by all the clients is

T̂ = H

K∑
k=1

M∑
m=1

nm,k.

Thus, we generalize the notation T = T̂ /M , which characterizes the mean number of samples
generated by an agent. Accordingly, the definition of Regret(T ) can be generalized as

Regret(T ) =
K∑

k=1

M∑
m=1

nm,k∑
j=1

V ⋆
1 (x

m,k,j
1 )− V πk

1 (xm,k,j
1 ),

Similarly, the definitions of nm,k
h (x, a), Nm,k

h (x, a), vm,k
h (x, a) are also generalized by replacing∑nk

j=1 with
∑nm,k

j=1 .

We note that Algorithms 1 and 2 naturally accommodate such asynchronicity. Therefore, in the
following analysis of the regret, we adopt the general notation nm,k. However, for the proof of
Theorem 4.2 pertaining to communication, we will maintain the synchronization assumption that
nm,k = nk,∀m ∈ [M ].

C.2 BOUNDS ON Qk
h −Q⋆

h

Lemma C.1. For Algorithms 1 and 2, there exists a positive constant c > 0 such that, for any
p ∈ (0, 1), the following relationship holds for all (x, a, h,K ′) ∈ S×A×[H]×[K] with probability
at least 1− p:

0 ≤ QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + βt, (13)

in which t = NK′

h (x, a).

We first provide Lemma C.2 to formally state Equation (14) and Equation (15), which establish the
relationship between Qk

h and Q⋆
h. The proof is the same as the proof of Equation (4.3) in Jin et al.

(2018).
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Lemma C.2. For the Hoeffding-type Algorithms 1 and 2 , for all (x, a, h,K ′) ∈ S×A× [H]× [K],
denoting t = NK′

h (x, a), we have

QK′

h (x, a) = θ0tH +

t∑
i=1

θ̃it

(
rh(x, a) + V ki

h+1(x
mi,ki,ji

h+1 )
)
+

t∑
i=1

θitbi, (14)

Q⋆
h(x, a) = θ̃0tQ

⋆
h +

t∑
i=1

θ̃it

(
rh(x, a) +

([
PhV

⋆
h+1

]
(x, a)− Ẽx,a,h,iV

⋆
h+1

)
+ Ẽx,a,h,iV

⋆
h+1

)
.

Furthermore, we have

(QK′

h −Q⋆
h)(x, a) = θ̃0t (H −Q⋆

h(x, a)) +

t∑
i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1

+

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) +

t∑
i=1

θitbi, (15)

(QK′

h −Q⋆
h)(x, a) = θ̃0t (H −Q⋆

h(x, a)) +

t∑
i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1

in which

Ex,a,hV
⋆
h+1 = Ex,a,hV

⋆
h+1(xh+1) = E

[
V ⋆
h+1(xh+1)|(xh, ah) = (x, a)

]
,

Ẽx,a,h,iV
⋆
h+1 = Ẽx,a,h,iV

⋆
h+1(xh+1) = V ⋆

h+1(x
mi,ki,ji

h+1 ).

With this lemma, we derive a probabilistic upper bound for |
∑t

i=1 θ̃
i
tXi| with Xi = (Ẽx,a,h,i −

Ex,a,h)V
⋆
h+1 in Lemma C.3.

Lemma C.3. There exists c0 > 0 such that, for any p ∈ (0, 1), with probability at least 1 − p, the
following relationship holds for all (x, a, h,K ′) ∈ S ×A× [H]× [K] with t = NK′

h (x, a):∣∣∣∣∣
t∑

i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1)

∣∣∣∣∣ ≤ c0
√

H3ι/t. (16)

Proof. For a given (x, a, h) ∈ S ×A× [H], denote Xi(x, a, h) = (Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1).

When there is no ambiguity, we use the simplified notation Xi = Xi(x, a, h). We know that
{Xi}∞i=1 is a sequence of martingale differences with |Xi| ≤ H . We decompose the summation
as follows:

t∑
i=1

θ̃itXi =

t∑
i=1

θitXi +

t∑
i=1

(θ̃it − θit)Xi.

Note that t ≤ T0/H .

First, we focus on the first term. By Azuma-Hoeffding Inequality, for any given (x, a, h) ∈ S×A×
[H] and a given t′ ∈ N+, for any p ∈ (0, 1), with probability 1−p, there exists a numerical constant
c1 > 0 such that ∣∣∣∣∣∣

t′∑
i=1

θit′Xi

∣∣∣∣∣∣ ≤ c1H

√√√√( t′∑
i=1

(θit′)
2

)
log

2

p
,

which indicates that
∣∣∣∑t′

i=1 θ
i
t′Xi

∣∣∣ ≤ c1√
2

√
(H3/t′) log 2

p based on (c) in Lemma B.2.

By considering all the possible combinations (x, a, h, t′) ∈ S × A × [H] × [T0/H], with a union
bound and the realization of t = t′, we have, for any p ∈ (0, 1), with at probability at least 1 − p,
the following relationship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K]:∣∣∣∣∣

t∑
i=1

θitXi

∣∣∣∣∣ ≤ c1√
2

√
(H3/t) log

2SAT0

p
≤ c1√

2

√
ι0H3/t.
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We then focus on the second term
∑t

i=1(θ̃
i
t−θit)Xi. For any given (x, a, h, ks) ∈ S×A×[H]×[K],

we consider the part with samples generated by the ks-th round, which is

t3∑
i=t2

(θ̃it3 − θit3)Xi,

in which t2 = Nks

h (x, a) + 1, t3 = Nks+1
h (x, a). We can control the second term by controlling

|
∑t3

i=t2
(θ̃it3 − θit3)Xi| for all ks ∈ [K].

We have
t∑

i=1

(θ̃it − θit)Xi =

K′−1∑
ks=1

[
t∏

t′=t3+1

(1− αt′)

]
t3∑

i=t2

(θ̃it3 − θit3)Xi. (17)

To begin with, we prove that there exists a numerical constant c3 > 0 such that√√√√ t3∑
i=t2

(θ̃it3 − θit3)
2 ≤ c3

t3∑
t′=t2

θt
′

t3/
√
t′. (18)

This relationship obviously holds when Nks

h (x, a) < i0 as LHS = 0. When Nks

h (x, a) ≥ i0, we
have √√√√ t3∑

i=t2

(θ̃it3 − θit3)
2 ≤ O

√√√√ t3∑
i=t2

H2(t3 − t2)2

t22
(θit3)

2

 ≤ O

(
H(t3 − t2)

3/2

t2
θt2t3

)
,

where the first inequality comes from (d) in Lemma B.3 and the second one comes from (f) in
Lemma B.2.

We also have that

O

(
H(t3 − t2)

3/2

t2
θt2t3

)
= O

(
H(t3 − t2)

1/2

√
t2

(t3 − t2)θ
t2
t3/
√
t2

)
= O

(
t3∑

t′=t2

θt
′

t3/
√
t′

)
,

where the second relationship comes from (f) in Lemma B.2. This completes the proof of Equa-
tion (18).

Next, we proceed with discussions conditioning on all the information before starting the ks-th
round, which means that Nks

h (x, a) and t2 can be treated as constants. If Nks

h (x, a) < i0, this
quantity is equal to 0. Otherwise, given any t′3 ≥ t2 and i ∈ [t2, t

′
3], we denote

θ̂t′3 =

1− t′3∏
t′=t2

(1− αt′)

 /(t′3 − t2 + 1),

Therefore, in the expression
∑t′3

i=t2
(θ̂t′3 − θit′3

)Xi, we can treat {Xt2 , Xt2+1 . . . Xt′3
} as martingale

differences and θit′3
s and θ̂t′3 as constants. Hence, by Azuma-Hoeffding Inequality, there exists a

positive numerical constant c2 such that, for any p ∈ (0, 1), with probability at least 1− p,∣∣∣∣∣∣
t′3∑

i=t2

(θ̂t′3 − θit′3)Xi

∣∣∣∣∣∣ ≤ c2H

√√√√log
2

p

t′3∑
i=t2

(θ̂t′3 − θit′3
)2.

By considering all possible values of t′3 with a union bound, we have that with probability at least
1−p, the following relationship holds simultaneously for any t2 ≤ t3 ≤ t2+(1+C̃)T0/H+M−1.∣∣∣∣∣∣

t′3∑
i=t2

(θ̂t′3 − θit′3)Xi

∣∣∣∣∣∣ ≤ c2H

√√√√log
2(T0/H +M)(1 + C̃)

p

t′3∑
i=t2

(θ̂t′3 − θit′3
)2.
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So, noticing that θ̂t′3 = θ̃it3 when t′3 = t3 and i ∈ [t2, t3] and applying Equation (18), we have that,
for any ks ∈ N+ and any p ∈ (0, 1), with probability at least 1− p,∣∣∣∣∣

t3∑
i=t2

(θ̃it3 − θit3)Xi

∣∣∣∣∣ ≤ c2c3H

√
log

2(T0/H +M)(1 + C̃)

p

t3∑
i=t2

θit3/
√
i.

We apply the union bound and claim that for any p ∈ (0, 1), the following relationship holds with
probability at least 1− p for all (x, a, h, ks) ∈ S ×A× [H]× [K0].∣∣∣∣∣

t3∑
i=t2

(θ̃it3 − θit3)Xi

∣∣∣∣∣ ≤ c2c3H

√
log

2SAHK0(T0/H +M)(1 + C̃)

p

t3∑
i=t2

θit3/
√
i

= c2c3H
√
ι1

t3∑
i=t2

θit3/
√
i.

Under this event, with Equation (17), we have that∣∣∣∣∣
t∑

i=1

(θ̃it − θit)Xi

∣∣∣∣∣ ≤ c2c3H

t∑
i=1

√
ι1θ

i
t/
√
i. (19)

By (a) in Lemma B.2, we have
∑t

i=1 θ
i
t/
√
i ≤

√
4/t. Combining the results for the two terms

completes the proof.

Finally, we provide the proof for Lemma C.1.

Proof of Lemma C.1. We pick c = c0 such that the event in Lemma C.3 holds. Under the event
given in Lemma C.3 and noting Equation (15), we claim the conclusion by using the same proof as
that for Lemma 4.3 in Jin et al. (2018).

C.3 PROOF OF THEOREM 4.1

Having proved Lemma C.1, we turn our attention to demonstrating the remaining parts of the proof.
We use nm,k to denote the number of episodes by agent m in round k.

We first provide some additional notations. Define

δkh =

M∑
m=1

nm,k∑
j=1

(
V k
h − V πk

h

)
(xm,k,j

h ),

ϕk
h =

M∑
m=1

nm,k∑
j=1

(
V k
h − V ⋆

h

)
(xm,k,j

h ),∀h ∈ [H + 1],

in which δkH+1 = ϕk
H+1 = 0. We also define

ξkh+1 =

M∑
m=1

nm,k∑
j=1

(P− P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ), h ∈ [H]

with ξkH+1 = 0. Here,

(P)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) = E

[(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h+1 )|(πk, xm,k,j
h , am,k,j

h )
]
,

and
(P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) =

(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h+1 ).

We first provide a Lemma related to ξkh+1.
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Lemma C.4. There exists a numerical constant c5 > 0 such that, for any p ∈ (0, 1), with probability
at least 1− p, ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ c5H
√
T̂ ι, (20)

where Ch = exp(3(h− 1)/H).

Proof. Denote V (m, k, j, h) = Ch(P − P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) and use

∑
m,k,j,h as

a simplified notation for
∑K

k=1

∑M
m=1

∑nm,k

j=1

∑H−1
h=1 . The quantity of interest can be rewritten as∑

m,k,j,h V (m, k, j, h), with |V (m, k, j, h)| ≤ O(H) as Ch ≤ exp(3).

Let Ṽ (̃i) be the ĩ-th term in the summation that contains T̂ (H − 1)/H terms, in which the order
follows a “round first, episode second, step third, agent fourth” rule. Then the sequence {Ṽ (̃i)}
is a martingale difference. By Azuma-Hoeffding Inequality, for any p ∈ (0, 1) and t ∈ N+, with
probability at least 1− p, ∣∣∣∣∣∣

t∑
ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O

(
H

√
t log

2

p

)
.

Then by applying a union bound over t ∈ [(1 + C̃)T0 + HM ] and knowing that T̂ (H − 1)/H ≤
T0(1 + C̃) + HM due to (e) in Lemma B.1, we have that, for any p ∈ (0, 1), with probability at
least 1− p, ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ =
∣∣∣∣∣∣
T̂ (H−1)/H∑

ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O(H
√

T̂ ι).

This completes the proof.

Noticing that Regret(T ) ≤
∑K

k=1 δ
k
1 due to Regret(T ) =

∑K
k=1 δ

k
1 −

∑K
k=1 ϕ

k
1 and ϕk

1 ≥ 0 shown
in Equation (13), we attempt to establish a probability upper bound for

∑K
k=1 δ

k
1 . First, we have

δkh ≤
M∑

m=1

nm,k∑
j=1

(Qk
h −Q⋆

h)(x
m,k,j
h , am,k,j

h ) +

M∑
m=1

nm,k∑
j=1

(Q⋆
h −Qπk

h )(xm,k,j
h , am,k,j

h ), (21)

which holds because V πk

h (xm,k,j
h ) = Qπk

h (xm,k,j
h , am,k,j

h ) and

V k
h

(
xm,k,j
h

)
≤ max

a′∈A
Qk

h

(
xm,k,j
h , a′

)
= Qk

h

(
xm,k,j
h , am,k,j

h

)
.

Next, we attempt to bound the terms in RHS of Equation (21) separately. Our discussions are
based on the events outlined in Lemma C.1. For any given h, denote tm,k,j

h = Nk
h (x

m,k,j
h , am,k,j

h )
and the corresponding k,m, j (round index, agent index, and episode index) for the i-th global
visiting for (xm,k,j

h , am,k,j
h , h) are km,k,j

i,h ,mm,k,j
i,h , jm,k,j

i,h , i = 1, 2 . . . tm,k,j
h . For the first term, due

to Equation (13), we have

M∑
m=1

nm,k∑
j=1

(Qk
h −Q⋆

h)(x
m,k,j
h , am,k,j

h )

≤
M∑

m=1

nm,k∑
j=1

θ̃0
tm,k,j
h

H +

M∑
m=1

nm,k∑
j=1

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

+

M∑
m=1

nm,k∑
j=1

βtm,k,j
h

. (22)
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For the second term, due to Equation (1),

M∑
m=1

nm,k∑
j=1

(Q⋆
h −Qπk

h )(xm,k,j
h , am,k,j

h ) = δkh+1 − ϕk
h+1 + ξkh+1. (23)

Next, we try to find some bounds related to
∑K

k=1 δ
k
h. For notation simplicity, we use

∑
m,k,j to

represent
∑K

k=1

∑M
m=1

∑nm,k

j=1 . We can prove the following relationships with details referred to
Appendix C.4:∑

m,k,j

θ̃0
tm,k,j
h

H ≤MHSA. (24)

∑
m,k,j

tm,k,j
h∑
i=1

θi
tm,k,j
h

(V
km,k,j
i

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i

h+1 ) ≤ e3/H
K∑

k=1

ϕk
h+1 +O(H3SA(M − 1)).

(25)

K∑
k=1

M∑
m=1

nm,k
h∑
j=1

βtm,k,j
h

≤ O(
√
H2ιT̂SA+ SA(M − 1)

√
H3ι). (26)

Combining Equations (22) to (26), we have that for any h ∈ [H],

K∑
k=1

δkh ≤ exp(3/H)

K∑
k=1

ϕk
h+1 +

K∑
k=1

δkh+1 −
K∑

k=1

ϕk
h+1 +

K∑
k=1

ξkh+1

+O
(√

H2ιT̂SA+ SA(M − 1)
√
H3ι+MHSA+H3SA(M − 1)

)
.

Noticing that δkh ≥ ϕk
h,∀(h, k) ∈ [H] × [K] due to the optimality of π⋆ and exp(3/H)H = O(1),

by recursions on 1, 2 . . . H , we have
K∑

k=1

δk1 ≤
H−1∑
h=1

Ch

K∑
k=1

ξkh+1

+O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
,

in which Ch = exp(3(h− 1)/H). With Lemma C.4, we can also show that, with high probability,∣∣∣∣∣
K∑

k=1

Ch

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ O(H
√

T̂ ι). (27)

This indicates that
∑K

k=1 δ
k
1 = O(

√
H4ιT̂SA+HSA(M−1)

√
H3ι+MH2SA+H4SA(M−1)).

With these discussions, we have already shown that, under the intersection of events given in Lemma
C.1 and Lemma C.4,

Regret(T ) ≤
K∑

k=1

δk1

≤ O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
.

By replacing p for the events in Lemma C.1 and Lemma C.4 with p/2, we finish the proof.

C.4 PROOFS OF EQUATIONS (24) TO (26)

In this subsection, we try to give bounds the terms in RHS of Equation (21) separately. We make
discussions based on the intersection of events given in Lemma C.1 and Lemma C.4. Under these
events, we have already shown that Equation (22), Equation (23) and Equation (27) hold. So, we
will provide the proof by establishing Equations (24) to (26).
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Proof of Equation (24). First, we note that∑
m,k,j

θ̃0
tm,k,j
h

H ≤
∑
m,k,j

H · I[tm,k,j
h = 0].

For each (x, a, h) ∈ S×A×[H], we consider all the rounds indexed as 0 < k1 < k2 < ... satisfying
the condition nk

h(x, a) > 0. Here, kss are simplified notations for functions of (x, a, h), and we use
the simplified notations when there is no ambiguity and the stated meaning of these notations is
applicable only to the proof of Equation (24). So,∑

m,k,j

I[tm,k,j
h = 0]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ nk1

h (x, a).

As Nk1

h (x, a) = 0, due to Equation (12), we have nk1

h (x, a) ≤M . Therefore,∑
m,k,j

θ̃0
tm,k,j
h

H =
∑

(x,a)∈S×A

∑
m,k,j

HI[tm,k,j
h = 0]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤MHSA.

This completes the proof for Equation (24).

Proof of Equation (25). We denote i1 = (M−1)H(H+1) and split the summation into two parts:

∑
k,m,j

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

=
∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

+
∑
m,k,j

I[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ).

To bound the first term, we first notice that∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) ≤ H ·
∑
m,k,j

I[0 < tm,k,j
h ≤ i1]

due to the fact that (V
km,k,j
i,h

h+1 −V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) ≤ H and
∑tm,k,j

h
i=1 θ̃i

tm,k,j
h

= I[tm,k,j
h > 0] given

in (c) in Lemma B.3. For every (x, a, h) ∈ S × A × [H], suppose that k′ is the round index such
that Nk′

h (x, a) ≤ i1 and Nk′+1
h (x, a) > i1, and k′′ is the round index such that Nk′′

h (x, a) = 0 and
Nk′′+1

h (x, a) > 0. Here, k′ and k′′ are simplified notations for functions of (x, a, h), and we use the
simplified notations when there is no ambiguity and the stated meaning is only valid in the proof of
Equation (25).

We have ∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ i1 + nk′

h (x, a)− nk′′

h (x, a).

As nk′′

h (x, a) ≥ 1 and nk′

h (x, a) ≤M due to Nk′

h (x, a) < i0 and Equation (12),∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)] ≤ i1 + (M − 1) = O

(
H2(M − 1)

)
.

So, ∑
m,k,j

I[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

≤ H
∑

(x,a)∈S×A

∑
m,k,j

I[0 < tm,k,j
h ≤ i1]I[(xm,k,j

h , am,k,j
h ) = (x, a)]

= O
(
H3SA(M − 1)

)
. (28)
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To bound the second term, we first notice that V
km,k,j
i,h

h+1 − V ⋆
h+1 ≥ 0 due to Equation (13). Then we

regroup the summations in a different way. For every (m′, k′, j′), the term (V k′

h+1−V ⋆
h+1)(x

m′,k′,j′

h+1 )

appears in the term I[tm,k,j
h > i1]

∑tm,k,j
h
i=1 θi

tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 ) for (k,m, j) if

and only if k > k′ and (xm,k,j
h , am,k,j

h ) = (xm′,k′,j′

h , am
′,k′,j′

h ). Thus, for each (m′, k′, j′), we
denote (x, a) = (xm′,k′,j′

h , am
′,k′,j′

h ). We consider all the later round indices k′ = k0 < k1 <

k2 < ... that satisfy ns = nks

h (x, a) > 0, s ∈ N. Here, ks’s are simplified notations for functions
of (m′, k′, j′, h), and we use the simplified notations when there is no ambiguity and the stated
meaning is only valid in proof of Equation (25). Then, the coefficient of summation related to
(m′, k′, j′) can be upper bounded by

∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

,

in which i′ is the global visiting number for (x, a, h) at (m′, k′, j′), which means that (m′, k′, j′) =
mh(i

′;x, a), kh(i
′;x, a), jh(i

′;x, a).

First, based on (e) in Lemma B.3, we have that
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ exp(1/H)

∞∑
s=1

I[Nks

h (x, a) > i1]nsθ
i′

Nks
h (x,a)

.

We know that, Nks

h (x, a) + ns = N
ks+1

h (x, a), i′ ≤ Nk1

h (x, a), and by (d) in Lemma B.2,∑∞
i=i′ θ

i′

i = (1 + 1/H). Therefore, if we can find C ′ > 1 such that

C ′ ≥ max
(i′,i′′)∈Ã

θi
′

Nks
h (x,a)

θi
′

Nks
h (x,a)+i′′

,∀(x, a, h, s) ∈ S ×A× [H]× N,

where Ã = {(i′, i′′) ∈ N2 : Nks

h (x, a) > i1, 0 < i′′ < ns}, we can have
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ C ′ exp(2/H).

Next, we prove that, for any (i′, i′′) ∈ Ã, if Nks

h (x, a) > i1,

θi
′

Nks
h (x,a)

θi
′

Nks
h (x,a)+i′′

≤
θi

′

Nks
h (x,a)

θi
′

Nks
h (x,a)+ns−1

=

Nks
h (x,a)+ns−1∏

d=Nks
h (x,a)+1

(1− αd)
−1

≤ (1− αd0)
1−ns

≤ exp(1/H),

in which d0 = Nks

h (x, a) + 1 so that we can let C ′ = exp(1/H). The first inequality holds because
θit = αi

∏t
i′=i+1(1 − αi′) is a decreasing function with respect to t. The equality follows from

the definition of θit. The second inequality holds because αt =
H+1
H+t is a decreasing function with

respect to t. Then we focus on the last inequality. According to the definition of αt, we have

(1− αd0
)1−ns =

(
1− H + 1

H +Nks

h (x, a) + 1

)1−ns

=

(
1 +

H + 1

Nks

h (x, a)

)ns−1

.

If Nks

h (x, a) > MH(H + 1), according to Equation (12), we have that ns ≤
Nks

h (x,a)

H(H+1) . Then we
have (

1 +
H + 1

Nks

h (x, a)

)ns−1

≤

(
1 +

H + 1

Nks

h (x, a)

)N
ks
h

(x,a)

H(H+1)

≤ exp(1/H).
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If i1 < Nks

h (x, a) ≤MH(H + 1), we can prove that(
1 +

H + 1

Nks

h (x, a)

)ns−1
(a)

≤

(
1 +

H + 1

Nks

h (x, a)

)M−1

(b)
<

(
1 +

1

H(M − 1)

)M−1

≤ exp(1/H)

where (a) holds because according to Equation (12) we have ns ≤ M and (b) holds because
Nki

h (x, a) > (M − 1)H(H + 1).

Putting the two cases together, we have
∞∑
s=1

I[Nks

h (x, a) > i1]nsθ̃
i′

Nks
h (x,a)

≤ exp(1/H) exp(2/H) ≤ exp(3/H).

Then we conclude that

∑
m,k,j

I[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

(V
km,k,j
i,h

h+1 − V ⋆
h+1)(x

(m,k,j)m,k,j
i,h

h+1 )

≤ exp

(
3

H

) ∑
m′,k′,j′

(
V k′

h+1 − V ⋆
h+1

)
(xm′,k′,j′

h+1 )

= exp

(
3

H

) K∑
k=1

ϕk
h+1.

Combining with Equation (28), we complete the proof for Equation (25).

Proof of Equation (26). We split the summation into two parts:∑
m,k,j

βtm,k,j
h

=
∑
m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] +

∑
m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ].

For every pair (x, a, h), we consider all the rounds indexed as 0 < k1 < k2 < ... satisfying the
condition ns = nks

h (x, a) > 0. Suppose that kp is the round index such that Nkp

h (x, a) ≤ M − 1

and N
kp+1(x,a,h)
h (x, a) > M − 1. Here, kss and p are simplified notations for functions of (x, a, h),

and we use the simplified notations when there is no ambiguity and the stated meaning is only valid
in the proof of Equation (26).

To bound the first term, we use the fact that βtm,k,j
h

≤ O(1)
√
H3ι. Then we have∑

m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] ≤ O(1)

√
H3ι

∑
m,k,j

I[0 < tm,k,j
h ≤M − 1]

and ∑
m,k,j

I[0 < tm,k,j
h ≤M − 1] ≤

∑
(x,a)∈S×A

(
M − 1 + n

kp

h (x, a)− nk1

h (x, a)
)
.

It is straightforward that nk1

h (x, a) ≥ 1. Additionally, due to Equation (12), we can establish that
n
kp

h (x, a) ≤M . Therefore∑
m,k,j

I[0 < tm,k,j
h ≤M − 1] ≤ 2SA(M − 1)

and ∑
m,k,j

βtm,k,j
h

I[0 < tm,k,j
h ≤M − 1] = O(SA(M − 1)

√
H3ι). (29)
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To establish bounds for the second term, we define some notions first. For every pair (x, a, h) ∈
S × A × [H], we consider all the rounds indexed as 0 < k̃1 < k̃2 < ... < k̃g ≤ K satisfying
nk̃s

h (x, a) > 0, N k̃1

h (x, a) ≥M and N k̃1−1
h (x, a) < M . Here, k̃ss and g are simplified notations for

functions of (x, a, h), and we use the simplified notations when there is no ambiguity and the stated
meaning is only valid in proof of Equation (26). Then we have∑

m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ] = O(1)

∑
(x,a)∈S×A

g∑
s=1

nk̃s

h (x, a)

√
H3ι

N k̃s

h (x, a)
.

Firstly, we prove that

∑
(x,a)∈S×A

g∑
s=1

nk̃s
h (x,a)∑
j′′=1

√
H3ι

N k̃s

h (x, a) + j′′ − 1
= O(1)

∑
(x,a)∈S×A

√
H3ι(N

k̃g

h (x, a) + n
k̃g

h (x, a)− 1)

= O(1)
∑

(x,a)∈S×A

√
H3ιNK+1

h (x, a)

(a)

≤ O(
√
H2ιT̂SA)

where (a) holds because of the concavity of f(x) =
√
H3ιx and the fact that∑

(x,a)∈S×A NK+1
h (x, a) ≤ T̂ /H .

Then we bound
1

/√
N k̃s

h (x,a)

1

/√
N k̃s

h (x,a)+d

. If we can find some numerical constant C ′′ > 1 such that

C ′′ ≥ max
(j,d)∈B̃

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

,∀(x, a, h) ∈ S ×A× [H],

in which B̃ = {(s, d) ∈ N2 : 1 ≤ s ≤ g, 1 ≤ d ≤ nk̃s

h (x, a)− 1}, then we can have∑
m,k,j

βtm,k,j
h

I[tm,k,j
h ≥M ] = O(1)

∑
(x,a)∈S×A

g∑
s=1

nk̃s

h (x, a)

√
H3ι

N k̃s

h (x, a)

≤ O(C ′′)
∑

(x,a)∈S×A

g∑
s=1

nk̃s
h (x,a)∑
j′′=1

√
H3ι

N k̃s

h (x, a) + j′′ − 1

= O(
√
H2ιT̂SA). (30)

Next, we will prove that we can choose C ′′ =
√
2. We notice that

max
d∈[nk̃s

h (x,a)−1]

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

=

√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
.

If M ≤ N k̃s

h (x, a) < i0, according to Equation (12), ñj(x, a) ≤M , which indicates that√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
≤
√
2.

If N k̃j(x,a,h)
h (x, a) ≥ i0, according to Equation (12), nk̃s

h (x, a) ≤ C̃N k̃s

h (x, a)√√√√N k̃s

h (x, a) + nk̃s

h (x, a)− 1

N k̃s

h (x, a)
≤
√

1 + C̃ ≤
√
2.

So, we can choose C ′′ =
√
2.

Combining Equation (29) and Equation (30), we obtain Equation (26).
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D PROOF OF THEOREM 4.2

Proof of Theorem 4.2. This theorem is proved under the synchronization assumption, i.e., nm,k =
nk,∀m ∈ [M ]. We only need to prove that when k ≥ H2(H + 1)SAM ,[(

1 +
1

2H(H + 1)M

)⌈K/(HSA)⌉−H(H+1)M
]
H2(H + 1)M2 ≤ T̂ .

For each k ∈ [K], there exists at least one (x,m, h) ∈ S × [M ] × [H] with a = πk
h(x) such that

equality in Equation (11) holds. Thus, there exist at least K different tuples of (x, a, h,m, k) ∈ S ×
A× [H]× [M ]× [K] such that equality in Equation (11) holds. Define setK to have all the different
k’s satisfying that there exists m ∈ [M ] such that the equality in Equation (11) holds. Then, by
Pigeonhole principle, there must exist a triple (x, a, h) ∈ S×A×[H] such that |K| ≥ ⌈K/(HSA)⌉.
We order the elements of K as 0 < k1 < k2 . . . < kg ≤ K, where g ≥ ⌈K/(HSA)⌉. We also
denote Ns = Nks+1

h (x, a), ms as the first agent index such that equality in Equation (11) holds, and
ns = nms,ks

h (x, a). Due to the synchronization assumption, we have

T̂ ≥ HM

g∑
s=1

ns. (31)

When Ns ≥ H(H + 1)M , we have that

Ns ≥
s∑

s′=1

ns′ , ns+1 ≥ C̃Ns/(2M)

due to Equation (11) and
⌊

s′

H(H+1)M

⌋
≥ s′

2H(H+1)M ,∀s′ ≥M(H + 1)H.

Thus, we have that
∑H(H+1)M

s=1 ns ≥ H(H + 1)M and

s+1∑
s′=1

ns′ ≥
s∑

s′=1

ns′ + C̃Ns/(2M) ≥ (1 + C̃/(2M))

s∑
s′=1

ns′ , s ≥ H(H + 1)M.

Therefore,
g∑

s′=1

ns′ ≥
[(

1 + C̃/(2M)
)g−H(H+1)M

]
H(H + 1)M

≥
[(

1 + C̃/(2M)
)⌈K/(HSA)⌉−H(H+1)M

]
H(H + 1)M.

Combining with Equation (31), we have[(
1 +

1

2H(H + 1)M

)⌈K/(HSA)⌉−H(H+1)M
]
H2(H + 1)M2 ≤ T̂ ,

which directly leads to the conclusion.

E THE BERNSTEIN-TYPE ALGORITHM

E.1 ALGORITHM DESIGN

The Bernstein-type algorithm differs from the Hoeffding-type algorithm Algorithms 1 and 2, in that
it selects the upper confidence bound based on a variance estimator of Xi, akin to the approach used
in the Bernstein-type algorithm in Jin et al. (2018). This is done to determine a probability upper
bound of |

∑t
i=1 θ

i
tXi|. In this subsection, we first introduce the algorithm design.
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To facilitate understanding, we introduce additional notations exclusive to Bernstein-type algo-
rithms, supplementing the already provided notations for the Hoeffding-type algorithm.

µm,k
h (x, a) =

1

nm,k
h (x, a)

nm,k∑
j=1

[
V k
h+1

(
xm,k,j
h+1

)]2
I[(xm,k,j

h , am,k,j
h ) = (x, a)].

µk
h(x, a) =

1

Nk+1
h (x, a)−Nk

h (x, a)

M∑
m=1

µm,k
h (x, a)nm,k

h (x, a).

Here, µm,k
h (x, a) is the sample mean of

[
V k
h+1(x

m,k,j
h+1 )

]2
for all the visits of (x, a, h) for the m−th

agent during the k−th round and µk
h(x, a) corresponds to the mean for all the visits during the k−th

round. We emphasize here that we adopt the general notation nm,k in the definition of µm,k
h . We

define Wk(x, a, h) to denote the sample variance of all the visits before the k−th round, calculated
using V ki

h+1(x
mi,ki,ji

h+1 ), i.e.

Wk(x, a, h) =
1

Nk
h (x, a)

Nk
h (x,a)∑
i=1

V ki

h+1(x
mi,ki,ji

h+1 )− 1

Nk
h (x, a)

Nk
h (x,a)∑
i′=1

V ki

h+1(x
mi,ki,ji

h+1 )

2

.

We can find that

Wk(x, a, h) =
1

Nk
h (x, a)

k−1∑
k′=1

µk′

h (x, a)nk′

h (x, a)−

[
1

Nk
h (x, a)

k−1∑
k′=1

vk
′

h+1(x, a)n
k′

h (x, a)

]2
,

which means that this quantity can be calculated efficiently in practice in the following way. Define

W1,k(x, a, h) =

k−1∑
k′=1

µk′

h (x, a)nk′

h (x, a),W2,k(x, a, h) =

k−1∑
k′=1

vk
′

h+1(x, a)n
k′

h (x, a), (32)

we have that
W1,k+1(x, a, h) = W1,k(x, a, h) + µk

h(x, a)n
k
h(x, a), (33)

W2,k+1(x, a, h) = W2,k(x, a, h) + vkh+1(x, a)n
k
h(x, a) (34)

and

Wk+1(x, a, h) =
W1,k+1(x, a, h)

Nk+1
h (x, a)

−

[
W2,k+1(x, a, h)

Nk+1
h (x, a)

]2
. (35)

This indicates that the central server, by actively maintaining and updating the quantities W1,k and
W2,k and systematically collecting nm,k

h s, µm,k
h s and vm,k

h+1s, is able to compute Wk+1.

Next, we define

βt(x, a, h) = c′

(
min

{√
Hι

t
(Wkt+1(x, a, h) +H) + ι

√
H7SA+

√
MSAH6

t
,

√
H3ι

t

})
,

in which c′ > 0 is a positive constant. Here, Wkt+1(x, a, h) = W t(x, a, h) which is mentioned in
Section 5. With this, the upper confidence bound bt(x, a, h) for a single visit is determined by

βt(x, a, h) = 2

t∑
i=1

θitbt(x, a, h),

which can be calculated as follows:

b1(x, a, h) :=
β1(x, a, h)

2
,

bt(x, a, h) :=
βt(x, a, h)− (1− αt)βt−1(x, a, h)

2αt
.
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When there is no ambiguity, we adopt the simplified notation b̃t = bt(x, a, h) and β̃t = βt(x, a, h).
In the Bernstein-type algorithm, we let β̃ = βtk(x, a, h)−αc(tk−1 +1, tk)βtk−1(x, a, h) in replace
of βk in Equation (3) and Equation (4). We know that β̃t ≤ βt when c = c′, indicating that the
Bernstein-type algorithm operates with a smaller upper confidence bound.

Next, we will delve into certain components of the algorithm in round k. We remark that we dis-
cuss our algorithm based on the general situation where there is no necessity for zero latency and
synchronization assumptions. In this general scenario, agent m generates nm,k episodes in round k.

Coordinated Exploration for Agents. At the beginning of round k, the server decides a determin-
istic policy πk = {πk

h}Hh=1, and then broadcasts it along with {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h
to all of the agents. When k = 1, N1

h(x, a) = 0, Q1
h(x, a) = V 1

h (x) = H,∀(x, a, h) ∈ S ×A× [H]
and π1 is an arbitrary deterministic policy.

Once receiving such information, the agents will execute policy πk and start collecting trajectories.

Event-Triggered Termination of Exploration. During exploration, every agent m will monitor
nm,k
h (x, a), i.e., the total number of visits for each (x, a, h) triple within the current round. For any

agent m, at the end of each episode, it sequentially conducts two procedures. First, if any (x, a, h)

has been visited by max
{
1, ⌊ C̃MNk

h (x, a)⌋
}

times by agent m, it will abort its own exploration and
send an abortion signal to the server and other clients. Second, it checks whether it has received an
abortion signal. If so, it will abort its exploration. We remark that Equation (2) still holds, and for
any k ∈ [K], there exists a tuple (x, a, h) such that the equality is met.

Local Updating of the Estimated Expected Return. Each agent updates the local esti-
mate of the expected return vm,k

h+1(x, a) at the end of round k. Next, each agent m sends
{rh(x, πk

h(x))}x,h,{nm,k
h (x, πk

h(x))}x,h, {vm,k
h+1(x, π

k
h(x))}x,h and {µm,k

h (x, πk
h(x))}x,h to the cen-

tral server for aggregation.

Server-side Information Aggregation. After receiving the information sent by the agents, for each
(x, a, h) tuple visited by the agents, the server first calculates W1,k+1(x, a, h), W2,k+1(x, a, h) and
Wk+1(x, a, h) based on Equation (32), Equation (33), Equation (34) and Equation (35) for each pair
(x, h) with a = πk

h(x). Then it sets tk−1 = Nk
h (x, a), t

k = Nk+1
h (x, a), αagg = 1−αc(tk−1+1, tk)

and β̃ = βtk(x, a, h)− αc(tk−1 + 1, tk)βtk−1(x, a, h), and updates the global estimate of the value
functions according to one of the following two cases.

• Case 1: Nk
h (x, a) < i0. Due to Equation (2), this case implies that each client can visit each

(x, a) pair at step h at most once. Then, we denote 1 ≤ m1 < m2 . . . < mtk−tk−1 ≤ M as the
agent indices with nm,k

h (x, a) > 0. The server then updates the global estimate of action values
as follows:

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αaggrh(x, a) +

tk−tk−1∑
t=1

θt
k−1+t
tk

vmt,k
h+1 (x, a) + β̃/2. (36)

• Case 2: Nk
h (x, a) ≥ i0. In this case, the central server calculates vkh+1(x, a) as and updates the

Q-estimate as

Qk+1
h (x, a) = (1− αagg)Q

k
h(x, a) + αagg

(
rh(x, a) + vkh+1(x, a)

)
+ β̃/2. (37)

After finishing updating the estimated Q function, the central server updates the estimated value
function and the policy based on Equations (5) and (6). The algorithm then proceeds to round k+1.

Algorithms 3 and 4 formally present the Bernstein-type design. Inputs K0 and T0 in Algorithms
3 are termination conditions, where K0 limits the total number of rounds and T0 limits the total
number of samples generated by all the agents before the last round.

We provide some remarks. First, the coordinated exploration for agents is designed based on the
general situation where nm,k might be different across different agents, and clients share µm,k

h s in
addition to the information shared during the coordinated exploration in the Hoeffding-type Algo-
rithm 2. Second, the information aggregation at the central server differs from that in the Hoeffding-
type Algorithm 1, in terms of specifying β̃ to set the upper confidence bound and in maintaining
W1,k,W2,k and Wk.
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Algorithm 3 FedQ-Bernstein (Central Server)
1: Input: T0,K0 ∈ N+.
2: Initialization: k = 1, N1

h(x, a) = W1,k(x, a, h) = W2,k(x, a, h) = 0, Q1
h(x, a) = V 1

h (x) =
H,∀(x, a, h) ∈ S×A× [H] and π1 =

{
π1
h : S → A

}
h∈[H]

is an arbitrary deterministic policy.

3: while H
∑k−1

k′=1 Mnk′
< T0 & k ≤ K0 do

4: Broadcast πk, {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h to all clients.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive {rh(x, πk

h(x))}x,h,{nm,k
h (x, πk

h(x))}x,h,m, {vm,k
h+1(x, π

k
h(x))}x,h,m and

{µm,k
h (x, πk

h(x))}x,h,m from clients.
7: Calculate Nk+1

h (x, a), nk
h(x, a), v

k
h+1(x, a),∀(x, h) ∈ S × [H] with a = πk

h(x).
8: Calculate Wk(x, a, h),Wk+1(x, a, h),W1,k+1(x, a, h),W2,k+1(x, a, h), ∀(x, h) ∈ S × [H]

with a = πk
h(x) based on Equation (32), Equation (33), Equation (34) and Equation (35).

9: for (x, a, h) ∈ S ×A× [H] do
10: if a ̸= πk

h(x) or nk
h(x, a) = 0 then

11: Qk+1
h (x, a)← Qk

h(x, a).
12: else if Nk

h (x, a) < i0 then
13: Update Qk+1

h (x, a) according to Equation (36).
14: else
15: Update Qk+1

h (x, a) according to Equation (37).
16: end if
17: end for
18: Update V k+1

h and πk+1 according to Equation (5) and Equation (6).
19: k ← k + 1.
20: end while

Algorithm 4 FedQ-Bernstein (Agent m in round k)
1: nm

h (x, a) = vmh+1(x, a) = rh(x, a) = µm
h (x, a) = 0,∀(x, a, h) ∈ S ×A× [H].

2: Receive πk, {Nk
h (x, π

k
h(x))}x,h and {V k

h (x)}x,h from the central server.
3: while no abortion signal from the central server do
4: while nm

h (xh, ah) < max
{
1, ⌊ C̃MNk

h (xh, ah)⌋
}
,∀(x, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(xh, ah, rh)}Hh=1 with ah = πk
h(xh).

6: nm
h (xh, ah) ← nm

h (xh, ah) + 1, vmh+1(xh, ah) ← vmh+1(xh, ah) + V k
h+1(xh+1),

µm
h (xh, ah)← µm

h (xh, ah) +
[
V k
h+1(xh+1)

]2
, and rh(xh, ah)← rh,∀h ∈ [H].

7: end while
8: Send an abortion signal to the central server.
9: end while

10: nm,k
h (x, a) ← nm

h (x, a), vm,k
h+1(x, a) ← vmh+1(x, a)/n

m
h (x, a) and µm,k

h (x, a) ←
µm
h (x, a)/nm

h (x, a),∀(x, h) ∈ S × [H] with a = πk
h(x).

11: Send {rh(x, πk
h(x))}x,h,{nm,k

h (x, πk
h(x))}x,h, {µm,k

h (x, πk
h(x))}x,h and {vm,k

h+1(x, π
k
h(x))}x,h

to the central server.

E.2 PROOF OF THEOREM 5.1

In this subsection, we provide proof for Theorem 5.1 which provides the regret of Algorithms 3
and 4.

E.2.1 BOUNDS ON Qk
h −Q⋆

h

We first try to provide a Lemma that has stronger results than Lemma C.1.

Lemma E.1. Using Algorithms 3 and 4, there exists a positive constant c′ > 0 such that, for any
p ∈ (0, 1), the following relationship holds simultaneously for all (x, a, h,K ′) ∈ S×A× [H]× [K]
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with probability at least 1− p.

0 ≤ QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + βt(x, a, h), (38)

in which t = NK′

h (x, a).

The remaining content of Appendix E.2.1 is dedicated to proving this Lemma. First, we can easily
find that Lemma C.2 still holds with bt, βt replaced by b̃t, β̃t, and Lemma C.3 still holds. Next, due
to Equation (16) and Equation (15) with bt, βt replaced, we can easily obtain a similar one-sided
result summarized in the following Lemma.

Lemma E.2. Using the Bernstein-type algorithm, there exists a positive constant c′0 > 0 such
that, for any p ∈ (0, 1), the following relationship holds simultaneously for all (x, a, h,K ′) ∈
S ×A× [H]× [K] with probability at least 1− p.

QK′

h (x, a)−Q⋆
h(x, a) ≤ θ0tH +

t∑
i=1

θ̃it(V
ki

h+1 − V ⋆
h+1)(x

mi,ki,ji

h+1 ) + c′0
√

H3ι/t, (39)

in which t = NK′

h (x, a).

Proof. This relationship can be directly obtained from Equation (16) and Equation (15) with bt, βt

replaced.

With this, we can introduce the following technical Lemma.

Lemma E.3. Suppose that Equation (39) holds. For any given K ′ ∈ N, denote
∑K′

m,k,j =∑K′

k=1

∑M
m=1

∑nm,k
h

j=1 and w = vec({wmkj}) with m ∈ [M ], k ∈ [K ′], j ∈ [nm,k] be a non-negative
vector. Then there exists a numerical constant c′1 > 0 such that, for all (h,K ′) ∈ [H]× [K],

K′∑
m,k,j

wmkj

(
V k
h (xm,k,j

h )− V ⋆
h (x

m,k,j
h )

)
≤ c′1

(
∥w∥∞MSA

√
H5ι+

√
SA∥w∥∞∥w∥1H5ι+H4SA(M − 1)∥w∥∞

)
. (40)

Proof. We denote
Ṽ m,k,j
h = V k

h (xm,k,j
h )− V ⋆

h (x
m,k,j
h ).

Noticing that Qk
h

(
xm,k,j
h , am,k,j

h

)
≥ V k

h

(
xm,k,j
h

)
and Q⋆

h

(
xm,k,j
h , am,k,j

h

)
=

maxa∈A Q⋆
h

(
xm,k,j
h

)
≤ V ⋆

h

(
xm,k,j
h

)
, letting k = K ′ and (x, a) = (xm,k,j

h , am,k,j
h ), we

have that

Ṽ m,k,j
h ≤ θ0

tm,k,j
h

H +

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 + c′0

√
H3ι/tm,k,j

h .

Taking the summation with regard to k from 1 to K ′ and noticing that θ0
tm,k,j
h

= I[tm,k,j
h > 0], we

have

K′∑
m,k,j

wmkj Ṽ
m,k,j
h ≤ H

K′∑
m,k,j

wmkjI[tm,k,j
h = 0] +

∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θi
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1

+

K′∑
m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
.

Next, we find upper bounds with regard to the three terms.
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Step 1: finding an upper bound for H
∑K′

m,k,j wmkjI[tm,k,j
h = 0]. Noticing that wmkj ≤ ∥w∥∞,

using the same way as Proof of Equation (24) in Appendix C.4, we can find that

H
∑
m,k,j

wmkjI[tm,k,j
h = 0] ≤MHSA∥w∥∞.

Step 2: finding an upper bound for
∑K′

m,k,j wmkj

∑tm,k,j
h
i=1 θ̃i

tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 . Similar to Proof of

Equation (25) in Appendix C.4, with i1 = (M − 1)H(H + 1), we still split it into two parts as
follows:

K′∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 =

K′∑
m,k,j

wmkjI[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1

+

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 .

For the first part, applying wmkj ≤ ∥w∥∞, using the same way as Proof of Equation (25) in Ap-
pendix C.4, we can find that

K′∑
m,k,j

wmkjI[tm,k,j
h ≤ i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 ≤ O(H3SA(M − 1)∥w∥∞).

For the second part, we regroup the summations in a different way. For every (m′, k′, j′), the term

Ṽ m′,k′,j′

h+1 appears in the term wmkjI[tm,k,j
h > i1]

∑tm,k,j
h
i=1 θi

tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 for (k,m, j) if and

only if K ′ ≥ k > k′ and (xm,k,j
h , am,k,j

h ) = (xm′,k′,j′

h , am
′,k′,j′

h ). So, for each (m′, k′, j′), we
denote (x, a) = (xm′,k′,j′

h , am
′,k′,j′

h ). We consider all the later round indices k′ = k0 < k1 < k2 <

... < kg ≤ K ′ that satisfy ns = nks

h (x, a) > 0, s ∈ N. Here, kss and g are simplified notations
for functions of (m′, k′, j′, h), and we use the simplified notations when there is no ambiguity and
the stated meaning is only valid in proof of step 2. So, the summation of coefficients related to
(m′, k′, j′) equals to

w̃m′k′j′ =

g∑
s=1

 Nks
h (x,a)+ns∑

i=Nks
h (x,a)+1

w(mkj)m,k,j
i,h

 I[Nks

h (x, a) > i1]θ̃
i′

Nks
h (x,a)

,

in which i′ is the global visiting number for (x, a, h) at (m′, k′, j′), which means that (m′, k′, j′) =
mh(i

′;x, a), kh(i
′;x, a), jh(i

′;x, a). This means that

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 =

K′∑
m′,k′,j′

w̃m′k′j′ Ṽ
m′,k′,j′

h+1 .

Denote w̃ = vec({w̃m′k′j′}), we have that

∥w̃∥1 =

K′∑
m,k,j

wmkjI[tm,k,j
h > i1]

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

≤
K′∑

m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

≤ ∥w∥1

due to (c) in Lemma B.3. We can also find that

w̃m′k′j′ ≤
g∑

s=1

ns∥w∥∞I[Nks

h (x, a) > i1]θ̃
i′

Nks
h (x,a)

≤ exp(3/H)∥w∥∞,

where the proof of the last inequality is the same as the Proof of Equation (25). Combining the two
parts, we have that

K′∑
m,k,j

wmkj

tm,k,j
h∑
i=1

θ̃i
tm,k,j
h

Ṽ
(m,k,j)m,k,j

i,h

h+1 ≤
K′∑

m′,k′,j′

w̃m′k′j′ Ṽ
m′,k′,j′

h+1 +O
(
H3SA(M − 1)∥w∥∞

)
.
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Step 3: finding an upper bound for
∑K′

m,k,j wmkjΩ

(√
H3ι

tm,k,j
h

)
. We split it into two parts as fol-

lows.
K′∑

m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
=

K′∑
m,k,j

wmkjI[0 < tm,k,j
h ≤M − 1]Ω

(√
H3ι

tm,k,j
h

)

+

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
.

For the first part, applying that wmkj ≤ ∥w∥∞, similar to Proof of Equation (26) in Appendix C.4,
we have that

K′∑
m,k,j

wmkjI[0 < tm,k,j
h ≤M − 1]Ω

(√
H3ι

tm,k,j
h

)
= Ω

(
∥w∥∞SA(M − 1)

√
H3ι

)
.

For the second part, we denote w′
k(x, a, h) =

∑M
m=1

∑nm,k

j=1 wmkjI[(xm,k,j
h , am,k,j

h ) = (x, a)]. We
also introduce the following notation. For every pair (x, a, h) ∈ S × A × [H], we consider all the
rounds indexed as 0 < k̃1 < k̃2 < ... < k̃g ≤ K satisfying nk̃s

h (x, a) > 0, N k̃1

h (x, a) ≥ M and
N k̃1−1

h (x, a) < M . Here, k̃ss and g are simplified notations for functions of (x, a, h), and we use
the simplified notations when there is no ambiguity and the stated meaning is only valid in proof of
step 3. Then we have

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
= Ω(1)

∑
(x,a)∈S×A

g∑
s=1

w′
k̃s
(x, a, h)

√
H3ι

N k̃s

h (x, a)
.

We also define that

w′(i, x, a, h) = w′
k̃s
(x, a, h)/nk̃s

h (x, a),∀i ∈ N+, j ∈ [N k̃s

h (x, a), N k̃s

h (x, a) + nk̃s

h (x, a)− 1],

which indicates that
w′(j, x, a, h) ≤ ∥w∥∞.

Similar to Proof of Equation (26), we have that

√
2 ≥ max

(j,d)∈B̃

1
/√

N k̃s

h (x, a)

1
/√

N k̃s

h (x, a) + d

,∀(x, a, h) ∈ S ×A× [H],

in which B̃ = {(s, d) ∈ N2 : 1 ≤ s ≤ g, 1 ≤ d ≤ nk̃s

h (x, a)− 1}. So we have

∑
(x,a)∈S×A

g∑
s=1

w′
k̃s
(x, a, h)

√
H3ι

N k̃s

h (x, a)
= O(1)

∑
(x,a)∈S×A

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h)
√
H3ι/i

with ∑
(x,a)∈S×A

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h) ≤ ∥w∥1.

Denote w′′(x, a, h) = ∥w∥∞
⌈∑N

k̃g+1

h (x,a)−1

i=N
k̃1
h (x,a)

w′(i, x, a, h)/∥w∥∞
⌉

, which indicates that

w′′(x, a, h) ≤
N

k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h) + ∥w∥∞
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so that ∑
(x,a)∈S×A

w′′(x, a, h) ≤ ∥w∥1 + SA∥w∥∞.

Then by letting the mass related to {w′(i, x, a, h)}i concentrate at large values for {
√
H3ι/i}i as

much as possible, we have

N
k̃g+1

h (x,a)−1∑
i=N

k̃1
h (x,a)

w′(i, x, a, h)
√
H3ι/i ≤ ∥w∥∞

N
k1
h (x,a)+w′′(x,a,h)/∥w∥∞−1∑

i=N
k1
h (x,a)

√
H3ι/i

= O
(√

H3ιw′′(x, a, h)∥w∥∞
)
.

By the concavity of f(x) =
√
H3ιx, we have

K′∑
m,k,j

wmkjI[tm,k,j
h ≥M ]Ω

(√
H3ι

tm,k,j
h

)
≤

∑
(x,a)∈S×A

O
(√

H3ιw′′(x, a, h)∥w∥∞
)

≤
(√

H3SAι(∥w∥1 + SA∥w∥∞)∥w∥∞
)

=
(√

H3SAι∥w∥1∥w∥∞ + SA∥w∥∞
√
H3ι

)
.

To conclude, for step 3, we have that

K′∑
m,k,j

wmkjΩ

(√
H3ι

tm,k,j
h

)
≤ O

(√
H3SAι∥w∥1∥w∥∞ +MSA∥w∥∞

√
H3ι

)
.

Combining the results for the three different steps, we have∑
m,k,j

wmkj Ṽ
m,k,j
h ≤

∑
m,k,j

w̃mkj Ṽ
m,k,j
h+1 +O

(√
H3SAι∥w∥1∥w∥∞

+MSA∥w∥∞
√
H3ι+H3SA(M − 1)∥w∥∞

)
,

with ∥w∥1 ≤ exp(3/H)∥w̃∥1 and ∥w∥∞ ≤ ∥w̃∥∞. So, by recursions with regard to h, h+1 . . . H ,
we can get the result.

Next, we will establish relationships between Wk(x, a, h) and
[
VhV

⋆
h+1

]
(x, a), in which[

VhV
⋆
h+1

]
(x, a) is a variance operator define below. We also need these definitions for any

(x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a).[
PhV

⋆
h+1

]
(x, a) = E[V ⋆

h+1(xh+1)|(xh, ah) = (x, a)].[
VhV

⋆
h+1

]
(x, a) = Ex′∼Ph(·|x,a)

[
V ⋆
h+1 (x

′)−
[
PhV

⋆
h+1

]
(x, a)

]2
=: P1

Here, P1 depends on (x, a, h) and we will use the simplified notation when there is no ambiguity.

1

t

t∑
ĩ=1

[
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
=: P2.

1

t

t∑
ĩ=1

[
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− 1

t

t∑
i′=1

V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)]2
=: P3

WK′(x, a, h) =
1

t

t∑
i=1

[
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− 1

t

t∑
i′=1

V
kh(i

′;x,a)
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)]2
=: P4.

Here, P2, P3, P4 depend on (x, a, h, k) and we use the simplified notations when there is no ambi-
guity. The following Lemmas establish the closeness of these quantities to illustrate the closeness
between WK′(x, a, h) and

[
VhV

⋆
h+1

]
(x, a).
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Lemma E.4. For any p ∈ (0, 1) with probability at least 1− p, the following holds simultaneously
for all (x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a).

|P1 − P2| ≤ O
(
H2
√
ι/t
)
.

Proof. We have that
{[

V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
− P1

}∞

i=1

is a martingale dif-

ference bounded by O(H2), and the random variable t ≤ T0/H(1 + C̃). By Azuma-Hoeffding
Inequality, for any given (x, a, h) ∈ S × A × [H] and a given t′ ∈ N+, for any p ∈ (0, 1), with
probability 1− p,

1

t′

∣∣∣∣∣∣
t′∑

i=1

([
V ⋆
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

]2
− P1

)∣∣∣∣∣∣ ≤ O

(
H2

√
1

t′
log

2

p

)
.

By considering all the possible combinations (x, a, h, t′) ∈ S ×A× [H]×
[
[T0(1 + C̃)/H +M ]

]
,

with a union bound and the realization of t = t′, we can claim the conclusion.

Lemma E.5. For any p ∈ (0, 1) with least 1− p probability, the following holds simultaneously for
all (x, a, h,K ′) ∈ S ×A× [H]× [K + 1] with t = NK′

h (x, a):

|P2 − P3| ≤ O
(
H2
√
ι/t
)
.

Proof. We can find that

|P2 − P3| ≤ O

(
H

∣∣∣∣∣1t
t∑

i′=1

V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

∣∣∣∣∣
)
.

Knowing that
{
V ⋆
h+1

(
x
(m,k,j)h(i

′;x,a)
h+1

)
−
[
PhV

⋆
h+1

]
(x, a)

}∞

i′=1
is a martingale difference

bounded by O(H), using the same procedure as proof for Lemma E.4, we can claim the result.

For |P3 − P4|, similar to the proof of Lemma C.3 in Jin et al. (2018), we have

|P3 − P4| ≤ O

(
H

t

t∑
i=1

∣∣∣V kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

)∣∣∣) .

We mark an event Equation (41) here, which means that the difference is always non-negative.

Event(K ′) =

{
t∑

i=1

∣∣∣V ki

h+1

(
xmi,ki,ji

h+1

)
− V ⋆

h+1

(
xmi,ki,ji

h+1

)∣∣∣
=

t∑
i=1

(
V ki

h+1

(
xm,ki,ji

h+1

)
− V ⋆

h+1

(
xmi,ki,ji

h+1

))
,∀(x, a, h) ∈ S ×A× [H]

}
.

(41)
We do not need a new statistical lemma to prove that it holds with high probability. It will be shown
to hold automatically based on some other statistical events that hold with high probability later.
Under this event, we need to find an upper bound for

1

t

t∑
i=1

(
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

))
.

Under the event of Equation (39), based on Lemma E.3, letting wmkj = 1
t I[(x

m,k,j
h , am,k,j

h ) =
(x, a)], we have that

1

t

t∑
i=1

(
V

kh(i;x,a)
h+1

(
x
(m,k,j)h(i;x,a)
h+1

)
− V ⋆

h+1

(
x
(m,k,j)h(i;x,a)
h+1

))
≤ O

(
MSA

t

√
H5ι+

√
SA

t
H5ι+H4SA(M − 1)

1

t

)
,
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which indicates that, under the intersections of the events of Equation (39), and
⋂K′

k=1 Event(k), for
any (x, a, h) ∈ S ×A× [H], we have

|P3 − P4| ≤ O

(
MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
.

To conclude about the relationship between Wk(x, a, h) and
[
VhV

⋆
h+1

]
(x, a), we have that, under

the interaction of the events of Equation (39),
⋂K′

k=1 Event(k), Lemma E.4 and Lemma E.5, we have
∀(x, a, h, k) ∈ S ×A× [H]× [K ′],

|Wk(x, a, h)−
[
VhV

⋆
h+1

]
(x, a)|

≤ O

(
MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
. (42)

With this relationship, we can provide the new concentration results. Similar to the proof of Lemma
C.3, for a given (x, a, h) ∈ S ×A× [H], we decompose the summation

∑t
i=1 θ̃

i
tXi as follows.

t∑
i=1

θ̃itXi =

t∑
i=1

θitXi +

t∑
i=1

(θ̃it − θit)Xi.

Equation (19) has already provided an upper bound for all (x, a, h,K ′) ∈ S × A × [H] × [K] for
the second summation. Next, we focus on

∣∣∣∑t
i=1 θ

i
tXi

∣∣∣. By Azuma-Bernstein Inequality, for any
fixed t′ ∈ N+ and fixed (x, a, h) ∈ S ×A× [H], for any p ∈ (0, 1), with probability at least 1− p,
we have that ∣∣∣∣∣∣

t′∑
i=1

θit′Xi

∣∣∣∣∣∣ ≤ O

(√
1

t′
H
[
VhV ⋆

h+1

]
(x, a) log

2

p
+

1

t′
H2 log

2

p

)
.

After considering the union bound with regard to (x, a, h) ∈ S × A × [H] and t′ ≤ T0/H , we can
claim the following conclusion: for any p ∈ (0, 1), with probability at least 1 − p, the following
relationship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K],∣∣∣∣∣

t∑
i=1

θitXi

∣∣∣∣∣ ≤ O

(√
ι

t′
H
[
VhV ⋆

h+1

]
(x, a) +

ι

t
H2

)
, t = NK′

h (x, a). (43)

The intersection of events of Equation (43) and Equation (19) indicates that the following relation-
ship holds simultaneously for all (x, a, h,K ′) ∈ S ×A× [H]× [K] with t = NK′

h (x, a):∣∣∣∣∣
t∑

i=1

θ̃it(Ẽx,a,h,i − Ex,a,h)V
⋆
h+1(xh+1)

∣∣∣∣∣ ≤ O

(√
ι

t
H
[
VhV ⋆

h+1

]
(x, a) +

ι

t
H2 +

√
Hι/t

)
. (44)

Combining with the event of Equation (42) for K ′ replaced by K ′ + 1, we have that∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1)

)∣∣∣∣∣
≤ O


√√√√ ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)

+
ι

t
H2 +

√
Hι/t

)
.
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Due to 2
√

H7SAι
t ≤ H + H6SAι

t , we have that

O


√√√√ ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+

√
SAH7ι√

t
+

(M − 1)SAH5

t

)
≤ O

(√
ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+H +

SAH6ι

t
+

(M − 1)SAH5

t

))

≤ O

(√
ι

t
H

(
WK′+1(x, a, h) +

MSA

t

√
H7ι+H +

SAH6ι

t
+

(M − 1)SAH5

t

))
.

Noticing that
MSA

t

√
H7ι+

(M − 1)SAH5

t
= O

(
MSA

t
H5ι

)
,

we have ∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1) + r

(m,k,j)h(i;x,a)
h − rh(x, a)

)∣∣∣∣∣
≤ O

(√
Hι

t
(WK′+1(x, a, h) +H) + ι

√
H7SA+

√
MSAH6

t

)
, (45)

which indicates that∣∣∣∣∣
t∑

i=1

θ̃it

(
(Ẽx,a,h,i − Ex,a,h)V

⋆
h+1(xh+1)

)∣∣∣∣∣ ≤ βt(x, a, h)/2

when combining with Equation (39) and c′ is large enough.

Finally, we are ready to provide proof for Lemma E.1. We let c′ to be large enough and Will provide
discussion under the intersections of events for Equation (19), Equation (39), Lemma E.4, Lemma
E.5 and Equation (43). We know that these events hold simultaneously with probability 1 − cpp
for some cp > 0. Next, we will prove Equation (38) by induction. It obviously holds that for all
(x, a, h) ∈ S × A × [H] when K ′ = 1. We suppose that it holds for every K ′ ≤ K ′

0. When
K ′ = K ′

0 + 1, LHS of Equation (38) indicates that
⋂K′

0+1
k=1 Event(k) holds. By the discussion

above, this indicates that Equation (45) holds for K ′
0 +1, by recursions on H,H − 1, . . . , 1 (similar

to the proof of Lemma 4.3 in Jin et al. (2018)), we can prove that Equation (38) holds for all
(x, a, h) ∈ S × A× [H] for K ′

0 + 1. This finishes the induction. After we replace p with p/cp, we
finish the proof.

E.2.2 REMAINING PARTS FOR PROVING THEOREM 5.1

Next, we begin to discuss the overall complexity. Similar to Lemma C.5 in Jin et al. (2018), we will
provide the following Lemma.
Lemma E.6. For any p ∈ (0, 1), with probability at least 1− p,∑

m,k,j

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h ) ≤ O(HT̂ +H3ι).

Proof. We assign an order for all the episodes based on the “round first, episode second, agent third”
rule and suppose m(i), k(i), j(i) recovers the agent index, round index and within round episode
index for the i−th episode. Denote Ri =

∑H
h=1 VhV

πk

h+1(x
(m,k,j)(i)
h , a

(m,k,j)(i)
h ) and Fi−1 be the

σ−field generated by the information before the i−th episode. Similar to the proof of Lemma C.5
in Jin et al. (2018), we have

E[Ri|Fi−1] ≤ H2,

0 ≤ Ri ≤ H3,
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Var[Ri|Fi−1] ≤ H5.

So, by Azuma-Hoeffding Inequality based on
∑t

i=1 Ri with regard to the filtration {Fi}∞i=1 and a
union bound for t ≤ T0(1 + C̃)/H +M , we conclude that

∑
m,k,j

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h ) =

T̂ /H∑
i=1

Ri ≤ O(HT̂ +H3ι).

We also provide a Lemma that focuses on the concentration of ξkh.
Lemma E.7. For any p ∈ (0, 1), with probability at least 1 − p, the following relationships holds
simultaneously: ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=h′

ξkh+1

∣∣∣∣∣ ≤ O(H
√

T̂ ι),∀h′ ∈ [H], (46)∣∣∣∣∣
K∑

k=1

H∑
h=1

ξkh+1

∣∣∣∣∣ ≤ O(H
√
T̂ ι), (47)

in which Ch = exp(3(h− 1)/H).

Proof. We first focus on the first event. Denote V (m, k, j, h) = Ch(P −
P̂)
(
V ⋆
h+1 − V πk

h+1

)
(xm,k,j

h , am,k,j
h ) and a simplified notation

∑
m,k,j,h:h′ =∑K

k=1

∑M
m=1

∑nm,k

j=1

∑H−1
h=h′ . The quantity we focus on can be rewritten as∑

m,k,j,h:h′

V (m, k, j, h),

with |V (m, k, j, h)| ≤ O(H) as Ch ≤ exp(3). Let Ṽ (̃i) be the ĩ−th term in the summation that
contains T̂ (H − h′)/H terms, in which the order follows a “round first, episode second, step third,
agent fourth” rule. Then the sequence {Ṽ (̃i)} is a martingale difference. By Azuma-Hoeffding
Inequality, for any p ∈ (0, 1) and t ∈ N+, with probability at least 1− p,∣∣∣∣∣∣

t∑
ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O
(
H
√
t
)
.

Then by applying a union bound with regard to h′ ∈ [H − 1] and all possible t which is divisible
by H − h′ and knowing that T̂ (H − h′)/H ≤ T0(1 + C̃) + HM due to (e) in Lemma B.1, we
can claim that, for any p ∈ (0, 1), with probability at least 1 − p, the following relationship holds
simultaneously: ∣∣∣∣∣

K∑
k=1

Ch

H∑
h=h′

ξkh+1

∣∣∣∣∣ =
∣∣∣∣∣∣
T̂ (H−h′)/H∑

ĩ=1

Ṽ (̃i)

∣∣∣∣∣∣ ≤ O(H
√
T̂ ι),∀h′ ∈ [H].

The second event can be analyzed similarly for the same conclusion. By combining these two events
and re-scaling p, we can claim the result.

Next, we try to find the upper bound for the regret. We pick c′ to be large enough and discuss
based on the intersection of events of Equation (19), Equation (39), Lemma E.4, Lemma E.5, Equa-
tion (43), Lemma E.7, Lemma E.1 and Lemma E.6. They hold simultaneously with probability at
least 1 − c′pp where c′p > 0 is a numerical constant and indicates Equation (42). Similar to the
discussions in Proof of Theorem 4.1, we can claim that for ∀h ∈ [H],

K∑
k=1

δkh ≤ O
(√

H4ιT̂SA+HSA(M − 1)
√
H3ι+MH2SA+H4SA(M − 1)

)
, (48)
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due to βt(x, a, h) = O(
√

H3ι/t). In addition, due to the relationship
K∑

k=1

δkh ≤ exp(3/H)

K∑
k=1

δkh+1 +

K∑
k=1

ξkh+1 +O(1)
∑
k,m,j

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

+O
(
MHSA+H3SA(M − 1)

)
,

which can be obtained similar to the situation in Appendix C.3 for Proof of Theorem 4.1, denoting∑
k,m,j,h =

∑
k,m,j

∑H
h=1, we have

K∑
k=1

δk1 ≤ O(MH2SA+H4SA(M−1)+
√
H2T̂ ι)+O(1)

∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) (49)

We will bound the last term by splitting it into two parts.∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) =
∑

k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≤M − 1]

+
∑

k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≥M ].

For the first part, knowing that βtm,k,j
h

(xm,k,j
h , am,k,j

h , h) ≤ O(
√
H3ι), using the similar technique

as Proof of Equation (26), we have that∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≤M − 1] ≤ O

(
HSA(M − 1)

√
H3ι

)
.

For the second part, we have that∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)I[tm,k,j
h ≥M ]

≤
∑

k,m,j,h

O

(√
Hι

tm,k,j
h

(Wk+1(x
m,k,j
h , am,k,j

h , h) +H) + ι

√
H7SA+

√
MSAH6

tm,k,j
h

)
· I[tm,k,j

h ≥M ].

Later on, we use another simplified notation
∑

k,m,j,h:M =
∑

k,m,j,h I[t
m,k,j
h ≥ M ]. Using the

same technique of finding C ′′ in Equation (26), we can find that∑
k,m,j,h:M

1/tm,k,j
h ≤ O(1)

∑
(x,a,h)∈S×A×[H]

NK+1
h (x,a)−1∑

i=M

1/i ≤ HSAι (50)

and ∑
k,m,j,h:M

1/

√
tm,k,j
h ≤ O(1)

∑
(x,a,h)∈S×A×[H]

NK+1
h (x,a)−1∑

i=M

1/i ≤
√

HSAT̂ . (51)

So, we have ∑
k,m,j,h:M

ι

√
H7SA+

√
MSAH6

tm,k,j
h

≤ ι2HSA
(√

H7SA+
√
MSAH6

)
.

We also have∑
k,m,j,h:M

(√
H

tm,k,j
h

(Wk(x
m,k,j
h , am,k,j

h , h) +H)

)

≤ O(1)

√√√√√
 ∑

m,k,j,h:M

(Wk+1(x
m,k,j
h , am,k,j

h , h) +H)

 ∑
m,k,j,h:M

H

tm,k,j
h


≤ O(1)

√
H3SAT̂ ι+O(1)

√
H2SAι

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h),
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where the first inequality follows from Cauchy’s inequality and the second inequality is due to
Equation (50).

To conclude, we have∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

= O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8+

+
√

H3SAT̂ ι2 +
√
H2SAι2

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)

 . (52)

Next, we try to find an upper bound for√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h).

We know that

Wk(x, a, h) ≤ Vh

[
V πk

h+1

]
(x, a) +

∣∣[VhV
⋆
h+1

]
(x, a)−Wk(x, a, h)

∣∣
+
∣∣∣[VhV

⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ .
By Lemma E.6, √ ∑

m,k,j,h:M

Vh

[
V πk

h+1

]
(xm,k,j

h , am,k,j
h ) ≤ O

(√
HT̂ +H3ι

)
.

By Equation (42), denoting t̃m,k,j
h = Nk+1

h (xm,k,j
h , am,k,j

h ),√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−Wk+1(x

m,k,j
h , am,k,j

h , h)
∣∣∣

≤ O


√√√√√ ∑

m,k,j,h:M

MSA

t̃m,k,j
h

√
H7ι+

√
SAH7ι√
t̃m,k,j
h

+
(M − 1)SAH5

t̃m,k,j
h


 .

As t̃m,k,j
h ≥ tm,j,k

h , we have that√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−Wk+1(x

m,k,j
h , am,k,j

h , h)
∣∣∣

≤ O


√√√√√ ∑

m,k,j,h:M

MSA

tm,k,j
h

√
H7ι+

√
SAH7ι√
tm,k,j
h

+
(M − 1)SAH5

tm,k,j
h




= O

(√
MH4.5S2A2ι1.5 +H4SA

√
T̂ ι+ (M − 1)H6S2A2

)
,

where the last inequality is due to Equation (50) and Equation (51). We also have√ ∑
m,k,j,h:M

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣
≤
√ ∑

m,k,j,h

∣∣∣[VhV ⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣.
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Next, we will show that, for any (x, a, h) ∈ S ×A× [H],∣∣∣[VhV
⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ ≤ O(H)
([

PhV
⋆
h+1

]
(x, a)−

[
PhV

πk

h+1

]
(x, a)

)
.

Suppose that u, v are random variables such that u follows the distribution of V ⋆
h+1(xh+1) under π⋆

when (xh, ah) = (x, a), and v follows the distribution of V πk

h+1(xh+1) under πk when (xh, ah) =
(x, a) and u ≥ v. The third requirement is reasonable because the distribution of xh+1 only depends
on (x, a) and V ⋆

h+1(xh+1) ≥ V πk

h+1(xh+1). We have that u, v ≤ H . So,∣∣∣[VhV
⋆
h+1

]
(x, a)−

[
VhV

πk

h+1

]
(x, a)

∣∣∣ = |Var(u)− Var(v)|

≤ |E(u2)− E(v2) + (Ev)2 − (Eu)2|
≤ |E(u− v)(u+ v) + (Ev − Eu)(Ev + Eu)|
≤ O(H)(|E(u− v)|+ E|u− v|)
= O(H)E(u− v).

This proves the conclusion. Using the conclusion, we can find that∑
m,k,j,h

∣∣∣[VhV
⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
VhV

πk

h+1

]
(xm,k,j

h , am,k,j
h )

∣∣∣
≤ O(H)

∑
m,k,j,h

([
PhV

⋆
h+1

]
(xm,k,j

h , am,k,j
h )−

[
PhV

πk

h+1

]
(xm,k,j

h , am,k,j
h )

)

= O(H)

H∑
h=1

K∑
k=1

(δkh+1 − ϕk
h+1 + ξkh+1)

≤ O(H)

H∑
h=1

K∑
k=1

(δkh+1 + ξkh+1),

in which the last inequality is due to ϕk
h ≥ 0 based on Equation (38). By Equation (48) and Lemma

E.7, we have

O(H)

H∑
h=1

K∑
k=1

(δkh+1+ξkh+1) = O
(√

H8ιT̂SA+H3SA(M − 1)
√
H3ι+MH4SA+H6SA(M − 1)

)
.

So, we have∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)

≤ O
(
HT̂ +H3ι+MH4SA+

√
H8T̂ SAι+H6SA(M − 1) +H2SA(M − 1)

√
H5ι

)
+O

(
MS2A2

√
H9ι3 + SA

√
H8T̂ ι+ S2A2H6(M − 1)

)
= O

(
HT̂ +MH4.5S2A2ι1.5 +H4SA

√
T̂ ι+H6S2A2(M − 1)

)
,

where the last relationship is due to

(M − 1)H6S2A2 ≥ (M − 1)H6SA,H4SA
√
T̂ ι ≥

√
H8T̂ SAι

and

MS2A2
√
H9ι3 ≥MH4SA+H3ι+H2SA(M − 1)

√
H5ι.
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Inserting it into Equation (52), we have∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

= O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8+

+
√
H3SAT̂ ι2 +

√
H2SAι2

√ ∑
m,k,j,h:M

Wk+1(x
m,k,j
h , am,k,j

h , h)


= O

(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

+
√
MH6.5S3A3ι3.5 +

√
H6S2A2T̂ 0.5ι2.5 +

√
H8S3A3(M − 1)ι2

)
.

Due to √
MH8S3A3ι4 ≥

√
MH6.5S3A3ι3.5,√

H8S3A3(M − 1)ι2 ≤ ι2
√
MS3A3H8

and√
H6S2A2T̂ 0.5ι2.5 ≤ H4.5S1.5A1.5ι1.5 +

√
T̂ SAH3ι2 ≤ H4.5S1.5A1.5ι2 +

√
T̂ SAH3ι2,

we have ∑
k,m,j,h

βtm,k,j
h

(xm,k,j
h , am,k,j

h , h)

≤ O
(
HSA(M − 1)

√
H3ι+ ι2

√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

)
.

Inserting it into Equation (49), we have

Regret(T ) ≤
K∑

k=1

δk1

= O
(
MH2SA+H4SA(M − 1) +HSA(M − 1)

√
H3ι

+ι2
√
H9S3A3 + ι2

√
MS3A3H8 +

√
H3SAT̂ ι2

)
.

Finally, for the probability of the intersection of all the events, if we use p/c′p to replace p, we
complete the proof.

F NUMERICAL EXPERIMENTS

In this section, we conduct experiments in a synthetic environment to validate the theoretical per-
formances of FedQ-Hoeffding, FedQ-Beinstein, and compare with their single-user counterparts
UCB-H and UCB-B (Jin et al., 2018), respectively.

Synthetic Environment. We generate a synthetic environment to evaluate the proposed algorithms.
We set the number of states S to be 3, the number of actions A for each state to be 2, and the
episode length H to be 5. The reward rh(s, a) for each state-action pair and each step is generated
independently and uniformly at random from [0, 1]. We also generate the transition kernel Ph(· |
s, a) from an S-dimensional simplex independently and uniformly at random for each state-action
pair and each step. Such procedure guarantees that the synthetic environment is a proper tabular
MDP.

Under the given MDP, we set M = 10 and T/H = 3 × 104 for FedQ-Hoeffding, FedQ-Beinstein,
and T/H = 3× 105,M = 1 for UCB-H and UCB-B. Thus, the total number of episodes is 3× 105

for all four algorithms. We choose c = ι = 1 for all algorithms. For each episode, we randomly
choose the initial state uniformly from S states. We collect 10 sample paths under all algorithms
under the same MDP environment, and plot Regret(T )/

√
MT versus MT/H in Figure 1. The
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Figure 1: Regret comparison.

solid line represents the median of the 10 sample paths, while the shaded area shows the 10th and
90th percentiles. As we can see, both FedQ-Hoeffding and FedQ-Beinstein stay very close to their
single-agent counterpart, indicating that FedQ-Hoeffding achieves linear speedup with respect to the
number of clients M , as predicted by Theorem 4.1 and Theorem 5.1. Besides, as time progresses,
FedQ-Beinstein achieves lower regret than FedQ-Hoeffding, which is consistent with the theoretical
results as well.

We also track the number of communication rounds throughout the learning process under FedQ-
Hoeffding and FedQ-Bernstein, and plot the median profiles as well as the 10th and 90th percentiles
in Figure 2. Both curves exhibit sublinear growth, corroborating the theoretical result in Theo-
rem 4.2. Besides, the total number of communication rounds under FedQ-Bernstein becomes lower
than that under FedQ-Hoeffding as T becomes sufficiently large. This is because after the more
active early-stage exploration of FedQ-Bernstein, it reaches a more stable policy, under which the
synchronization triggered by (x, a, h)s that are less likely to be visited under the optimal policy
rarely happens.
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Figure 2: Total number of communication rounds as a function of T/H .
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