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ABSTRACT

Nonconvex minimax problems have received intense interest in many machine
learning applications such as generative adversarial network, robust optimization
and adversarial training. Recently, a variety of minimax optimization algorithms
based on Lipschitz smoothness for finding first-order or second-order stationary
points have been proposed. However, the standard Lipschitz continuous gradient
or Hessian assumption could fail to hold even in some classic minimax prob-
lems, rendering conventional minimax optimization algorithms fail to converge
in practice. To address this challenge, we demonstrate a new gradient-based
method for nonconvex-strongly-concave minimax optimization under a general-
ized smoothness assumption. Motivated by the important application of escap-
ing saddle points, we propose a generalized Hessian smoothness condition, under
which our gradient-based method can achieve the complexity of O(¢~ 1" logn)
to find a second-order stationary point with only gradient calls involved, which
improves the state-of-the-art complexity results for the nonconvex minimax opti-
mization even under standard Lipschitz smoothness condition. To the best of our
knowledge, this is the first work to show convergence for finding second-order
stationary points on nonconvex minimax optimization with generalized smooth-
ness. The experimental results on the application of domain adaptation confirm
the superiority of our algorithm compared with existing methods.

1 INTRODUCTION

In recent years, minimax optimization problems, under various assumptions on the objective func-
tions, has been a major focus of research in machine learning fields, with various applications includ-
ing adversarial training (Madry et al., |2018), generative adversarial networks (GAN) (Goodfellow
et al.,[2014)), and multi-agent reinforcement learning (Omidshafiei et al.,|2017). A general formula-
tion of Minimax optimization problem can be written as

i 1
min max f(x,y) QY

In this paper, we focus on the nonconvex-strongly-concave case where the objective function f :
R™ x R™ — R is nonconvex in x and strongly-concave in y.

Historically, [Nouiehed et al.| (2019) was the first work providing non-asymptotic convergence rates
for nonconvex-strongly-concave minimax problems without assuming special structure of the objec-
tive function. They use the notion of e-first-order stationary point to measure the rate of convergence
of their algorithm. Using this notion, they showed that their algorithm finds an e-first-order station-
ary point in O(e~2) gradient evaluations.

Another way to measure the convergence rate of an algorithm for solving (I) is to define the primal
function ®(x) = maxycy f(x,y) and measure the first-order optimality in terms of the nonconvex
problem minye y ®(x). In this context, Thekumparampil et al.| (2019) proposed the proximal dual
implicit accelerated gradient (ProxDIAG) algorithm for smooth and nonconvex-strongly-concave
minimax problems and proved that this algorithm finds an e-first-order stationary point of ® with
the rate of O(e~2).



Under review as a conference paper at ICLR 2025

Lin et al.| (2020a)) showed that a simple single-loop gradient descent ascent (GDA) method could
obtain an e-first-order stationary point of ® with O(e~?2) gradients calls. Mahdavinia et al.| (2022)
also established the same iteration complexity by an extra-gradient method. Unfortunately, the first-
order stationary points obtained by these algorithms cannot guarantee the local optimality since the
objective function f could be nonconvex on x and first-order stationarity includes suboptimal saddle
points.

On the positive side, some recent literatures establish nonasymptotic convergence analysis for find-
ing second-order stationary points. |Luo et al.[(2022)) proposed a cubic Newton based method that can
obtain an (e, \/€)-second-order stationary point in O(e~2) Hessian-vector oracle calls or O(e~1%)
Hessian oracle calls. Huang et al. (2022) obtained a gradient complexity of O(e~?2) with a perturbed
gradient descent-ascent algorithm. Yang et al.|(2023) improved the complexity to O (e~ 17 log6 n)
with a perturbed momentum-based method.

However, most of the existing analysis frameworks for minimax optimization are based on the re-
quirement of Lipschitz smoothness. Though there are some works show the convergence for con-
vex or weakly convex minimax problems without smoothness assumption (Rafique et al.| (2022)),
research on nonconvex minimax optimization with generalized smoothness is still limited. This
drawback restricts the applications of minimax optimization algorithms because in some tasks the
objective function does not satisfies Lipschitz smoothness such as distribution robust optimization
(Yan et al.,[2019; [Levy et al.l [2020; Jin et al., [2021) and phase retrieval (Drenth| 2007} |[Miao et al.,
1999). Xian et al.| (2024) conduct the convergence analysis of GDA and GDAmax under general-
ized smoothness and obtained a gradient complexity of O(e~2) for finding an e-first-order stationary
point, but it is still open whether second-order stationary points could be obtained with generalized
Lipschitz smoothness assumptions. This paper answers this question in the affirmative.

Contributions. In this paper, we propose a simple gradient-based accelerated methods, which have
the following three advantages:

* We design a new algorithm named ANCGDA, which is the first algorithm to find a second-
order stationary point in nonconvex-strongly-concave minimax optimization with gener-
alized smoothness. We prove that it can obtain such points within O(e =7 logn) num-
ber of gradient evaluations without Hessian-vector or Hessian oracle. Notably, this result
is better than the state-of-the-art complexity results under Lipschitz smoothness assump-
tion O(e~ 17 1log®n) in terms of the logn factor. The detailed comparison of existing
nonconvex-strongly-concave minimax optimization algorithms is shown in Table

* We proposed a second-order theory of generalized smoothness condition for minimax op-
timization and further conducted the new fundamental properties of the primal function ®
and y* in Lemma {4.2|under the proposed second-order generalized smoothness condition,
which is significantly important for controlling the hypergradient estimation error. Lever-
aging by this important properties, we develop a new convergence analysis framework for
the second-order generalized smoothness minimax algorithm.

* We conduct a numerical experiment on domain adaptation task to validate the practical per-
formance of our method. We show that ANCGDA consistently outperforms other minimax
optimization algorithms.

2 RELATED WORK

Nonconvex Minimax Optimization. Recent years, many algorithms have been proposed for non-
convex minimax optimization under Lipschitz smoothness assumption. In Nonconvex-strongly-
concave setting, [Lin et al.[(2020a)) demonstrated the first non-asymptotic convergence of GDA to e
first-order stationary point of ®(z), with the gradient complexity of O(x%€e~2). [Lin et al.| (2020b)
and Zhang et al. (2021) proposed triple loop algorithms achieving gradient complexity of O (/e )
by leveraging ideas from catalyst methods (adding a || — @||” to the objective function), and in-
exact proximal point methods, which nearly match the existing lower bound. (Li et al., 2021} Zhang
et al.,2021;|Ouyang & Xu,[2021)) Approximating the inner loop optimization of catalyst idea by one
step of GDA, |Yang et al.| (2022) developed a single loop algorithm called smoothed AGDA, which
provably converges to e-stationary point, with gradient complexity of O(ke=2).
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Table 1: Comparison of oracle complexity of nonconvex-strongly-concave minimax problems for
finding first-order stationary points (FOSP) or second-order stationary points (SOSP). FO (First
Order)-Generalized Smoothness and SO (Second Order)-Generalized Smoothness are defined in
Definition and Note that the O(e~2)* complexity of IMCN is computed with Hessian-
vector oracles.

Algorithm ‘ Smoothness ‘ FOSP ‘ SOSP ‘ Complexity

GDA (Lin et al.|[2020a) Lipschitz Smoothness v X 0(e™?)

Smoothed-GDA (Zhang et al.|2020b) Lipschitz Smoothness v X O(e7?)

GDmax (Jin et al.;|[2020) Lipschitz Smoothness v X 0(e7?)

IMCN (Luo et al.!|[2022) Lipschitz Hessian v v O(e )"

Perturbed GDmax (Huang et al.!|[2022) Lipschitz Hessian v v O(e7?)
PRAHGD (Yang et al.|[2023) Lipschitz Hessian v v O(e 1 10g% n)

Generalized GDA (Xian et al.|2024) | FO-Generalized Smoothness v X 0(e7?)
ANCGDA (This Work) SO-Generalized Smoothness v v O(e 1" logn)

Compared to first-order methods, there has been significantly less research on the second-order
methods for minimax optimization problems with global convergence rate estimation. However,
a significant body of recent work shows that first-order stationary points cannot guarantee the lo-
cal optimality in nonconvex-(strongly)concave settings and the global optimality in convex-concave
settings. [Lin et al. (2022) proposed newton-based methods and obtained global rates of conver-
gence within O(e=2/3) iterations using Hessian-vector information, matching the theoretically es-
tablished lower bound in convex-concave settings. For nonconvex-strongly-concave settings, |[Luo
et al.| (2022) presented Minimax Cubic-Newton, obtaining a second-order stationary point of ® with
calling O(k!%¢~1-5) times of Hessian oracles and O(x2e~'%) times of gradient oracles, while the
inexact version obtaining a second-order stationary point with O(n1'5e_2) Hessian-vector oracle
calls and O(n2e*1'5) gradient calls. [Yang et al.| (2023) proposed a Perturbed Restarted Acceler-
ated HyperGradient Descent algorithm, improved the complexity bound to 0(51'756’1'75 log® n)
with only gradient iterations. But none of these algorithms are proved efficient under generalized
smoothness assumption. To the best of our knowledge, we are the first work to study the convergence
for finding second-order solutions in nonconvex-strongly-concave minimax optimization problems
beyond bounded Lipschitz smoothness assumption.

Generalized smoothness. The convergence analysis of most existing minimax algorithms needs
to assume the gradient or hessian is Lipschitz. However, such assumptions are fail to hold in an
important class of neural networks such as recurrent neural networks (RNNs) (Elman, |1990), long-
short-term memory networks (LSTMs) (Graves & Graves| |[2012) and Transformers (Vaswani, 2017)
which are shown to have unbounded smoothness (Pascanu, 2012; Zhang et al., [2019; (Crawshaw
et al., 2022). For minimization optimization, |[Zhang et al.| (2019) proposed a relaxed smoothness
assumption that bounds the Hessian by a linear function of the gradient norm, that is, a function f
is said to be (ly, 1 )-smoothness if there exists some constants /[y > 0 and I; > 0 such that

IV2f(x)|| <lo+ 1|V, ¥YxeR™ )

Under the same condition, [Zhang et al.| (2020a) considers momentum in the updates and improves
the constant dependency of the convergence rate for SGD with clipping derived in [Zhang et al.
(2019). |Qian et al| (2021)) studies gradient clipping in incremental gradient methods, |[Zhao et al.
(2021)) studies stochastic normalized gradient descent, and (Crawshaw et al.| (2022) studies a gen-
eralized SignSGD method, under the (lo, l;)-smoothess condition. [Reisizadeh et al.| (2023) studies
variance reduction for (Io, 1 )-smooth functions. [Wang et al.[(2022) analyzes convergence of Adam
and provides a lower bound which shows non-adaptive SGD may diverge. |Li et al.| (2024a)) and [L1
et al.| (2024b)) further generalize the smoothness condition and analyze various methods under this
condition through bounding the gradients along the trajectory:

IV <200 + 2LV F(x)I) - (f(x) = f7), Vx€ X, 3)

if fis (lp,11)-smooth. Xie et al.|(2024) show convergence beyond the first-order stationary condi-
tion for generalized smooth optimization. However, research on minimax optimization under gen-
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eralized smoothness is few. [Xian et al.| (2024) prove that classic minimax optimization algorithms
GDA, GDmax and their stochastic version can still converge to e-first-order stationary points under
generalized smoothness condition and the complexity matches the Lipschitz smoothness counter-
parts. But it is still open whether second-order stationary points can be found in such conditions.
We are thus led to ask the following question: Is it possible to develop an effective method for
finding second-order stationary points on nonconvex-strongly-concave minimax optimization under
generalized smoothness and can such method matches the efficiency of accelerated algorithms for
nonconvex minimization optimization?

This paper answers this question in the affirmative. We further study the second-order generalized
smoothness assumption for minimax optimization and present a gradient-based algorithm for find-
ing second-order stationary points under generalized smoothness for nonconvex-strongly-concave
minimax problem. We provide the convergence analysis and show that the proposed algorithm can
find a second-order stationary point in O(e~7® log n) iterations, which matches the state-of-the-art
complexity results for nonconvex optimization under bounded Lipschitz smoothness assumption.

3 PRELIMINARIES

In this paper, we use (-, -) and || - || to denote the inner product and Euclidean norm. Aiming to solve
minimax optimization problem[I} we introduce the following generalized smoothness assumptions.
In|[Zhang et al.[(2020a)), the (Io, 1 )-smooth assumption is defined as

Definition 3.1 A differentiable function f : R™ — R is (lg,11)-smooth if |V f(u) — Vf(u')| <
(lo+ L ||IVf()]])|lu— 1’| for any |lu — || < R} with some constants ly > 0, Iy > 0 and R} > 0.

Definition 3.1] is a first-order smoothness condition relaxed from 2l When it comes to second-
order condition, (Xie et al., 2024) proposed a second-order generalized smoothness assumption and
interpret it from the perspective of the boundness of higher-order derivatives.

1)-Hessian continuous if

Definition 3.2 A twice-differentiable function f : R™ — R is (pg,p
| < R}, with some constants

(
[V2f(u) = V2F(u)]| < (po + p1l|Vf(z)D]a — || for |u — u’|
po >0, p1 ZOandR;>O.

Extending these assumptions to minimax optimization, we introduce the following first-order and
second-order generalized smoothness conditions in Definition [3.3]and [3.4] respectively.

Definition 3.3 The function f : R™ x R? — Ris (Ix.0, lx.1,ly 0, ly.1)-smooth. i.e.

Vs f () = Vaef(@)[| < (0 + et [ Vaef (W) [)lu = ]

IVy f(w) = Vy f(@)] < (0 + by [ Vy f(@)])u -]
withu = (x,y) and 0’ = (x',y’) satisfy ||u — u'|| < Ry for some constant R; > 0.

<
<

Hao et al| (2024) proved that (3.3) is equivalent to Definition [3.1] by letting Ix o = ly,0 = lo/2,
Ixg = lyn = /2, Ry = 1/,/2(12; + 132,’1) and R} = 1/l;. Inspired by the Hessian lipschitz
condition for minimax optimization, we extend the concept of first-order generalized smoothness to
second-order condition and propose the following generalized Hessian continuous condition.
Definition 3.4 The function f : R™ x R — Ris (px,0, Px.1, Py.0 Py.15 Pxy.0, Pxy.1)-Hessian con-
tinuous. i.e.

[Vif (@) = Vi f @) < (px0 + pxa IV f (@) ]u — ]|
Vg f () = Viy f)] < (py0 + py il Vy f(u)D]u— ']

Vi f () = Vig F)| < (pxy.0 + pxy. mind [V f ()], [|Vy £ (w)[[})]u — o'
withu = (x,y) and w' = (x',y’) satisfy ||u — u'|| < R, for some constant R, > 0.

Remark: Here, we assume that the objective function f of minimax optimization is twice differ-
entiable and has continuous second-order derivative, therefore we have ||V, f(-)|| = V2, f(-)]-
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Also, with Eq.(@) it is easy to verify that

IV f ()l < min{Mo + My[|Vx f (W), Mg + M{||Vy f(w)]}

with some constants My, M7, M{), M7. Therefore, for simplicity we assume that
Vi f () = Vig F)] < (pxy.0 + pxy. s min{ [ Vacf ()], [|Vy £ (@) [[})u — o'

Also, we proved that Definition [3.4] can be recovered to second-order generalized smoothness con-

dition for minimization optimization (Definition ) when pxo = pyo = pPxy0 = 2’% and
Px1 = Py1 = Pxy1 = Zp%. The details can be found in Lemma

Recall that the nonconvex-strongly-concave minimax problem in (1) is equivalent to minimizing a
function ®(-) = maxycy f(-,y). [Huang et al|(2022) proved that in this context suppose ®(-) has
a strict local minimum, then a strict local minimax point of (I)) always exists and is equivalent to a
strict local minimum of ®. A common notion of the stationarity of @ is as follows.

Definition 3.5 A point x € R" is said to be an e-first-order stationary point of function ®(-) if we
have

[VO(z)]| <ci-e

A point x € R"™ is said to be an (e, \/€)-second-order stationary point of function ®(-) if we have

HV(I)(:E>|| <c- €, )\min (V2CI)($)) > —c2- \ﬁ
for some positive constants c1,co > 0.

Most existing convergence theory for minimax problems focuses on finding e-first-order stationary
point of ® under Lipschitz smoothness or generalized smoothness assumptions. However, such
results can be highly suboptimal saddle points because ® can be nonconvex for nonconvex-strongly-
concave minimax optimization. Therefore, in this paper, our goal is to find second-order stationary
points of ®, with generalized smoothness assumptions.

4 THEORETICAL ANALYSIS

4.1 MAIN CHALLENGES

The main idea of the convergence analyses of the existing nonconvex minimax optimization al-
gorithms is controlling the estimation error of maximizer dy, = |ly; — y*(x:)|| or approximat-
ing hypergradient V®(x) = Vxf(x,y*(x)) and controlling the hypergradient estimation error
0 = [[VO(x) = VO(x1)|| = [V f(Xe,¥¢) — Ve f (x4, 5" (x¢))||. With the classical Lipschitz
smoothness assumption, both the two estimation error cannot blow up and can be easily controlled.

However, when the function has an unbounded smoothness (i.e. generalized smoothness) as illus-
trated in Section 3] the upper bound of estimation errors depend on the norm of the gradient of both
the minimizer x and maximizer y, with the term of Iy 1||y; — y; ||| V®(x;)||, and can be arbitrarily
large. This quantity is difficult to handle because ||V ®(x;)|| can be large, and it is difficult to decou-
ple the two measurable term ||y; — y;|| and || V®(x;)||. To address these challenges, some gener-
alized version of GDA (Xian et al.l 2024)) have been proposed for nonconvex minimax optimization
under generalized smoothness, with the idea to bound the gradient norm by the non-increasing func-
tion value for the convergence analyses. Unfortunately, when it comes to accelerated algorithm, both
the gradient norm and the function value are no longer monotonically non-increasing. Therefore,
existing minimax optimization algorithms are not guarantee to converge as long as to find a second-
order stationary point in such problem settings that the objection function exhibits with unbounded
smoothness.
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Algorithm 1: Accelerated Negative Curvature Gradient Descent Ascent (ANCGDA)
1 Illpllt: X0,Y-1,2%20 = X, va 9}'7 B7 T, Ka T
2> Initialize: £ =0,{ =0
sfort=0,1,2,...,7 do

4 yt:AGD(ytfla_f(ztv')vn)hay);
5 Xtr1 = 2t — Nx - (VS (26, ¥1) — ()s
6 Zir1 = X1 + (1 — 05) (Xep1 — X);
7 k=k+1;
8 if ( = 0 then
9 ik, i lXj01 — %[ > B? then
10 |z = X1, k=05 # Reset k and Restart
1 else if k = K then

. . 9
12 t = argmin, _ |5 |+1<i<t %541 — x5

. 1 i .
13 Z= % ZFFKH Zi)
14 y = AGDA(Yfa—f(i»')»Wyaey);
15 C = fo<zay>;
16 Ziy1 = Xyr1 = 2+ &, where £ = Unif(Bo(r)); # Uniform Perturbation
17 | k=0
18 else A A
19 Zoet = 2T IR Xep1 = 20T R
20 if k. = 7 then
21 ée= M;

lIx¢+1—2l

2 Xi41 =2 — %\/% - € # One-step Descent along NC Direction
23 Ziy1 = X¢41, (= 0,k =05

Algorithm 2: AGD

Input: y; 1, h(-),0y,ny
Initialize: y) = y¥ =y, 4
ford=0,1,2,...,D—1do
Lﬁ“:%—%ww%
~d+1 d+1 d+1 .
yitt =yt + (1 - 9y)(}’t+ -y
s Output: yP

—

woN

ES

[

4.2 ALGORITHM DESIGN

We now introduce our algorithm for nonconvex-strongly-concave minimax optimization under gen-
eralized smoothness. Let xy and y_; be the initial values in Algorithm E} First, in each iter-
ation, the algorithm runs a Nesterov’s classical Accelerated Gradient Descent (AGD) algorithm
subroutine, as shown in Algorithm |2 to solve the strongly-convex generalized smoothness sub-
problem y*(-) = argmax,cga f(-,y) and obtain the estimation of maximizer with the output
yi = yP =~ y*(z) after D = O(log(1/e)) iterations in Algorithm [2| therefore control the hy-
pergradient estimation error shown in Lemma[4.4] Then, the algorithm runs following iterations to
update x; with y;:

X1 =2 — Nx - (VS (26,5¢) =€)y 21 = X1 + (1 — 05) (X1 — X4), 4

where the variable ( is initialized to be 0, which will be introduced later, so that these iterations
become Nesterov’s classical AGD procedure. Specifically, inspired by [Li & Lin| (2022)), we use a
counter variable k to denote the iteration number in a round before the conditions on Line[9] Line
or Line [20) (after the uniform perturbation is added) triggers. To simplify the description, we define
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an epoch to be a round from k£ = 0 to the iteration that triggers one of these conditions and resets k&
to 0.
As the condition on Line [J] triggers, we simply set z;1 equal to x;41 and reset k. In such epoch

the algorithm makes progress in decreasing the function value of ® for at least & = O(\/€3/p),
described in Lemma If not, Linetriggers when k = K = O(e~ /%) as the algorithm achieve
enough decrease. In that case, the gradient |[V®(2)|| is small, as shown in Lemma then we

denote ¢ = V®(2) = Vxf(2,y) to be the estimation of hypergradient V®(z) and add a uniform
perturbation on that z. After that, with the negative curvature (NC) finding technique, the algorithm
start finding a negative curvature direction in the following .7 = 0(6*1/ 4logn) iterations, then
take a one-step descent along the found NC direction €. With possibility the point x; 1 in that
iteration will be a second-order approximate stationary point, as shown in Lemma[4.7]and[4.8] After
the one-step descent we reset ¢, k and set z; 41 equal to x; 1 then continue to the next epoch. Finally
at least one of the iterations x; will be a second-order stationary point with possibility at least 1 — §
with some constant § € (0, 1]. The main result is shown in Theorem [4.3]

4.3 MAIN RESULTS

In this section, we present our main results on complexity bounds for Algorithm [I] in terms of
gradient evaluations. First, we proposed the following assumptions for the nonconvex-strongly-
concave minimax optimization (TJ).

Assumption 4.1 The objective function f(x,y) satisfies the following assumptions

1 f(x,y) is (Ix,0,Ix,1, ly,0, by 1)-smooth with (px,0, Px.1; Py,05 Py.1 Pxy,0, Pxy,1)-Hessian.
2. f(x,-) is u-strongly concave while f(-,y) is not necessary convex.
3. The function ®(x) = maxycrm f(X,y) is lower bounded.

These assumptions are standard prerequisites for the convergence analysis of nonconvex-strongly-

concave minimax optimization. Then, we present a key technical lemma on the structure of the
function ®(-) and y*(-) and their generalized smoothness properties. Define

CD() = maxf(',y), y*() = argmaxy cprd f(vy)
y€ER?
We proposed the following lemma:

Lemma 4.2 Under Assumption[d.1} denote

G:max{\/2£- (@ (x0) fq)*),2||V<I>(x0)||}, 5)

where ®* denotes miny, ®(x) and L = lp o + 2le,1G is the effective smoothness constant of P.
Denote the Euclidean ball with radius R centered at x as B(x, R), then for any x, x' such that

Gu
, ’eB( ) 6
o M L+ lyo) ©

the function ® : R™ +— R and y*(-) : R" — RY satisfies
1. y*(x) is well-defined and %’T’O-Lipschitz continous.
2. The derivative HViyf(x, y)|| is bounded. i.e. Vi, f(x,y) < M.

3. ®(x) is (Ip,0,1p,1)-smooth, i.e.
Ve (x) = VO < (la0 + laa[[VE]) [[x =X

where lg o, lo,1 are defined as

l l
lpo= (1 + y70) lxo0, lo1= (1 + y,O) lx,1
u ' pw)




Under review as a conference paper at ICLR 2025

4. ®(x) has (pe,0, pp,1)-continous Hessian, i.e.
[V20(x") = V(%) < (pa.0 + paalVEE)]) [x - x|

where

l 0 —1 Pxy,0 \2
Pp,0 = 1+y) )(px,O‘f'(,U/ M\/P ,O+ - ))7
¢ ( 12 Y v/ Py,0
l
Pyl = <1 + y’0> Px,1
I

Lemma proposed the generalized smoothness properties of function ® and y™* in terms of the
smoothness constants of the objective function f, under which we can bound the hypergradient
estimation error, which will be mentioned in Lemma 4.4}

Denoting Ag = ®(x¢) — miny ®(x), we summarize our results for Algorithm|[I]in the following
theorem.

Theorem 4.3 Under Assumption Denote G, L as , Gy, Ly as , run Algorithm [I| with

. 2 2, G2 . , .
§ € (0,1] and ¢ < min {1%;)7 4(25‘”, Eygp}, where p = poo + 2ps,1G is the effective hessian
x y

smoothness constant of ®. If we choose B = /<, 1x < = 0 = (2pe)t/* < 1, K = 5

D=0 (, / %’ log(l/e)>, 1y, Oy as @) r, 7, 0o as , Algorithmsatisﬁes that at least one of

the iterations x; will be an (€, \/€)-second-order approximate stationary point in

Aq) Afb

iterations, with probability at least 1 — 6.

Theorem [4.3] says that after designated number of iterations, which is polylogarithmic in dimen-
sion of x, at least one of the iterates is an (e, \/€)-second-order approximate stationary point. The

complexity results O (A2’11_3§"), which improves the state-of-the-art complexity results by a poly-

nomial factor of O(log5 n) in nonconvex-strongly-concave minimax optimization even under Lips-
chitz smoothness condition. The detailed proof is deferred to Appendix [E]

4.4 PROOF SKETCH

In this subsection, we present an overview of the proof of Theorem d.3] Lemma [4.4] presents the
hypergradient estimation error for every maximizer estimation subproblem conduct by Algorithm
2] Lemma.3]is the key property of monotonic decrease for the function value of ® in each round
and Lemma 4.6 shows that when the condition on Line [IT] of Algorithm [I] triggers, a first-order
approximate stationary point can be found, which leads to the negative curvature direction finding
process on Lemma Lemma [4.8] demonstrates that with a one-step descent along the found
negative curvature direction the function value guarantee to decrease. Complete details can be found
in the appendix.

4.4.1 CONTROL FOR HYPERGRADIENT ESTIMATION

Lemma 4.4 Denote V®(xy) = Vi f (X1, y1). Let v be a constant with v = c - log(% > 1.

n
wpz)

Running Aorithm with the parameters setting in Theorem after each AGD subroutine of

Algorithm|2|with parameter 1y, 0y in , the estimation error 0z = |[V®(x;) — V(x,)|| can be
bounded as ) )
IV (x,) - Vo(x,)| Smin{4,L226_L}.e )

Lemma4.4] controls the error in the hypergradient estimator by estimate the maximizer y*(x) with
the AGD subroutine in Algorithm[2] With the bounded hypergradient estimation error, we can show
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the function value of ® decrease for the iterations between two successive triggers of the condition
on Line 9] of Algorithm [I] Then we introduce the following lemmas to show the algorithm make
progress for decreasing the function value of ® in every epoch until the gradient is small enough.

4.4.2 MONOTONIC DESCENT

Lemma 4.5 Running Algorithm I\ with parameters setting in Theorem When the condition on
Line [9 triggers, denote tc to be the iteration number, K to be the value of k on that iteration and
to =tk — K + 1. In each epoch of Algorithm[I|where the Line[9|triggers, we have

51 /€3
P(xpet1) — P(xt,) < “s1\/ )

Lemma 4.6 Running Algorithm [I| with parameters setting in Theorem In the epoch that the
condition on Line[l1|triggers, the point z in Line[I3|satisfies |V ®(2)|| < O(e).

See Appendix |C| for more details. We see that if the function value of ® does not decrease much
(when the condition on Line [TT]triggers), the gradient is guaranteed to be small. Then as shown in
Lemma 4.7 and [4.8] after the following .7 iterations a negative curvature direction will be found.

4.4.3 ESCAPE SADDLE POINT

Lemma 4.7 Runnzng Algorithm[I|with parameters setting in Theorem[d.3} For the pozm‘ Z satisfying
Amin (V d(z )) —\/PE, adding an uniform perturbation in Line m the unit vector € in Line

obtained after T iterations satisfies

P (e"H(z)e < —y/pe/4) > 1 — by,

where p = pa o + 2ps,1G denotes the effective Hessian smoothness constant of ®.

Here, we take the definition of negative curvature direction from|Xu et al.|(2018)), which implies that
for a non-degenerate saddle point x of a function f(x) with ||V f(x)]| < € and Apin (V?f(x)) <
—7, the negative curvature direction v satisfies ||[v|]| = 1 and v' V2f(x)v < —cy. Taking ¢ = §
and v = ,/pe yields that the obtained & is a NC direction.

Lemma 4.8 Running Algorithm[I|with parameters setting in Theorem[d.3| For each % if there exists

a unit vector & satisfying e H(z)e < — ‘/97 where H stands for the Hessian matrix of function ®,
the following inequality holds

Lemma and [.8] demonstrate that Algorithm [I] can compute the negative curvature direction,
discribed by a unit vector €, via the .7 iterations after a unit perturbation is added on Line[TT] as the
negative curvature finding subroutine. Then after a one-step descent along the found direction, the
function value of ® is guaranteed to decrease. We give the full details in Appendix

5 EXPERIMENTS

Domain adaptation. We follow [Luo et al.| (2022) and optimize Domain-Adversarial Neural Net-
work (Ajakan et al) 2014) with two different source datasets, SVHN (Netzer et al., 2011) and
MNIST-M (Goodfellow et al.,2014), and test on target domain dataset MNIST (LeCun et al.,|{1998)).
The DANN aims to solve the following nonconvex-concave minimax problem

min  max L (x1,%2) — - L (x1,y), @®)
[x1;%2]€Re yeRy

where L (x1,%3) = N%s Z]\is l (xQ; P (xl, a; ) bs) is the loss of supervised learning and

L2 Xla Z-DS le i _7ZD7— Xl? 7,))>+>\Hy||2 (9)
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Figure 1: Comparison of various minimax optimization algorithms with train accuracy and test
accuracy on two different domain adaptation tasks: (a) SVHN as source datasets to MNIST as target
datasets and (b) MNIST-M as source datasets to MNIST as target datasets.

is the domain classification loss, where the source domain dataset is S = {(af, b5)} s where ad

is the feature vector of the i-th sample and b¢ is the corresponding label. The target domain dataset
T ={al} fV:Tl only contains features. Here ® is a single-layer neural network as the feature extractor
with the size of (28 x 28) x 200 with parameter x; and [ is a two-layer neural network as the domain
classifier with the size of 200 x 20 x 10 with parameter x5, followed by a cross entropy loss. For
the logistic loss functions for Lo, we let h(y;z) = 1/(1 + exp(—y ' z)), Ds(z) = 1 — log(z) and
Dy(z) = log(1 — z). Note that A makes the function Ly strongly-concave/concave in terms of
discriminator parameters.

Performance on the value of train accuracy and test accuracy is depicted in Figure [Ta] and [Tb] in
comparison to GDAM, Clipped GDAM, PRAHGD |Yang et al.| (2023)) and Clipped PRAHGD via
oracle calls. For each algorithm, we choose the best learning rates 7, 7, in [0.001, 1] and momen-
tum Oy, 0y in [0.01,0.5] that make it converge by grid search. For the other hyperparameters for
ANCGDA, PRAHGD and Clipped PRAHGD, we choose r» = 0.04, K = 30, .7 = 10 for both the
source domain dataset while setting B = 10 for SVHN as source dataset and B = 7 for MNIST-M.

It can be seen that ANCGDA outperforms standard GDAM and PRAHGD as a representative of non-
Clipped algorithm family. Furthermore, it is clear that ANCGDA performs the best in convergence
speed and overall performance among all the five algorithms.

6 CONCLUSION

In this paper, we proposed a new algorithm named ANCGDA for nonconvex-strongly-concave min-
imax optimization under generalized smoothness. We investigate the convergence analysis of the
propose algorithm and proved that ANCGDA requires O(e~ 17> logn) gradient oracles to obtain a
(e, v/€)-second-order approximate stationary point, which matches the state-of-art single-level non-
convex minimization conplexity results under the Lipschitz smoothness assumption and is better
than all the existing complexity results for nonconvex-strongly-concave minimax optimization with
Lipschitz smoothness or generalized smoothness. We conduct a numerical experiment of domain
adaptation task to validate the practical performance of our method.

10
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A TECHNICAL LEMMAS

Lemma A.1 (Li et al.| 2024a) If f is (lo,l1)-smooth, for any x1, Xz that satisfy |V f(x1)|| < G,
(IVf(x2)]| < Gand||x1 —x2| < % we have

L
[Vf(x1)=Vf(x2)|l < Llx1—x2, f(x1) < f(x2)+(Vf(x2),%1— X2>+§||X1—X2||2 (10)
where L := lg + 211G denotes the effective smoothness constant.

Lemma A.2 (Li et al.| 2024a) Suppose f is (lo,l1)-smooth. If f(x) — f* < F for some x and
F >0, denoting G :=sup {u > 0 | u® < 2(lp + 2lyu) - F'}, then they satisfy G* = 2(lo+21,G)-F
and we have |V f(x)]] < G < oc.

Lemma A3 If f is (po, p1)-Hessian continuous, for any x1,Xo that satisfy ||V f(x1)|| < G,
(IVf(x2)| < Gand ||x; — %2 < % we have

f(x1) < f(x2) + (Vf(x2),x1 — x2) + %(Xl —x2) TV f(x2)(x1 — X2) + gHX1 —x* 1)

where p := pg + 2p1G denotes the effective Hessian smoothness constant.

Proof. With Definition[3:2]and the definition of G and p we have
IV f(x1) = V2 f(x2)ll < pllx1 — xa||

Indeed, we have
[V f(x2) = Vf(x1) = V2 f(x1)(x2 — x1)|

1
= ‘ /0 [V2f(x1 4 7(x2 — x1)) = V2 f(x1)] (x2 — x1)d7

1
< pllxe =i [ rdr = 2 = xal?
0

Therefore,
[F002) = Flo) = (V1) %2 = 1) — 3 (V2 (xa) (2 = 1), %2 = 1) |
1 T 5 1 T )
/0 /0 (V2 f(x1 + a(xz — x1))) (x2 — X1), X2 — X1 ) dovdT 7/0 /0 (V2 f(x1)(x2 — X1), X2 — X1 ) dovdT

1 T
/0 /0 (V2 f(x1 + a(x2 — x1)) — V2f(x1)) (x2 — X1), X2 — X1 ) dadT

1 T
S/O /O ||V2f(x1 + Oé(XQ — Xl)) — VQf(Xl)H dOédT . HX2 — X1||2

1 T
S/ / Ba”Xg — x1||dadT - ||x2 — x1||2
0o Jo 2

=Elx: =,
which complete the proof.

Lemma A4 When pxo = pyo = pxy0 = 3% and px1 = py1 = Pxy1 = 55 Deﬁnition
implies that for any u, W’ such that |lu — u’|| < R, we have

IVaf(w) = VEF)] < (po + prl|Vaf (w)])[[u — o] (12)

In other words, (px.0, Px.1; Py,05 Py.1; Pxy.0; Pxy,1)-Hessian smoothness can recover to the second-
order generalized smoothness assumption for single-level optimization (Assumption[3.2).
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Proof. Let R, = 1/\/2(01,1 + Py 1 205 1)s With pxo = pyo = Pxy0 = 05 and px1 =
Pyl = Pxy1 = 2’1}5. Deﬁnitionimplies that

1

[u—u'|| <
\/2(pi,1 + 02142035, 1)

<

1
P1
Moreover we have

IV f(u) = Vi f)]

= \/IIVixf(U) = Vi (@) + V3, f(u) = Vi, f(0)|? + 2| VEy f(u) — VE, f(w)]]?

< /20 TSI+ o+ 9 )2 w2

< /(08 + IV @)]?)lla - w2
< (po+ p1[|Vuf())]Ju—u'],
where the first inequality holds by using
1 .
HViyf(u) - Viyf(ul)HQ < g(Po + prmin {||V«f(u)], ||Vyf(u)||})2\|u 2

Then we finish the proof.

Lemma A.5 Under Assumption running Algorithm I\ with parameters setting in Theorem 4.3
For iterations in the epochs that the if condition on Line[9 of Algorithm[I|triggers, we have

%t = Xt—kt1ll < B, ||zt — x4 < 2B. (13)
Otherwise we have
Ixe11 = X¢—pt1ll < B, ||Ze41 — X¢—ppa|| < 2B. (14)

Proof. Denote tx: to be the iteration number when Line[9]triggers and K to be the value of k in that
iteration with }C < K. Then we have

t
IC:mkin{kk: > ||Xi+1—xi2>B2}. (15)
i=t—k+1
Then for any iteration with txx — K + 1 <t <tx and 0 < k' < K, we have
’ 2 !
t—1 t'—1
e — Xp g ||* = Yo oxip x| <KD ki — x||* < B? (16)
i=t/—k'+1 i=t/—k'+1

Also, from the update of z we have
||Zt’ - Xt'sz’+1H < th’ - Xt’7k+1H + HXt’ - Xt’71|| <2B (I7)

On the other hand, in the epochs that the condition k£ = K on Line[TT]triggers, for any iteration with
trk —K+1<t <tgand0 <k’ <K, we have
tl
2 2
1 = xp—wall* <K Y ki — x| < B

i=t/—k'+1 (18)
1zt 41 — X g 1| < 2B
For all the other iterations, if the condition on Line @] triggers, where we have
HZt’+1 - xt’fk’JrlH = ||Xt’+1 - Xt’fk’Jrl” < %B (19)
Otherwise from the setting of 7 in Theorem we have
|z 41 — X1 || = || Xpr41 = X1 || <7 < B (20)

which complete the proof.
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Lemma A.6 Under Assumption running Algorithm|l|with parameters setting in Theorem
Denote Ag := ®(xq) — D*, there must exist a constant G such that

G = max {2||V®(x)||, max {u >0 | u®> < 2L - o)} }

Proof. Consider the first epoch before Line [9] [TT] or 20| trigger. By Lemma and the choice of
G, it is easy to verify that | V®(x¢)|| < G. By Lemma we have ||x; — xo|| < B < r(G) and
|z — x0|| < 2B < r(QG) for any ¢. Therefore, by LemmalA.1|we have

1
IVe(xe)ll < [Ve(xo)ll + Llixe —%oll < 3G+ L£-B< G 2D

Similarally, we have ||V®(z,)| < G. Without loss of generality, we first consider that only the if
condition on Line [9] triggers in all epochs. From we directly obtain that ®(zc_1) < P(xg).
Then by Lemma|A 2] we have | V®(zx_1)| < [|[V®(x0)|| < 3G. By the restart operation we have

Xk = zx = Zx—1. lelescoping to all epochs, we have ||[V®(x¢)|| < G and |[V®(z,)| < G.

For the epoch that Line[1 1] triggers, according to[A.5] from the updates of z we have ||2—x;— 41| <
2B < @G. Then by the settings of G and r we have

5lQ

[xt41 = xe— k41l = [[Ze41 — Xk || S 12 = xe— gl +7 < (22)

which ylelds that HV(I)(Zt+1) || = ||V¢’(Xt+1)|‘ < G.
For the other epochs, before the condition on Llnetrlggers (ie. k < ), we have th+1 —z|| =

|Zt+1 — 2|| = r. When Llnetrlggers we have ||[x;11 — 2| = ||zep1 — 2| = 1B < 7(G).
Therefore for iterations in these epochs we have ||V®(z:y1)| = ||[V®(xt+1)|| < G, which finish
the proof.

Lemma A.7 (Li et al| 2024a) Consider the first AGD routine. Denote Ay = f(x0,y)) —
f(x0,¥*(x0)), there must exist a constant Gy, such that for Ly, = ly, o + 21y, 1Gy we have

Gy > max {2Vf<><o,y8>|,8max{ Ly 1} /Ly (A + pllyo — y*(x0)[2) / min{, 1}}
(23)
Also, for any d < D, we have ||Vy f(x0,y8)|| < Gy.

Lemma A.8 For any t < T in Algorithm[Ijand d < D in all the AGD routine of Algorithm 2] we
have ||vyf(xt>Yt)H < Gy.

Proof. By Lemmaand the setting of Gy, we have for any ¢t < T, lIx: —x¢—1|| < B < y . Also
by warm start strategy on y we have y? = y¢. Together with Lemma- we complete the proof.

Lemma A.9 (Chen et al| 2021) Under Assumption |Vyy f(x, %) is bounded. i.e.
[Vyy f, ¥~ <!

A.1 PROOF OF LEMMA [4.2]
Under Assumption indeed, a function y*(-) is well-defined since f(x, -) is strongly concave for

each x € R™. Then, let x1,x5 € R™, the definition of y*(x;) and the definition of y*(x3) imply
that

(y —¥"(x1)) ' Vy f(x1,5"(x1)) <0, forally € ¥ (24
(y —y*(x2)) " Vy f(x2,5"(x2)) <0, forally € Y (25)

Letting y = y*(x2) in Eq. (A.6) and y = y*(x1) in Eq. (A.7) and adding them yields
(y*(x2) = y"(x1)) " (Vy f(x1, 5" (x1)) = Vy f(x2,y"(x2))) <0 (26)

Recall that f(x1, -) is p-strongly concave, we have

(v"(x2) =y (x1)) " (Vy f(x1, 5" (%2)) = Viy f (1, 7" (x1))) + s ly ™ (x2) — v ()| < 0 27)
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By combining Eq. (A.8) and Eq. (A.9) with the (Ix o, x,1,ly,0,ly,1)-smoothness of f, we have

plly*(x2) =y (x0)[I* < (y.0 + ly1 [ Vy f(x2, ¥ (x2) DIy ™ (x2) — y* (x1) [ [[x2 — x1]| - (28)

Combine with the definition of y*(+), we obtain that y*(-) is lyT"—Lipschitz.
Then, we prove the smoothness of ®(-). Let u = (x,y*(x)) and u’ = (x/,y* (x')), by (6) and the
L0  ipschitz of y’(x) we have

14

uwll = lx = x4 Iy o0 -y )l < (1420 ) lx-x < 5 09

Then we have
V@ (x) — Ve (x')]|
<V f(x,y(x) = Vi [ (X', y' (%)l
< (o + et [V f (X y" (DI (Ix = X[ + [y ™ (x) =y (X)) (30)

l
< (e + tea [V0GON) (1432 ) - x|

Therefore, the function ®(x) is (I 0, ls,1)-smooth, where we denote

l l
loo = (1 + y70> lo, log= (1 + y,o) Lo 31)
7 I

For minimax optimization , we know that V3 f(x,y) = V3, f(x,y). According to , with
the setting of G, and Lemma[A.7} [A.8|we can easily verify that

IVay f (¥ < lxo + bea [ Vy f(5, )] < ko + 161Gy = M,

Next, we prove the Hessian Lipschitz continuity of ®(x). Define mapping H(x,y) = [VxxS —
Viyf(Vyy )7 Vyx f1(x,¥). Also, denote that u = (x,y) and u’ = (x/,y’), by the assumptions
we have

IH(x,y') = H(x,y)l
< Vi f (K ¥') = ViS5 3)| + Vi f N (Vg fK ) = (Vg 5, 3) ™ I Ve (X5
+ Vg f(¥') = Vg F I (Vg £ 7)1V f (¥
| Vay F ) (Vyy f3) ) [ Vyxf (X, 5) = Vyx f(x, )|
< (px0 + px 1| Vi (@) D0’ = ull + (pxy.0 + Py 1 [ Vy F (@) D0 = ullp™" M
+ Mp™ (pxy.0 + pxy 1 [ Vy f (@) [’ — ul|
+ M2||(Vyyf(x’,y’))*1|\||Vyyf(x, y) = Vyyf(x’,y’)HH (Vyyf(XaY)rl [
< (px0 + px1 [V (@)D" = ul| + 2(pxy.0 + pxy 1 IVy f(@) )]0 = ullp™' M
+ (py,0 + Pyl Vy f()[)[[u" — ul|p*M?

_ Pxy,0 \2(. ./
< (px0 + px IV (@)Dl =l + (0™ M y/pyo + —=)?|u’ — u
) Yy py,O

- Pxy,1 \2 /
+ Vi + —= u)||{|u’ —u
(7 A+ LR |9 ) '~ wl
(32)

From the definition of y*(x), we know that Vy f(x,y*(x)) = 0 for all x € R%, Thus we can
obtain that

0= V,Vyf(x,5"(x)) = Vyx [ (x, 5" (%)) + Vyy f (x,¥"(x)) Vy™(x) (33)
which implies that
Vy* (%) = = [Vyy f(x. ¥ ()] Vyxf(x,y"(x)) (34)

17
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Substitute all above, with V& (x) = Vi f(x,y*(x)), we have
V2®(x) = Vi f (%, 5" (%)) + Vay f(x, 5" (%)) Vy* (x)
= Vo f (6,5 (%)) = Vaey f (%, 7" (%)) [Vyy f 5,y ()] Ve (x, 77 (%)) (39)
= H(x,y"(x))
Then,
[V2e(x') - V2o(x)| = [|H(x,y" (X)) — H(x,y" (x))]

< (p Tl Va0, (O + ((u—lMWy,o L0 U ’)"“>2||vyf<x,y*<x>||)) I — ul

VPy.,0 VPy1
* - Pxy,0 \2 /
< { (oxo + pxt [V f 6,y (X)) + (07 M /py 0 + —2=) ) [u” =yl
< Y v/ Py,0
— Pxy,0 * * *
= <Px,0 + (1T M /Dy + =)+ pea | Vi (x,y (X)||> (Ix" =] + ly"(x) = y*(x)1)
v/ Py,0
- Pxy,0 \2 ly.o /
< (ot My ms + 222 4 s [V ) (1422 ) x|
( Y v/ Py,0 2
(36)
Therefore, the function ®(x) is (p¢.0, pg,1)-Hessian Lipschitz continuous, where
ly.0 _ Pxy,0
Po,0 = (1 + y’> (0 + (W M /Py 0 + —2=)?),
w v/ Py,0 37)

l
Pp1 = (1 + y,0> Px,1
1

Lemma A.10 Running Algorithm[I| with the parameters on Denote Ly, = ly o + 2ly oGy as
the efficient smoothness constant of f(x,-) and kK = % For the AGD procedure of Algorithmset

Ny, Oy to be
1, _ el
oLy YT R+l

D
the output y; satisfying ||yp—y*||3 < (k+1) (1 - ﬁ) lyo—y*

(38)

2, where y* = arg miny, h(y).

Proof. For Algorithm 2] with function 2/ (-) that is I;,-Lipschitz smooth and y, strongly-convex, from

the analysis of Wang & Li (2020) it yields that |[yp — y*||2 < (s, + 1)(1 — \/}Th)DHyO —y*|3,

where kj, = L—*}L

For a (ly 0,1y 1)-smooth and p-strongly-convex function —f(x, -), it is easy to verify that by the
setting of G’y and Lemmal[A.7]the condition still holds, which complete the proof.

B PROOF OF SECTION 4.4 1]

Lemma B.1 Denote V®(xy) = Vi f(xs,y:). Let L be a constant with 1 = ¢ - 1og(i1 [75) > 1
and Kk = % Running Algorithm |I| with the parameters setting in Theorem Denote by, =

ly® — y*(x0)||, then the estimation error 65 = ||V ®(x;) — @@(Xt) || can be bounded as

~ 1 1
(IV®(xt) — VP(x¢)|| < min {4, L226L} € (39)

Proof. Denote k = %, The gradient estimation error can be bounded by

V(0 = Vo) | = [Vof (x29P) = Vi bty x))|| < £y =" (x0)]

D/2 40)
) Iy - v ()|

1

SE(&—I—I)(l—\/E

18



Under review as a conference paper at ICLR 2025

where the last inequality follows Lemma|A.10| By the warm start strategy y? =y ;, we have
[y? = ¥* (x| < lyi2y = 5" (e-) || + Iy (xe-1) — ¥ ()|
D
1\2 lyo
<(1-—4 Oy (xy YO0 %, — %,
_( \/E) ||Yt—1 ¥ (xe 1)H+ ’ llx¢ — x¢—1]] 41)

D

1\? l
< (1 — \/E) ||Y1(:)—1 -y (Xt—l)H + %B-

By setting
1
we have
X 1 . lyoB
||y? -y (x| < 3 ||Y?—1 -y (xe-1)|| + y’u
1\ LN,
< <2> ly” = y*(xo)ll + > (2) =B (43)
j=0 .
ly oB
< by, +2 yu ,
which yields that
R R
HV(I)(xt) — V(x| < £ (5 +1) 6y, +26B) <1 - \/E> (44)

Then, it is easy to verify that let

£+ 1) (dy, +2522)

1 1
vy S — - /log(l_ﬁl/Q):O(\/Elog<e>> 45)

D =2log

finish the proofs.

C PROOF OF SECTION4.4.2)

Lemma C.1 Running Algorithm[I|with parameters setting in Theoremd.3} When the condition on
Line [9 triggers, denote ti to be the iteration number, K to be the value of k on that iteration and

to=tx —K+1L If||$(I>(zt,c)H > n%’ we have

5B2

@(Xt}C‘i’l) - Q(Xtﬂ) é - 12877)(

(46)
Proof. Denote 05 = V®(z;) — @@(zt). From the £-smoothness condition and Lemma we
have for tg <t < i)
L
D(xer1) < D(ze) +(V(2e), Xt41 — 2¢) + S lIxe41 — z?
r . N
< (I)(Zt) + §||Xt+1 — thg + <V<I)(Zt) — V@(zt)7xt+1 - Zt> + <VCI)(Zt),Xt+1 — Zt>

L 1 -~
< O(z) + §||Xt+1 — z4]|3 + 8nx |05 |I” + ﬁ”xtﬂ —z¢||* — x| VO(z¢) ||

13 ~
< ®(z) — 1*677x\|V<I>(Zt)II2 + 81y 11

47
where we use the AGD iteration and 7, < ﬁ. We also have

L
D(xy) > O(z¢) + (VP(24), Xt — 2¢) — §||Xt — z,5||2 (48)
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So we have
D(xpy1) — P(xt)

L 13
< —(VO(z4), % — 24) + §||Xt —z* —

15V 2z + S0

~ ~ L 13 ~
= —(V®(ze), %0 — 20) + (VO(2e) = V(20), X — 20) + 5 lIx0 — z* - 17577x||V<I’(Zt)||2 + 81|95
1 , 1 , L , 13 - , ,
< ;(Xtﬂ — 24, X¢ — Z¢) + 4|05 )7 + g”xt —ze]|” + §||Xt —ze]|” — EﬁxHV‘I’(Zt)H + 8|05 |

1 1 L 13 ~
= ﬁ(”xwl —z|” + lxe — zel” — llxen — xel”) + %th —z|]” + §||Xt —z|]” - T().UXHV@(Zt)IP + 121|651

3 2 1 2 5 ~ 2 9
< R”Xt — 2| — R”Xﬂrl —x¢||* — EWXHV@(Zt)H + 120|635

3 1 5 N
< ol = xeall? = o=l = xill? = el V()| + 12005

T Anx 2Mx
(49)
where we use £ < 4%( and ||x; — z¢]| = (1 — Ox)||xt — x¢—1]] < ||x¢ — X¢—1]|. Summing over
t =to,...,tx and using x;, = X¢,_1, we have
tic—1 577
D(xpe41) — Plxey) < — Z k41— x]|* = = Z IV (z) | + 12 Z 16511
k t() k= t() k= tO
B? 5 ~
< oo 1elIVe (e )P + 120, K (|65 12
4nx * ® (50)
B? 582
<—- + 120K |65
dnx - 167x
5B
< —
128k

Lemma C.2 Running Algorithm[I|with parameters setting in Theoremd.3} When the condition on
Line [9 triggers, denote tx to be the iteration number, K to be the value of k on that iteration and

to =t —K+1. If|V®(z, )| < B , denote H = V?®(x;,) and H = UAUT 10 be its eigenvalue
decomposition with U, A € R¥*, Deﬁne the quadratic approximation function g as

90 = (TD(xs,). x — %0, ) + %(x ~ 5T A(x — %)

where we denote X = UTx, z = UTz, V®(z) = UTV®(z) and Vo (z) = UT§¢>(Z). Then, the
approximation error 6, = V®(z,) — Vg(2,) at iteration t can be bounded as ||6,|| < 2pB?, where
P = pa.o + 2pa,1G denotes the efficient hessian smoothness constant.

Proof. It ||§<I>(zt,c ) < nﬁ’ from the AGD iteration we have

[xec+1 = Xt || < [|Zee = Xeo [ + 0xl[VR(2e )| < 3B (51
From the generalized Hessian smoothness condition and Lemma[A.3] we have
(I)(Xt)c-‘rl) - (b(xto)

1
< (V1) Xax 1 = Xeg) + 5 (et = X1g) H e 1 = Xig) + £ l[a 1 = oo
(52)
~ . - 1 - . . -
< <V¢(Xto)7xtn+1 - Xto> + 5 Ricrr = Xeg) T AR 41— Xig) + §||Xt;<+1 — Xy
< 9(Xex+1) — 9(Xey) + 4.5pB°

where p is the effective Hessian smoothness constant. Let A; be the jth eigenvalue. Denote
. ~ . 1. .. "
g9 (@) = (VO (xy, )0 =% ) + 50D (@ — %17

5 = V() - Vg ()
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Then the AGD iterations can be rewritten as

z(j) _ ~(j) (1 — 6y )(~(j) . g(i) )

)

XD, =79 — 0 V;0(z) =77 — Vs (7)) — o)

and ||0;|| can be bounded as

13| = ||é ®(z) - V‘I’( to) — Az — X)) |
= | V®(2) — VP(x¢,) — H(zi — x4, )|
= [V 1(Z 1) = VO(xy,) + VD(2e) — VD(2e) + Hz — Xt, )| (53)

< II(/O V2P (xt, + t(ze — Xt)) — H) (20 — x10)dt] + [|VD(2e) — V(20|

IN

S 9
Sllze = x4, [[* + [V 0(z2) ~ V()| < pB’

To prove the decrease from ®(x,) to ®(xy.11), we only need to study the decrease of the
quadratic approximation function g(x). The quadratic function g(x) equals to the sum of d scalar
functions g(7)(x(7)).  We decompose g(x) into 3,5 99 (x\7)) and Y5 99 (x19)), where

S = {j A > —z—"} and Sy = { P < ——}. We see that gU) (x) is appr0x1mate convex

when j € &, and strongly concave when j € S;. We will prove the approximate decrease of
99 (x1)) in the two cases. We first consider 35, 99 (x19)).

Lemma C.3 Running Algorithm[I|with parameters setting in Theoremd.3} When the condition on
Line [9 triggers, denote tx to be the iteration number, K to be the value of k on that iteration and

to=tx —K+1L If||$(I>(zt,c)H < n%’ we have

~ 304 ~( ; I p?> B
Z Q(J) Z g(]) (]) Z Z H k+1 l(c])||2 + 777/0‘9 (54)

jeS) jES) jeS: nxk to

Proof. Since g\%) () is quadratic, we have
L 3 N e
g(J)(Xgr) )= (J)( ) <v(y) (! )) Xfti-)l _ X§J)> n *JHXEQl _ X§])||2
o (il 1/ ~ .
a g(y)<X§J)) - <Xg_)1 (J) n nx(;(J) (i)1 _ XEJ)>

(s A (i (i
<V(J) xD) = v gz, Xii)l—X§J)>+J||X£21—X§])||2

N 1 /. _¢; - - (5 ~ ~(j
SO (s s ) () o
o (540590 5, -0 + Mg, w0

N 1 (s B N (i (s (s
< g+ Tnx&” — a2 I — % — 21— % - =)

X

1 . N7 X (s )
+ 5o 15712 + S - =17 + Z (% - 217 - 1% - 271
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+ N
2

Using £ > )\ > 77971 when j € §; = {] : >\j > *%} and( )” Efl»)l - Zt(tj)”z <
(—2L + )”Xt iﬁJ)HQ < 0, we have for each j € Sy,

N 1 (s (s (s
9P < gV &)+ 5 (R =1 = % - &)

1 . o o Op (1 (i
+ g I+ IR = %P+ % 2
) (56)
b N~ (4 (l_ax)2(1+9x) ~(j ~(j
2 gV () + ; %6 — %2, 117
Mx
(i 1 .
~ (g~ PR &1 + 510 P
Defining the potential function
; (1 —605)%(1 + 0y) e
pgj) (])( (J)) ; [ (J _XEJ)H2 (57)
Mx
we have
1T a (1-05)2%(1+06y)
ph < - (G- 5 - W — %P1 + 1156
1 I (58)
N30k, _( 2Mx |1 o(j
ﬂ@—;ﬁ%—ﬁW+—Wﬂﬁ
T
where we let o = ﬁ;‘ in < such that 5 — — 897" - 7(1—0,:2);)((1%,() = % + % - % > %.
Summing over ¢t = tg,--- ,tx and j € Sl, using x¢, — X¢,—1 = 0, we have
30x . 2nx
PR CEED D D C D D S IR~ 2 3
JEST JESL JESL JEST nxk to Ox k=to
, ; 30x ; Ixp?B*K
<D gD -0 §ij1iWW+ﬂ%——
JESK JESL nxk to x
(59)

Next, we consider >, s, g9 (x).

Lemma C.4 Running Algorithm([I|with parameters setting in Theoremd.3| When the condition on
Line [9 triggers, denote tx to be the iteration number, K to be the value of k on that iteration and

to=tx — K+ 1 If||[V®(zs. )| < B , we have
3 Inp’BAK
D 9i(Ki) - Z%&ofEZ Zk%—J‘“ET* (0
JES2 JES: 682 " =t x

Proof. Denoting v; = igﬁ) - /\ijﬁ(j)é(xto), g (z) can be rewritten as

. bV i 1 ~,. 1 ~
g9 () = Fa = %) + VOB(x1,))* — 51 [IV52 00|
J J

2
(61)
Aj 1 =
= EJHQJ - Vj||2 - T/\jHV(J)‘I’(Xto)HQ
Foreachjeng{j:)\j<—z—z},wehave
N N A (4 bV (4
gV &) — gV &) = Tl —vill? = G =il
i (s (s
=4ww SO+ (-5 - v) @

<_7H t+1 ~(j)HQ‘i')‘ <Xt+1—x§J),)~<£)—vj>.
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So we only need to bound the second term, where

O

)—va(j) (~(j)) de(])
EJ) . ~(J) ) = T V(])g( J)) nx(;t(J)
R~ X0,) ~n 5 1) - el
=% ) = (& = v+ (1= 00— %)) = st
(63)
So for each j € S5, we have
A (0, — 5050 )
= (1= 0 (%7 =%, %7 = v; ) = X% = v
21— 00) (590~ %0, 5 v,) e, (50,5 )
< (1= 0 (9 30, 5 ) 21 v,

nx)\2(1_0x) N7 N7 N7
+ =% = P+ 1R - vl

mA2(L+6x) (i
6(]) 2 J ) 2
+7( T )II I+ %" — vl
= (1- 60 (5 — 20,59 — v,

nx)\?(l_

(64)

Ox) (s e
ngj) _ ”2

X1

0

()2
2 (1+9 )”6 ”
= (1= 00 (%7 =%, %) — vj>+<1—ex>Asz<§”—fcij_)ln?
A (L~ X (L7 00) 260 500 2 4
2

)
— X

(J 2

Nx
BN (R — %), %7 —vj>+3||6t I

where we use (1 + "" (1 —0x) > (1 - %)(1 —0x) > 0and A\; < 0 when j € Sy. Then,

k
Tx
N (R %05 = vy ) < (1= 005N (300 = xR vy + Y1 00 o)
t=1
k

~(7 Mx _ .
(1= ) A IR = v+ 5 D00 6 o)

t=1
- k
k £ 53) 2
S5 Z 167117,
(65)
where 2 holds by using

Ry =R =% — 2 = V(7)) =~V D ()

=~ Vg(xi])) = —mi (%)) —v;).
Plugging (63)) into (62), we have

(66)

k
N N7 Oy (4 Tx
9P — gV &) < =g xRS 3T (=00 0P @)
* t=to+1
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Summing over t = ty,--- ,tx and j € So, we have

S gDED) - g9 Z Zn ==+ zzl— PR

JESs JES2 JES nxk to k=tg i=to+1
(4 NxC
<Y o Z %20 = %1+ g o
]682 k} to x
(i Iy p?BAK
s - Z Z ||Xk+1 Xz(gj)HQ T
jesy T k=t x

(68)
Puts Lemma [C.3 and [C.4] together, we introduce the following lemma.

Lemma C.5 Running Algorithm[I|with parameters setting in Theoremd.3} When the condition on
Line[9 triggers, denote ti to be the iteration number, K to be the value of k on that iteration and

to=tx —K+1 1f||$<I>(zt,c)H < n%’ we have
30,B2 9pB3 45 p?’B*K

(i) -0 < — 69
(Xtxe+1) — P(xt,) < S K 5 40, (69)
Proof. Summing over (54) and (60), we have
9Fier) =g (i) = Y gi(%iy) — ;X))
JES1US2
30 N o 4Bnep?BiK
< 2% _ xE
= Thn 2 [%kt1 — X 10,
t_ ’ (70)
30x ~ 45 p*B*K
= =22 s — P o+ R
Tx f—to x
30,B% 450, p’B*K
8K 460, ’

where the second equility holds from the definition of x. Pluging into (32) and using K < K, we

have 0. B 5 2pig
30xB 9pB 45nxp* B
(%t +1) — P(x4,) < — Sk +5 10,

Then we can establish the decrease of ®(x) in epochs that Line |§| triggers.

(71)

C.1 PROOF OF LEMMA[4.3]

Lemma C.6 Running Algorithm([I\with parameters setting in Theorem When the condition on
Line |9 triggers, denote tx to be the iteration number, K to be the value of k on that iteration and
to =t — K + 1. In each epoch of Algorithm[I\where the Line[9)triggers, we have

51€%/2
D(xtt1) — Plxyy) < — 647 (72)
Proof. Combing two lemmas togethers, we have
. (30.B% 9pB3 451 p’B*K 5B?
Pxter1) = Hlxio) < _mm{ 8K 2 40 12877x} -
. [51e¥/?  5e
=—minq —, ——
64./p " 128nxp
Taking 0, = 4 (epni)l/4 < 1 we have
51€3/2
@ (Xt}C+1) - @ (Xt()) é - 64\/ﬁ (74)

Then we finish the proof.
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C.2 PROOF OF LEMMA[4.6]

Lemma C.7 Running Algorithm [I|with parameters setting in Theorem In the epoch that the
condition on Line[l1|triggers, the point z in Line[I3|satisfies |V ®(z)|| < O(e).

fl’roof. Denote z = UTz = 1 Y000 UTz, = L 371000 2, Since g is quadratic, we
ave
1 to+Ko
Vg(z)|| = Vg(z
IVg(2)| || o1 > Vg(ax)
k=to
1 to+Ko ~
= m Z (Xk41 — Zk + x0k)
x k=to
1 to+Ko B to+Ko
Kot D) D Grr =X Fme0k) = Y (1= 0) (e — Ki—1)
M\ Lo k=to k=to+1
1 t°§° : (75)
= ————— || Rto+ Ko+1 — Xto — (1 = Ox) (Xeg+ K5 — Xto) + 1x Ok
nx (Ko +1) f—to
= — | Xto+ Kot+1 — Xtg+ Ko + Ox(Xeg 1K, — Xt) +7x Ok
nx(KO + 1) k—to
1 to+Ko ~
< m(”itwm}ﬂ = Reot 1o || + Oucl|Rro 1100 — Reo |+ Y, [1011)
Tx 0 k=to
2 . 2B 9pB?
< nxK||Xto+Ko+1 — Xt Ko || + K T
where we use z;, = Xy, in =. From K = argmintoﬂgJSkﬁyﬂ(ﬁ1 Ixx+1 — x&||, we have
to+K—1
1Xto+ K041 — Xtg 1 Ko I° < =757 %1 — %kl
K —|K/2]
k=to+ | K/2]
1 to+K—1 (76)
c o2
k=tgo
< 1 B? < 2B2
K _|K2] K = K2

On the other hand, we also have
IVe@)| = Vo)
< |[Vg@)| + Ve (@) - Vg(2)||

2)
— IVg(@)|| + V() — V(xs,) — Alz — %1,
< |[Vg(@)|| + [VE(@) — VE(xy,) — HE —x0)|| + |V(z) — VO (z,)| 7
< Vg@| + £IIz — i, | + [Ve(z:) — V(1)
< Ivg@) + 22
So we have
IV (2) 2V2B 205 9B _ gy, (78)

= K? K 2
Mx Nx
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D PROOF OF SECTION (4.4 3]

oo |7 32V L L n 0 €3
"T e\ w (pe)i/a % (50 \ Trpe>’ 07 38444\ p 79)

Without loss of generality we assume Z = 0 by shifting R™ such that z is mapped to 0. Define a
new n-dimensional function

First, we set

he(x) = ¢(x) — (VP(0),x), (80)

Since (V®(0), x) is a linear function with Hessian being 0, the Hessian of hg equals to the Hessian
of @, and hg(x) is also (Ip,0,l3,1)-smooth and (ps,0, ps,1)-Hessian Lipschitz. In addition, note
that Vhe (0) = V®(0) — V®(0) = 0. Then for all x € R™ we have

1 1
Vhe(x) = - H(Ex) - xdE = g—o(H(EX) — H(0)) - xd¢ + H(0)x (81)

Furthermore, due to the (ps 0, p3,1)-Hessian Lipschitz condition of both ® and hg, for any £ €
[0, G/L] we have ||H(£x) — H(0)|| < pl|x||, where p is the effective Hessian-smoothness constant,
which leads to

IVha (x) = H(0)x]| < x| (82)

Use #(z) to denote the Hessian matrix of ® at z. Observe that #(z) admits the following eigen-
decomposition:

H(z) =) \wu], (83)
i=1

where the set {u; }_, forms an orthonormal basis of R™. Without loss of generality, we assume the
eigenvalues A1, Ao, ..., A, corresponding to uy, us, ..., U, satisfy

AL <A< <A, (84)
in which \; < —+/PE. If A, < —/Pe /2, Lemma holds directly, since no matter the value
of &, we can have ®(x7) — ®(2) < —5i; % Hence, we only need to prove the case where
An > —4/pe€, in which there exists some p with

Ap < —/PE < Apta (85)
We use GHto denote the subspace of R™ spanned by {uj,us,..., up}, and use & | to denote the
subspace spanned by {u,11,up42,...,u,}. Then we can have the following lemma:

Lemma D.1 Running Algorithm [I| with parameters setting in Theorem Denote tg to be the
iteration number after the condition on Line|l l|triggers. Define o} to be

Xt
o, el 6
[
in which x| is the component of x in the subspace &. Define viy1 = X411 — X4 for each
iteration. Then, during all the T iterations after Linetriggers, we have o, > ol ;. for
o [m
1 0
Opmin = § ﬁ (87)

. ! s
given that oy > \/550.

Proof. Without loss of generality, assume z = 0 and V®(z) = 0. If not, ... We consider the worst
case, where the initial value o), = \/géo and the component x ; along u; equals O . Also, the
eigenvalues satisfy

>\2:)\3:"':)\p:_\/p>€a >\p+1:/\p+2:"':)\n—1:_\/fTG+Va (88)
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for an arbitrarily small positive constant v, which can make components of x; in G as large as
possible to make o smaller. Out of the same reason, we assume that each time we make a gradient
call at point z;, the derivation term A from pure quadratic approximation

3= (o 2 oy e )

r 124l el

(89)
Z¢

] )~ W“nm’)

lies in the direction that can make o as small as possible. Then, the component A in & should
be in the opposite direction to z|, and the component A in & should be in the direction of z, .
Hence in this case, we have both ||x; 1 ||/||x¢|| and ||z, | ||/||z¢|| being non-decreasing, since v can
be arbitrarily small. Also, it admits the following recurrence formula:
Xtz L[] < (T +nx(v/pe = v)) (Ixea, LI+ (1= 0x) (xera, L] = [1xe,L1)) + 9 [| AL
< (14 1y/29) (e, s |+ (1= 8) (x| = 12 1D)) + AL

where the second inequality is due to the fact that v can be an arbitrarily small positive number.
Note that since ||x;, | ||/||x¢|| is non-decreasing in this worst-case scenario, we have

1A AL Ixell o 2[Al

[EARE [ [b RN [ S (R o A

Z

+§<I> r
"zl

_ | ) (VCI)(T Zy ) — H(0)

r 2]

(90)

< 20 +2||05]| < 4pr 1)

which leads to

%2, L[| < (14 nv/pe+dnpr) (2 = Ox) %41, L[ = (1= 0x) [, ]]) - 92)

On the other hand, suppose for some value ¢, we have O‘;c >al . withany to+1 < k <t+4 1.
Then,

[%ep | > (14 mx(v/pe =) (||| + Q@ =00 ([[xerayl| = [[xeq ) +nel Ayl ©93)
= (14 1x/P0) ([[xes | + (1= ) (el = [lxep () = el AL
Note that since ||x;1,||/[|%¢|| > ;. We have
A A 0z 2
181 AL 13l 2er o
||zt+1,H H amin||zt+1|| X hin Xhin
which leads to
ez, [l > (1 +ny/pe — 2npr/onyin) (2 = Ox)lIxera, 1] = (1 — )l 1) ©5)
Consider the sequences with recurrence that can be written as
Sir2 = (14+p) ((2 = 0x)&+1 — (1 — 0x)&) (96)
for some p > 0. Its characteristic equation can be written as
2? = (1+p)(2 = Ox)z + (1+p)(1 - bx) =0, O7)

whose roots satisfy

1+4p , 416
x2((29x)i\/(29x) 1+p>’ (98)

indicating

1 t
gt = <_£p> (01(2 - ex + Q)t + C2(2 - ex - q)t) ’ (99)

where g := \/(2 —0x)? — 4(%2"), for constants C and C5 being

Oy _ 20 (100)

1
20 G0~ (1+p)q€1

{ Cr= 25—t +
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Then by the lnequahtles n andﬂ as IOIlg as ak 2 amm for any tO + 1 S k S t— 1, the values
lIx¢,1 || and [|x;, || satisfy

2_9x_,uj_ 1 ) <1+KJJ_>t t
x| < (- + : S(2- 0y +
llxe, 1]l < ( 2L §o,1 i M)Mfu 5 ( 1)

, . (101)
2— x T 1 1 1+ K1 t
- : (2 - ex - P
- ( 2u1 0. (1+ M)ML&’Q ( 2 ) ( #i)
and
2—0x— 1 1+ K ¢ ¢
el = | = €o,) + STHE (2= 0+ 1)
2u (1+5y) py 2
) (102)
2—9x—|—,l14” 1 1+I€H t
+ o, — & | - (20— )
( 21 (1+5y) 2
where
Rl = "7\//%4_ 47’]p’l", §O7L = thml” ) fl,L = (1 + HL) gO,L (103)
K= 1v/PE = 20p1/0in, Eol = [[Xeolls &L= (T4 5y) oy
Further we can derive that
1+k t
Il < a1 () - 2 0 (104)
and .
o ol (145 ¢
> (2Ot ) - (105)
Then we can observe that
1 toro— 0y t
RMHZXMN.< +M)_< +u)’ (106)
e, [l — 2f[xeo, 0| \1+KL 2—0x+po
where
1+ K|
> (1 1-—
>1— (44 2/ay,) npr — kKL (107)
Z 1- pr/a:’nin7
and
2= Oxtpy LA py/(2-0x)
2—0x + L 14+ p1/(2—6x)
o 4(1—6y)
1 + \/1 (1-‘—5“)(2—9 )2
o 4(1— a )
1+ \/1 T (R0 (2=60.)?
1 62 2 —04)2 1 2 2 —0x)2
> (14 2+ Ry ( ) 1 02 + K ( 0x)
2 — 04 1+Ii‘| 2 — 04 1+k,
2 —
s 2em) o Gnpr
Oy ol Ox
(108)
by which we can derive that
|VMI>|VmH.<1_ &r)t
e, 1Ml 2|, 1|l inbx
%0, ¢
>—r— . (1-1/9) (109)
2|[x¢, 1|

1%, ( 2 > l1%t.1
> 20 .exp| — > — s
2[[xto, 1 || T -1 4lx¢0, Ll
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indicating

, lI%e, [0, /
o, = > > o (110)
C Ve P T 2T Bl ] T
Hence, as long as o, > amm for any to + 1 <k <t—1, wecanalso have ap > ol
Since we have o, > o/, and o) > o] we can claim that o > o
recurrence.

in it < T
for any t < .7 using

min> min

D.1 PROOF OF LEMMA [4.7]

Lemma D.2 Running Algorithm [I) with parameters setting in Theorem {.3] Denote tg to be the
iteration number after the condition on Llne.trlggers Define v,41 = X1 —X for each iteration.
For the pomt Z satisfying Amin (V d(z )) \/7 adding an uniform perturbation in Lme the
unit vector € in Line|21|obtained after 7 iterations satisfies

P(e"H(x)e < —/pe/4) > 1 — b a1

Proof. If \,, < \/> €/2, Lemma m holds dlrectly Hence, we only need to consider the case
where \,, > —,/p€/2 , in which there exists some p’ with

X, < —/pe/2 < Apir (112)
We use 61‘, &', to denote the subspace of R™ spanned by

{ulau27~-'7up'}7 {up'+1aup+27"-aun}
Furthermore, we define

P, n

Xt,”’ = § <ui7 Xt> u;, Xt, 11 = E <uia Xt> u;,
=1 i=p’

/

P n

Ve = E (ug, Vt> Wi, V¢ i= E (i, ve) vy
=1 i=p’

!’

respectively to denote the component of x, and v} in the subspaces & - 6L and let o :=

Xy x;||. Consider the case where o, > 750, which can be achieved with probability
S|l 0

[T 7 Vol (Bg~'(1) [7
>1_ - — 1 _
Pr {ao 60} = 1 \/;50 Vol (Bn (50 \/> 1 50 (113)

we prove that there exists some ¢’ with tg + 1 < ¢’ < .7 such that

Ixo | /e
) < M7 114
el 8L (D

Assume the contrary, for any ¢ with 1 < ¢ < K’, we all have ”)‘(l;(:_H/ [N ‘ﬁ and Hszth”rH > ‘g;

Focus on the case where ||x;, ||, the component of x; in subspace &, achleves the largest value
possible. Then in this case, we have the following formula:

%2, 10| < (14 mx/P€/2) ([[%eg1, 10| + (1= Ox) (%2, 00l = lIxe, (D) + 7| A LAl (115)

Since 1 Hk LH dl > % \ﬁ for any tg + 1 < k <t 4 1, we can derive that

A A 2 2|65
1AL C AL 22l
%1, L[]+ (1 = 0x) (%1, 111 = [[%e,[]) ~ [1ze, 1/l V/Pe
which leads to
[[3t+2, 17| < (1 + nxy/PE/2) (Ixes1, 101 + (1 = Ox) (lIxes1, 0[] — ([, 10 () + mx | A L] 117

< (L4 mxv/pe/2 4 4pr//pe) ((2 = ) [xes1, 1ol = (1 = Ox) I, 1011)
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Similar to the proof of Lemma|[D.T] it can be further derived that

1+ky/
2

t
kel < o] - ( ) (2 Ot ! (118)

for ki = nx\/pe/2 + dpr/\/pe and p1/ = \/(2 — 0~ 41(-1;%(3)’ given HT\QQ"H = \gf and
sl > 2 forany tg + 1< k < ¢ — 1. By LemmalD.1]

llzl

)
o >al =25 Wet+1<t< T (119)
8\Vn
and it is demonstrated in the proof of Lemma [D.T|that,
X 14+ r\?
PR tg"'-( 5 '> 2=t Vo+1<t<T, (120

for k|| = Nx\/PE — 2nxpr/ iy, and i) = \/(2 —0x)% — 4(114_:)” <) Observe that

T T
xz, 0l o 2%, (1+w) . (2—9x+mf)

b'e - x 1+k 2— 04+
<2 In <1+l<u_/> (2—9x+,tu_/>
— do 1+/€H 2—9x+,u“
where
1 / 1 1 x
R —1- <1 VP (100
1+ K 1+ (FCH - fij_’) nx\//TG/2 + 2pr (nx/amin/ + 2/\/&) 4
and
1(1—05)
2_0x+,ul/_1+\/1 Ttk )(2—0x)2
2—0x+py 4(1-6,)
1 1 - TUx)
+ (1+H||)(2—9x)2
1
a9 [{_ _ 4(-6,) (123)
1 + <\/1 (A+r,)(2=02)2 \/1 (1+:~eu)(2*9x)2)
R — L
<17
< o
1/4
<1 WP (pe) 7~
460 VL
Hence, 5
, 1/4\ 7
Ixz.1 <2 n <1 ~ (pe) ) o Ve (124)
Ixzyll —dVm VL 8L
Since [|x7 || < [|x]. we have Haﬁ;{i';”/ “ < g, contradiction. Hence, there here exists some ¢
with tg + 1 < ¢/ < 7 such that H’ﬂ’)’;fn’u < ‘é; Consider the normalized vector € = x /1, we

use &1 and &/ to separately denote the component of & in &', and &|. Then, ||/ || < \/pe/(8L)
whereas [|&/|| > 1 — pe/(8L)?. Then,

eTH(0)e = (&1, +&))" H(0) (61 +8&)), (125)
since H(0)ée,: € &' and H(0)e| € 6“, it can be further simplified to

e"1(0)e = &1 H(0)er +&[ H(0)e) (126)
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Due to the £-smoothness of the function, all eigenvalue of the Hessian matrix has its absolute value
upper bounded by £. Hence,

pPE

el A0 < L] |* = o (127)
Further according to the definition of & > We have
el (06 <~V ey P (128)
Combining these two inequalities together, we can obtain
&"H(0)e = eTH(0)e L + &l H(0)e) < —g el + 62’22 < —@, (129)

which finish the proof.

D.2 PROOF OF LEMMA [4.§]

Lemma D.3 Running Algorithm[I|with parameters setting in Theorem{d.3| For each z if there exists

a unit vector & satisfying e H(z)e < — \ﬁ where ‘H stands for the Hessian matrix of function ®,
the following inequality holds

. 1 /e . . 1 €3

/ . L .
where ® stands for the gradient component of ® along the direction of é.

Proof. Without loss of generality, we assume z = 0. We can also assume (V®(0), &) < 0; if this is

not the case we can pick —é instead which still satisfies (—&)TH(z)(—e) < — ‘/R

. Then, for any

x = eé with some e > 0, we have ( A)Q (x) < — f + pe due to the p-Hessian L1psch1tz condition
of ®. Hence,

0P €
0% (x) < @4(0) — e 4 pe? (131)
by which we can further derive that
B(e&) — (0) < BL(0)e — %e + g <- erz’ + §e3. (132)

Settings e = i\/% finishes the proof.

E PROOF OF THEOREM

Proof. Denote .7 = % %. Set the total step number 7' to be

Tmax{W,mSA@y,/g} O(ﬁ%logn) (133)

We first assert that for each iteration x4, that a uniform perturbation is added, after .7 iterations we
can successfully obtain a unit vector & with e’ Heé < —\/p€/4, aslong as Apin (H(x¢41)) < —y/pE.
Under this assumption, the uniform perturbation can be called for at most Noy = 384A¢\/6E3
times, for otherwise the function value decrease will be greater than ® (xo) — ®*, which is not
possible. Then, the probability that at least one negative curvature finding subroutine after uniform

perturbation fails is upper bounded by
384A g / “0p =10 (134)

For the rest of steps which is not within .7 steps after uniform perturbation, they are either de-
scent steps, ||[V®(x;)|| > 82¢, or (e, /€)-second-order second-order stationary points. Next, we
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demonstrate that at least one of these steps is an (e, \/€)-second-order stationary point. Assume the
contrary. We use N to denote the number of epochs where Line 9] triggers. Therefore, it satisfies

T<Nkg-K+Ngz-(K+9) (135)

Then, we have

K T T [p _ 308Aq [p _ Ag
Nz > Ny - > —Ng > —— —384A = > —384A = >
K=K g =K+ y_K—&-f 38480 e - F 38480 e~
(136)

During these iterations the function value of ® will decrease in total at least N - % > Ag, which
is impossible due to Lemma [4.5] the function value of ® decreases monotonically for every epoch
except when the Line[TT]triggers and the .7 steps after uniform perturbation, and the overall decrease
cannot be greater than Ag. Therefore, we conclude that at least one of the iterations must be an
(€, \/€) second-order stationary point, with probability at least 1 — 4.
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