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ABSTRACT

Nonconvex minimax problems have received intense interest in many machine
learning applications such as generative adversarial network, robust optimization
and adversarial training. Recently, a variety of minimax optimization algorithms
based on Lipschitz smoothness for finding first-order or second-order stationary
points have been proposed. However, the standard Lipschitz continuous gradient
or Hessian assumption could fail to hold even in some classic minimax prob-
lems, rendering conventional minimax optimization algorithms fail to converge
in practice. To address this challenge, we demonstrate a new gradient-based
method for nonconvex-strongly-concave minimax optimization under a general-
ized smoothness assumption. Motivated by the important application of escap-
ing saddle points, we propose a generalized Hessian smoothness condition, under
which our gradient-based method can achieve the complexity of O(ε−1.75 log n)
to find a second-order stationary point with only gradient calls involved, which
improves the state-of-the-art complexity results for the nonconvex minimax opti-
mization even under standard Lipschitz smoothness condition. To the best of our
knowledge, this is the first work to show convergence for finding second-order
stationary points on nonconvex minimax optimization with generalized smooth-
ness. The experimental results on the application of domain adaptation confirm
the superiority of our algorithm compared with existing methods.

1 INTRODUCTION

In recent years, minimax optimization problems, under various assumptions on the objective func-
tions, has been a major focus of research in machine learning fields, with various applications includ-
ing adversarial training (Madry et al., 2018), generative adversarial networks (GAN) (Goodfellow
et al., 2014), and multi-agent reinforcement learning (Omidshafiei et al., 2017). A general formula-
tion of Minimax optimization problem can be written as

min
x∈Rn

max
y∈Rd

f(x,y) (1)

In this paper, we focus on the nonconvex-strongly-concave case where the objective function f :
Rm × Rn 7→ R is nonconvex in x and strongly-concave in y.

Historically, Nouiehed et al. (2019) was the first work providing non-asymptotic convergence rates
for nonconvex-strongly-concave minimax problems without assuming special structure of the objec-
tive function. They use the notion of ε-first-order stationary point to measure the rate of convergence
of their algorithm. Using this notion, they showed that their algorithm finds an ε-first-order station-
ary point in O(ε−2) gradient evaluations.

Another way to measure the convergence rate of an algorithm for solving (1) is to define the primal
function Φ(x) = maxy∈Y f(x,y) and measure the first-order optimality in terms of the nonconvex
problem minx∈X Φ(x). In this context, Thekumparampil et al. (2019) proposed the proximal dual
implicit accelerated gradient (ProxDIAG) algorithm for smooth and nonconvex-strongly-concave
minimax problems and proved that this algorithm finds an ε-first-order stationary point of Φ with
the rate of O(ε−2).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Lin et al. (2020a) showed that a simple single-loop gradient descent ascent (GDA) method could
obtain an ε-first-order stationary point of Φ with O(ε−2) gradients calls. Mahdavinia et al. (2022)
also established the same iteration complexity by an extra-gradient method. Unfortunately, the first-
order stationary points obtained by these algorithms cannot guarantee the local optimality since the
objective function f could be nonconvex on x and first-order stationarity includes suboptimal saddle
points.

On the positive side, some recent literatures establish nonasymptotic convergence analysis for find-
ing second-order stationary points. Luo et al. (2022) proposed a cubic Newton based method that can
obtain an (ε,

√
ε)-second-order stationary point in O(ε−2) Hessian-vector oracle calls or O(ε−1.5)

Hessian oracle calls. Huang et al. (2022) obtained a gradient complexity ofO(ε−2) with a perturbed
gradient descent-ascent algorithm. Yang et al. (2023) improved the complexity to O(ε−1.75 log6 n)
with a perturbed momentum-based method.

However, most of the existing analysis frameworks for minimax optimization are based on the re-
quirement of Lipschitz smoothness. Though there are some works show the convergence for con-
vex or weakly convex minimax problems without smoothness assumption (Rafique et al. (2022)),
research on nonconvex minimax optimization with generalized smoothness is still limited. This
drawback restricts the applications of minimax optimization algorithms because in some tasks the
objective function does not satisfies Lipschitz smoothness such as distribution robust optimization
(Yan et al., 2019; Levy et al., 2020; Jin et al., 2021) and phase retrieval (Drenth, 2007; Miao et al.,
1999). Xian et al. (2024) conduct the convergence analysis of GDA and GDAmax under general-
ized smoothness and obtained a gradient complexity ofO(ε−2) for finding an ε-first-order stationary
point, but it is still open whether second-order stationary points could be obtained with generalized
Lipschitz smoothness assumptions. This paper answers this question in the affirmative.

Contributions. In this paper, we propose a simple gradient-based accelerated methods, which have
the following three advantages:

• We design a new algorithm named ANCGDA, which is the first algorithm to find a second-
order stationary point in nonconvex-strongly-concave minimax optimization with gener-
alized smoothness. We prove that it can obtain such points within O(ε−1.75 log n) num-
ber of gradient evaluations without Hessian-vector or Hessian oracle. Notably, this result
is better than the state-of-the-art complexity results under Lipschitz smoothness assump-
tion O(ε−1.75 log6 n) in terms of the log n factor. The detailed comparison of existing
nonconvex-strongly-concave minimax optimization algorithms is shown in Table 1.

• We proposed a second-order theory of generalized smoothness condition for minimax op-
timization and further conducted the new fundamental properties of the primal function Φ
and y∗ in Lemma 4.2 under the proposed second-order generalized smoothness condition,
which is significantly important for controlling the hypergradient estimation error. Lever-
aging by this important properties, we develop a new convergence analysis framework for
the second-order generalized smoothness minimax algorithm.

• We conduct a numerical experiment on domain adaptation task to validate the practical per-
formance of our method. We show that ANCGDA consistently outperforms other minimax
optimization algorithms.

2 RELATED WORK

Nonconvex Minimax Optimization. Recent years, many algorithms have been proposed for non-
convex minimax optimization under Lipschitz smoothness assumption. In Nonconvex-strongly-
concave setting, Lin et al. (2020a) demonstrated the first non-asymptotic convergence of GDA to ε
first-order stationary point of Φ(x), with the gradient complexity of O(κ2ε−2). Lin et al. (2020b)
and Zhang et al. (2021) proposed triple loop algorithms achieving gradient complexity ofO(

√
κε−2)

by leveraging ideas from catalyst methods (adding α ‖x− x0‖2 to the objective function), and in-
exact proximal point methods, which nearly match the existing lower bound. (Li et al., 2021; Zhang
et al., 2021; Ouyang & Xu, 2021) Approximating the inner loop optimization of catalyst idea by one
step of GDA, Yang et al. (2022) developed a single loop algorithm called smoothed AGDA, which
provably converges to ε-stationary point, with gradient complexity of O(κε−2).
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Table 1: Comparison of oracle complexity of nonconvex-strongly-concave minimax problems for
finding first-order stationary points (FOSP) or second-order stationary points (SOSP). FO (First
Order)-Generalized Smoothness and SO (Second Order)-Generalized Smoothness are defined in
Definition 3.3 and 3.4. Note that the O(ε−2)∗ complexity of IMCN is computed with Hessian-
vector oracles.

Algorithm Smoothness FOSP SOSP Complexity

GDA (Lin et al., 2020a) Lipschitz Smoothness X × O(ε−2)

Smoothed-GDA (Zhang et al., 2020b) Lipschitz Smoothness X × O(ε−2)

GDmax (Jin et al., 2020) Lipschitz Smoothness X × O(ε−2)

IMCN (Luo et al., 2022) Lipschitz Hessian X X O(ε−2)∗

Perturbed GDmax (Huang et al., 2022) Lipschitz Hessian X X O(ε−2)

PRAHGD (Yang et al., 2023) Lipschitz Hessian X X O(ε−1.75 log6 n)

Generalized GDA (Xian et al., 2024) FO-Generalized Smoothness X × O(ε−2)

ANCGDA (This Work) SO-Generalized Smoothness X X O(ε−1.75 logn)

Compared to first-order methods, there has been significantly less research on the second-order
methods for minimax optimization problems with global convergence rate estimation. However,
a significant body of recent work shows that first-order stationary points cannot guarantee the lo-
cal optimality in nonconvex-(strongly)concave settings and the global optimality in convex-concave
settings. Lin et al. (2022) proposed newton-based methods and obtained global rates of conver-
gence within O(ε−2/3) iterations using Hessian-vector information, matching the theoretically es-
tablished lower bound in convex-concave settings. For nonconvex-strongly-concave settings, Luo
et al. (2022) presented Minimax Cubic-Newton, obtaining a second-order stationary point of Φ with
calling O(κ1.5ε−1.5) times of Hessian oracles and Õ(κ2ε−1.5) times of gradient oracles, while the
inexact version obtaining a second-order stationary point with Õ(κ1.5ε−2) Hessian-vector oracle
calls and Õ(κ2ε−1.5) gradient calls. Yang et al. (2023) proposed a Perturbed Restarted Acceler-
ated HyperGradient Descent algorithm, improved the complexity bound to Õ(κ1.75ε−1.75 log6 n)
with only gradient iterations. But none of these algorithms are proved efficient under generalized
smoothness assumption. To the best of our knowledge, we are the first work to study the convergence
for finding second-order solutions in nonconvex-strongly-concave minimax optimization problems
beyond bounded Lipschitz smoothness assumption.

Generalized smoothness. The convergence analysis of most existing minimax algorithms needs
to assume the gradient or hessian is Lipschitz. However, such assumptions are fail to hold in an
important class of neural networks such as recurrent neural networks (RNNs) (Elman, 1990), long-
short-term memory networks (LSTMs) (Graves & Graves, 2012) and Transformers (Vaswani, 2017)
which are shown to have unbounded smoothness (Pascanu, 2012; Zhang et al., 2019; Crawshaw
et al., 2022). For minimization optimization, Zhang et al. (2019) proposed a relaxed smoothness
assumption that bounds the Hessian by a linear function of the gradient norm, that is, a function f
is said to be (l0, l1)-smoothness if there exists some constants l0 > 0 and l1 ≥ 0 such that

‖∇2f(x)‖ ≤ l0 + l1‖∇f(x)‖, ∀x ∈ Rn. (2)
Under the same condition, Zhang et al. (2020a) considers momentum in the updates and improves
the constant dependency of the convergence rate for SGD with clipping derived in Zhang et al.
(2019). Qian et al. (2021) studies gradient clipping in incremental gradient methods, Zhao et al.
(2021) studies stochastic normalized gradient descent, and Crawshaw et al. (2022) studies a gen-
eralized SignSGD method, under the (l0, l1)-smoothess condition. Reisizadeh et al. (2023) studies
variance reduction for (l0, l1)-smooth functions. Wang et al. (2022) analyzes convergence of Adam
and provides a lower bound which shows non-adaptive SGD may diverge. Li et al. (2024a) and Li
et al. (2024b) further generalize the smoothness condition and analyze various methods under this
condition through bounding the gradients along the trajectory:

‖∇f(x)‖2 ≤ 2(l0 + 2l1‖∇f(x)‖) · (f(x)− f∗), ∀x ∈ X , (3)
if f is (l0, l1)-smooth. Xie et al. (2024) show convergence beyond the first-order stationary condi-
tion for generalized smooth optimization. However, research on minimax optimization under gen-
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eralized smoothness is few. Xian et al. (2024) prove that classic minimax optimization algorithms
GDA, GDmax and their stochastic version can still converge to ε-first-order stationary points under
generalized smoothness condition and the complexity matches the Lipschitz smoothness counter-
parts. But it is still open whether second-order stationary points can be found in such conditions.
We are thus led to ask the following question: Is it possible to develop an effective method for
finding second-order stationary points on nonconvex-strongly-concave minimax optimization under
generalized smoothness and can such method matches the efficiency of accelerated algorithms for
nonconvex minimization optimization?

This paper answers this question in the affirmative. We further study the second-order generalized
smoothness assumption for minimax optimization and present a gradient-based algorithm for find-
ing second-order stationary points under generalized smoothness for nonconvex-strongly-concave
minimax problem. We provide the convergence analysis and show that the proposed algorithm can
find a second-order stationary point inO(ε−1.75 log n) iterations, which matches the state-of-the-art
complexity results for nonconvex optimization under bounded Lipschitz smoothness assumption.

3 PRELIMINARIES

In this paper, we use 〈·, ·〉 and ‖ · ‖ to denote the inner product and Euclidean norm. Aiming to solve
minimax optimization problem 1, we introduce the following generalized smoothness assumptions.
In Zhang et al. (2020a), the (l0, l1)-smooth assumption is defined as

Definition 3.1 A differentiable function f : Rn → R is (l0, l1)-smooth if ‖∇f(u) − ∇f(u′)‖ ≤
(l0 + l1‖∇f(u)‖)‖u−u′‖ for any ‖u− u′‖ ≤ R′l with some constants l0 > 0, l1 ≥ 0 and R′l > 0.

Definition 3.1 is a first-order smoothness condition relaxed from 2. When it comes to second-
order condition, (Xie et al., 2024) proposed a second-order generalized smoothness assumption and
interpret it from the perspective of the boundness of higher-order derivatives.

Definition 3.2 A twice-differentiable function f : Rn → R is (ρ0, ρ1)-Hessian continuous if
‖∇2f(u) − ∇2f(u′)‖ ≤ (ρ0 + ρ1‖∇f(x)‖)‖u − u′‖ for ‖u − u′‖ ≤ R′ρ with some constants
ρ0 > 0, ρ1 ≥ 0 and R′ρ > 0.

Extending these assumptions to minimax optimization, we introduce the following first-order and
second-order generalized smoothness conditions in Definition 3.3 and 3.4 respectively.

Definition 3.3 The function f : Rn × Rd → R is (lx,0, lx,1, ly,0, ly,1)-smooth. i.e.

‖∇xf(u)−∇xf(u′)‖ ≤ (lx,0 + lx,1‖∇xf(u)‖)‖u− u′‖
‖∇yf(u)−∇yf(u′)‖ ≤ (ly,0 + ly,1‖∇yf(u)‖)‖u− u′‖

with u = (x,y) and u′ = (x′,y′) satisfy ‖u− u′‖ ≤ Rl for some constant Rl > 0.

Hao et al. (2024) proved that (3.3) is equivalent to Definition 3.1 by letting lx,0 = ly,0 = l0/2,

lx,1 = ly,1 = l1/2, Rl = 1/
√

2(l2x,1 + l2y,1) and R′l = 1/l1. Inspired by the Hessian lipschitz
condition for minimax optimization, we extend the concept of first-order generalized smoothness to
second-order condition and propose the following generalized Hessian continuous condition.

Definition 3.4 The function f : Rn × Rd → R is (ρx,0, ρx,1, ρy,0, ρy,1, ρxy,0, ρxy,1)-Hessian con-
tinuous. i.e.

‖∇2
xxf(u)−∇2

xxf(u′)‖ ≤ (ρx,0 + ρx,1‖∇xf(u)‖)‖u− u′‖
‖∇2

yyf(u)−∇2
yyf(u′)‖ ≤ (ρy,0 + ρy,1‖∇yf(u)‖)‖u− u′‖

‖∇2
xyf(u)−∇2

xyf(u′)‖ ≤ (ρxy,0 + ρxy,1 min{‖∇xf(u)‖, ‖∇yf(u)‖})‖u− u′‖

with u = (x,y) and u′ = (x′,y′) satisfy ‖u− u′‖ ≤ Rρ for some constant Rρ > 0.

Remark: Here, we assume that the objective function f of minimax optimization is twice differ-
entiable and has continuous second-order derivative, therefore we have ‖∇2

xyf(·)‖ = ‖∇2
yxf(·)‖.
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Also, with Eq.(2) it is easy to verify that

‖∇2
xyf(u)‖ ≤ min{M0 +M1‖∇xf(u)‖,M ′0 +M ′1‖∇yf(u)‖}

with some constants M0,M1,M
′
0,M

′
1. Therefore, for simplicity we assume that

‖∇2
xyf(u)−∇2

xyf(u′)‖ ≤ (ρxy,0 + ρxy,1 min{‖∇xf(u)‖, ‖∇yf(u)‖})‖u− u′‖

Also, we proved that Definition 3.4 can be recovered to second-order generalized smoothness con-
dition for minimization optimization (Definition 3.2) when ρx,0 = ρy,0 = ρxy,0 = ρ0

2
√

2
and

ρx,1 = ρy,1 = ρxy,1 = ρ1

2
√

2
. The details can be found in Lemma A.4.

Recall that the nonconvex-strongly-concave minimax problem in (1) is equivalent to minimizing a
function Φ(·) = maxy∈Y f(·,y). Huang et al. (2022) proved that in this context suppose Φ(·) has
a strict local minimum, then a strict local minimax point of (1) always exists and is equivalent to a
strict local minimum of Φ. A common notion of the stationarity of Φ is as follows.

Definition 3.5 A point x ∈ Rn is said to be an ε-first-order stationary point of function Φ(·) if we
have

‖∇Φ(x)‖ ≤ c1 · ε

A point x ∈ Rn is said to be an (ε,
√
ε)-second-order stationary point of function Φ(·) if we have

‖∇Φ(x)‖ ≤ c1 · ε, λmin

(
∇2Φ(x)

)
≥ −c2 ·

√
ε

for some positive constants c1, c2 > 0.

Most existing convergence theory for minimax problems focuses on finding ε-first-order stationary
point of Φ under Lipschitz smoothness or generalized smoothness assumptions. However, such
results can be highly suboptimal saddle points because Φ can be nonconvex for nonconvex-strongly-
concave minimax optimization. Therefore, in this paper, our goal is to find second-order stationary
points of Φ, with generalized smoothness assumptions.

4 THEORETICAL ANALYSIS

4.1 MAIN CHALLENGES

The main idea of the convergence analyses of the existing nonconvex minimax optimization al-
gorithms is controlling the estimation error of maximizer δyt = ‖yt − y∗(xt)‖ or approximat-
ing hypergradient ∇Φ(x) = ∇xf(x,y∗(x)) and controlling the hypergradient estimation error
δΦ̂ = ‖∇̂Φ(xt) − ∇Φ(xt)‖ = ‖∇xf(xt,yt) − ∇xf(xt,y

∗(xt))‖. With the classical Lipschitz
smoothness assumption, both the two estimation error cannot blow up and can be easily controlled.

However, when the function has an unbounded smoothness (i.e. generalized smoothness) as illus-
trated in Section 3, the upper bound of estimation errors depend on the norm of the gradient of both
the minimizer x and maximizer y, with the term of lx,1‖yt − y∗t ‖‖∇Φ(xt)‖, and can be arbitrarily
large. This quantity is difficult to handle because ‖∇Φ(xt)‖ can be large, and it is difficult to decou-
ple the two measurable term ‖yt − y∗t ‖ and ‖∇Φ(xt)‖. To address these challenges, some gener-
alized version of GDA (Xian et al., 2024) have been proposed for nonconvex minimax optimization
under generalized smoothness, with the idea to bound the gradient norm by the non-increasing func-
tion value for the convergence analyses. Unfortunately, when it comes to accelerated algorithm, both
the gradient norm and the function value are no longer monotonically non-increasing. Therefore,
existing minimax optimization algorithms are not guarantee to converge as long as to find a second-
order stationary point in such problem settings that the objection function exhibits with unbounded
smoothness.

5
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Algorithm 1: Accelerated Negative Curvature Gradient Descent Ascent (ANCGDA)
1 Input: x0,y−1, z0 = x0, θx, θy, B, r,K,T
2 Initialize: k = 0, ζ = 0
3 for t = 0, 1, 2, . . . , T do
4 yt = AGD(yt−1,−f(zt, ·), ηy, θy);
5 xt+1 = zt − ηx · (∇xf(zt,yt)− ζ);
6 zt+1 = xt+1 + (1− θx)(xt+1 − xt);
7 k = k + 1;
8 if ζ = 0 then
9 if k

∑t
j=t−k+1‖xj+1 − xj‖2 > B2 then

10 zt+1 = xt+1, k = 0; # Reset k and Restart
11 else if k = K then
12 t̂ = argmint−bK2 c+1≤j≤t ‖xj+1 − xj‖2;

13 ẑ = 1
t̂−t+K

∑t̂
j=t−K+1 zt;

14 ŷ = AGD(yt,−f(ẑ, ·), ηy, θy);
15 ζ = ∇xf(ẑ, ŷ);
16 zt+1 = xt+1 = ẑ + ξ, where ξ = Unif(B0(r)); # Uniform Perturbation
17 k = 0;

18 else
19 zt+1 = ẑ + r · zt+1−ẑ

‖zt+1−ẑ‖ , xt+1 = ẑ + r · xt+1−ẑ
‖zt+1−ẑ‖ ;

20 if k = T then
21 ê = xt+1−ẑ

‖xt+1−ẑ‖ ;

22 xt+1 = ẑ− 1
4

√
ε
ρ · ê; # One-step Descent along NC Direction

23 zt+1 = xt+1, ζ = 0, k = 0;

Algorithm 2: AGD
1 Input: yt−1, h(·), θy, ηy

2 Initialize: ŷ0
t = y0

t = yt−1

3 for d = 0, 1, 2, . . . , D − 1 do
4 yd+1

t = ŷdt − ηy∇h(ŷdt );
5 ŷd+1

t = yd+1
t + (1− θy)(yd+1

t − ydt );

6 Output: yDt

4.2 ALGORITHM DESIGN

We now introduce our algorithm for nonconvex-strongly-concave minimax optimization under gen-
eralized smoothness. Let x0 and y−1 be the initial values in Algorithm 1. First, in each iter-
ation, the algorithm runs a Nesterov’s classical Accelerated Gradient Descent (AGD) algorithm
subroutine, as shown in Algorithm 2, to solve the strongly-convex generalized smoothness sub-
problem y?(·) = argmaxy∈Rd f(·,y) and obtain the estimation of maximizer with the output
yt = yDt ≈ y∗(zt) after D = O(log(1/ε)) iterations in Algorithm 2, therefore control the hy-
pergradient estimation error shown in Lemma 4.4. Then, the algorithm runs following iterations to
update xt with yt:

xt+1 = zt − ηx · (∇xf(zt,yt)− ζ), zt+1 = xt+1 + (1− θx)(xt+1 − xt), (4)

where the variable ζ is initialized to be 0, which will be introduced later, so that these iterations
become Nesterov’s classical AGD procedure. Specifically, inspired by Li & Lin (2022), we use a
counter variable k to denote the iteration number in a round before the conditions on Line 9, Line 11
or Line 20 (after the uniform perturbation is added) triggers. To simplify the description, we define

6
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an epoch to be a round from k = 0 to the iteration that triggers one of these conditions and resets k
to 0.
As the condition on Line 9 triggers, we simply set zt+1 equal to xt+1 and reset k. In such epoch
the algorithm makes progress in decreasing the function value of Φ for at least F = O(

√
ε3/ρ),

described in Lemma 4.5. If not, Line 11 triggers when k = K = O(ε−1/4) as the algorithm achieve
enough decrease. In that case, the gradient ‖∇̂Φ(ẑ)‖ is small, as shown in Lemma 4.6, then we
denote ζ = ∇̂Φ(ẑ) = ∇xf(ẑ, ŷ) to be the estimation of hypergradient ∇Φ(ẑ) and add a uniform
perturbation on that ẑ. After that, with the negative curvature (NC) finding technique, the algorithm
start finding a negative curvature direction in the following T = O(ε−1/4 log n) iterations, then
take a one-step descent along the found NC direction ê. With possibility the point xt+1 in that
iteration will be a second-order approximate stationary point, as shown in Lemma 4.7 and 4.8. After
the one-step descent we reset ζ, k and set zt+1 equal to xt+1 then continue to the next epoch. Finally
at least one of the iterations xt will be a second-order stationary point with possibility at least 1− δ
with some constant δ ∈ (0, 1]. The main result is shown in Theorem 4.3.

4.3 MAIN RESULTS

In this section, we present our main results on complexity bounds for Algorithm 1 in terms of
gradient evaluations. First, we proposed the following assumptions for the nonconvex-strongly-
concave minimax optimization (1).

Assumption 4.1 The objective function f(x,y) satisfies the following assumptions

1. f(x,y) is (lx,0, lx,1, ly,0, ly,1)-smooth with (ρx,0, ρx,1, ρy,0, ρy,1, ρxy,0, ρxy,1)-Hessian.

2. f(x, ·) is µ-strongly concave while f(·,y) is not necessary convex.

3. The function Φ(x) , maxy∈Rm f(x,y) is lower bounded.

These assumptions are standard prerequisites for the convergence analysis of nonconvex-strongly-
concave minimax optimization. Then, we present a key technical lemma on the structure of the
function Φ(·) and y?(·) and their generalized smoothness properties. Define

Φ(·) = max
y∈Rd

f(·,y), y?(·) = argmaxy∈Rd f(·,y)

We proposed the following lemma:

Lemma 4.2 Under Assumption 4.1, denote

G = max
{√

2L · (Φ(x0)− Φ∗), 2‖∇Φ(x0)‖
}
, (5)

where Φ∗ denotes minx Φ(x) and L = lΦ,0 + 2lΦ,1G is the effective smoothness constant of Φ.
Denote the Euclidean ball with radius R centered at x as B(x,R), then for any x, x′ such that

x, x′ ∈ B
(

x0,
Gµ

L(µ+ ly,0)

)
(6)

the function Φ : Rn 7→ R and y?(·) : Rn 7→ Rd satisfies

1. y∗(x) is well-defined and ly,0
µ -Lipschitz continous.

2. The derivative
∥∥∇2

xyf(x,y)
∥∥ is bounded. i.e. ‖∇2

xyf(x,y)‖ ≤M .

3. Φ(x) is (lφ,0, lφ,1)-smooth, i.e.

‖∇Φ(x)−∇Φ(x′)‖ ≤ (lΦ,0 + lΦ,1‖∇Φ(x′)‖) ‖x− x′‖

where lΦ,0, lΦ,1 are defined as

lΦ,0 =

(
1 +

ly,0
µ

)
lx,0, lΦ,1 =

(
1 +

ly,0
µ

)
lx,1

7
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4. Φ(x) has (ρφ,0, ρφ,1)-continous Hessian, i.e.

‖∇2Φ(x′)−∇2Φ(x)‖ ≤ (ρΦ,0 + ρΦ,1‖∇Φ(x′)‖) ‖x− x′‖

where

ρφ,0 =

(
1 +

ly,0
µ

)
(ρx,0 + (µ−1M

√
ρy,0 +

ρxy,0√
ρy,0

)2),

ρφ,1 =

(
1 +

ly,0
µ

)
ρx,1

Lemma 4.2 proposed the generalized smoothness properties of function Φ and y∗ in terms of the
smoothness constants of the objective function f , under which we can bound the hypergradient
estimation error, which will be mentioned in Lemma 4.4.

Denoting ∆Φ = Φ(x0) − minx Φ(x), we summarize our results for Algorithm 1 in the following
theorem.

Theorem 4.3 Under Assumption 4.1, Denote G, L as (5), Gy, Ly as (23), run Algorithm 1 with

δ ∈ (0, 1] and ε ≤ min
{
L2

x

16ρ ,
4G2

xρ
L2

x
,
G2

yρ

L2
y

}
, where ρ = ρΦ,0 + 2ρΦ,1G is the effective hessian

smoothness constant of Φ. If we choose B =
√

ε
ρ , ηx ≤ 1

4L , θ = (η2
xρε)

1/4 < 1, K = 1
θ ,

D = O
(√

Ly

µ log(1/ε)
)

, ηy, θy as (38), r, T , δ0 as (79), Algorithm 1 satisfies that at least one of

the iterations xt will be an (ε,
√
ε)-second-order approximate stationary point in

T = D · O
(

∆Φ

ε1.75
· log n

)
= O

(
∆Φ

ε1.75
· log n

)
iterations, with probability at least 1− δ.

Theorem 4.3 says that after designated number of iterations, which is polylogarithmic in dimen-
sion of x, at least one of the iterates is an (ε,

√
ε)-second-order approximate stationary point. The

complexity results O
(

∆Φ logn
ε1.75

)
, which improves the state-of-the-art complexity results by a poly-

nomial factor of O(log5 n) in nonconvex-strongly-concave minimax optimization even under Lips-
chitz smoothness condition. The detailed proof is deferred to Appendix E.

4.4 PROOF SKETCH

In this subsection, we present an overview of the proof of Theorem 4.3. Lemma 4.4 presents the
hypergradient estimation error for every maximizer estimation subproblem conduct by Algorithm
2. Lemma 4.5 is the key property of monotonic decrease for the function value of Φ in each round
and Lemma 4.6 shows that when the condition on Line 11 of Algorithm 1 triggers, a first-order
approximate stationary point can be found, which leads to the negative curvature direction finding
process on Lemma 4.7. Lemma 4.8 demonstrates that with a one-step descent along the found
negative curvature direction the function value guarantee to decrease. Complete details can be found
in the appendix.

4.4.1 CONTROL FOR HYPERGRADIENT ESTIMATION

Lemma 4.4 Denote ∇̂Φ(xt) = ∇xf(xt,yt). Let ι be a constant with ι = c · log( 1
δ0

√
n
πρΦ

) > 1.

Running Algorithm 1 with the parameters setting in Theorem 4.3, after each AGD subroutine of
Algorithm 2 with parameter ηy, θy in (38), the estimation error δΦ̂ = ‖∇Φ(xt)− ∇̂Φ(xt)‖ can be
bounded as

‖∇Φ(xt)− ∇̂Φ(xt)‖ ≤ min

{
1

4
,

1

ι226−ι

}
· ε (7)

Lemma 4.4 controls the error in the hypergradient estimator by estimate the maximizer y∗(x) with
the AGD subroutine in Algorithm 2. With the bounded hypergradient estimation error, we can show

8
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the function value of Φ decrease for the iterations between two successive triggers of the condition
on Line 9 of Algorithm 1. Then we introduce the following lemmas to show the algorithm make
progress for decreasing the function value of Φ in every epoch until the gradient is small enough.

4.4.2 MONOTONIC DESCENT

Lemma 4.5 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. In each epoch of Algorithm 1 where the Line 9 triggers, we have

Φ(xtK+1)− Φ(xt0) ≤ −51

64

√
ε3

ρ

Lemma 4.6 Running Algorithm 1 with parameters setting in Theorem 4.3. In the epoch that the
condition on Line 11 triggers, the point ẑ in Line 13 satisfies ‖∇Φ(ẑ)‖ ≤ O(ε).

See Appendix C for more details. We see that if the function value of Φ does not decrease much
(when the condition on Line 11 triggers), the gradient is guaranteed to be small. Then as shown in
Lemma 4.7 and 4.8 after the following T iterations a negative curvature direction will be found.

4.4.3 ESCAPE SADDLE POINT

Lemma 4.7 Running Algorithm 1 with parameters setting in Theorem 4.3. For the point ẑ satisfying
λmin

(
∇2Φ(ẑ)

)
≤ −√ρε, adding an uniform perturbation in Line 16, the unit vector ê in Line 21

obtained after T iterations satisfies

P
(
êTH(ẑ)ê ≤ −√ρε/4

)
≥ 1− δ0,

where ρ = ρΦ,0 + 2ρΦ,1G denotes the effective Hessian smoothness constant of Φ.

Here, we take the definition of negative curvature direction from Xu et al. (2018), which implies that
for a non-degenerate saddle point x of a function f(x) with ‖∇f(x)‖ ≤ ε and λmin

(
∇2f(x)

)
≤

−γ, the negative curvature direction v satisfies ‖v‖ = 1 and v>∇2f(x)v ≤ −cγ. Taking c = 1
4

and γ =
√
ρε yields that the obtained ê is a NC direction.

Lemma 4.8 Running Algorithm 1 with parameters setting in Theorem 4.3. For each ẑ if there exists
a unit vector ê satisfying êTH(ẑ)ê ≤ −

√
ρε

4 where H stands for the Hessian matrix of function Φ,
the following inequality holds

Φ

(
ẑ− 1

4

√
ε

ρ
· ê
)
≤ Φ(ẑ)− 1

384

√
ε3

ρ

Lemma 4.7 and 4.8 demonstrate that Algorithm 1 can compute the negative curvature direction,
discribed by a unit vector ê, via the T iterations after a unit perturbation is added on Line 11, as the
negative curvature finding subroutine. Then after a one-step descent along the found direction, the
function value of Φ is guaranteed to decrease. We give the full details in Appendix D.

5 EXPERIMENTS

Domain adaptation. We follow Luo et al. (2022) and optimize Domain-Adversarial Neural Net-
work (Ajakan et al., 2014) with two different source datasets, SVHN (Netzer et al., 2011) and
MNIST-M (Goodfellow et al., 2014), and test on target domain dataset MNIST (LeCun et al., 1998).
The DANN aims to solve the following nonconvex-concave minimax problem

min
[x1;x2]∈Rdx

max
y∈Rdy

L1 (x1,x2)− α · L2 (x1,y) , (8)

where L1 (x1,x2) = 1
NS

∑NS
i=1 l

(
x2; Φ

(
x1; aSi

)
, bSi
)

is the loss of supervised learning and

L2 (x1,y) =
1

NS

NS∑
i=1

DS
(
h
(
y; Φ

(
x1; aSi

)))
− 1

NT

NT∑
i=1

DT
(
h
(
y; Φ

(
x1; aTi

)))
+ λ‖y‖2 (9)

9
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(a) SVHN to MNIST (b) MNIST-M to MNIST

Figure 1: Comparison of various minimax optimization algorithms with train accuracy and test
accuracy on two different domain adaptation tasks: (a) SVHN as source datasets to MNIST as target
datasets and (b) MNIST-M as source datasets to MNIST as target datasets.

is the domain classification loss, where the source domain dataset is S = {(aSi , bSi )}NSi=1 where aSi
is the feature vector of the i-th sample and bSi is the corresponding label. The target domain dataset
T = {aTi }

NT
i=1 only contains features. Here Φ is a single-layer neural network as the feature extractor

with the size of (28× 28)× 200 with parameter x1 and l is a two-layer neural network as the domain
classifier with the size of 200 × 20 × 10 with parameter x2, followed by a cross entropy loss. For
the logistic loss functions for L2, we let h(y; z) = 1/(1 + exp(−y>z)), DS(z) = 1 − log(z) and
DT (z) = log(1 − z). Note that λ makes the function L2 strongly-concave/concave in terms of
discriminator parameters.

Performance on the value of train accuracy and test accuracy is depicted in Figure 1a and 1b, in
comparison to GDAM, Clipped GDAM, PRAHGD Yang et al. (2023) and Clipped PRAHGD via
oracle calls. For each algorithm, we choose the best learning rates ηx, ηy in [0.001, 1] and momen-
tum θx, θy in [0.01, 0.5] that make it converge by grid search. For the other hyperparameters for
ANCGDA, PRAHGD and Clipped PRAHGD, we choose r = 0.04, K = 30, T = 10 for both the
source domain dataset while setting B = 10 for SVHN as source dataset and B = 7 for MNIST-M.

It can be seen that ANCGDA outperforms standard GDAM and PRAHGD as a representative of non-
Clipped algorithm family. Furthermore, it is clear that ANCGDA performs the best in convergence
speed and overall performance among all the five algorithms.

6 CONCLUSION

In this paper, we proposed a new algorithm named ANCGDA for nonconvex-strongly-concave min-
imax optimization under generalized smoothness. We investigate the convergence analysis of the
propose algorithm and proved that ANCGDA requires O(ε−1.75 log n) gradient oracles to obtain a
(ε,
√
ε)-second-order approximate stationary point, which matches the state-of-art single-level non-

convex minimization conplexity results under the Lipschitz smoothness assumption and is better
than all the existing complexity results for nonconvex-strongly-concave minimax optimization with
Lipschitz smoothness or generalized smoothness. We conduct a numerical experiment of domain
adaptation task to validate the practical performance of our method.

10
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A TECHNICAL LEMMAS

Lemma A.1 (Li et al., 2024a) If f is (l0, l1)-smooth, for any x1,x2 that satisfy ‖∇f(x1)‖ ≤ G,
‖∇f(x2)‖ ≤ G and ‖x1 − x2‖ ≤ G

L we have

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1−x2‖, f(x1) ≤ f(x2)+〈∇f (x2) ,x1 − x2〉+
L
2
‖x1−x2‖2 (10)

where L := l0 + 2l1G denotes the effective smoothness constant.

Lemma A.2 (Li et al., 2024a) Suppose f is (l0, l1)-smooth. If f(x) − f∗ ≤ F for some x and
F ≥ 0, denotingG := sup

{
u ≥ 0 | u2 ≤ 2(l0 + 2l1u) · F

}
, then they satisfyG2 = 2(l0+2l1G)·F

and we have ‖∇f(x)‖ ≤ G <∞.

Lemma A.3 If f is (ρ0, ρ1)-Hessian continuous, for any x1,x2 that satisfy ‖∇f(x1)‖ ≤ G,
‖∇f(x2)‖ ≤ G and ‖x1 − x2‖ ≤ G

ρ we have

f(x1) ≤ f(x2) + 〈∇f(x2),x1 − x2〉+
1

2
(x1 − x2)T∇2f(x2)(x1 − x2) +

ρ

6
‖x1 − x2‖3 (11)

where ρ := ρ0 + 2ρ1G denotes the effective Hessian smoothness constant.

Proof. With Definition 3.2 and the definition of G and ρ we have

‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖

Indeed, we have ∥∥∇f(x2)−∇f(x1)−∇2f(x1)(x2 − x1)
∥∥

=

∥∥∥∥∫ 1

0

[
∇2f(x1 + τ(x2 − x1))−∇2f(x1)

]
(x2 − x1)dτ

∥∥∥∥
≤ ρ‖x2 − x1‖2

∫ 1

0

τdτ =
ρ

2
‖x2 − x1‖2

Therefore,

|f(x2)− f(x1)− 〈∇f(x1),x2 − x1〉 −
1

2

〈
∇2f(x1)(x2 − x1),x2 − x1

〉
|

=

∣∣∣∣∫ 1

0

∫ τ

0

〈(
∇2f(x1 + α(x2 − x1))

)
(x2 − x1),x2 − x1

〉
dαdτ −

∫ 1

0

∫ τ

0

〈
∇2f(x1)(x2 − x1),x2 − x1

〉
dαdτ

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ τ

0

〈(
∇2f(x1 + α(x2 − x1))−∇2f(x1)

)
(x2 − x1),x2 − x1

〉
dαdτ

∣∣∣∣
≤
∫ 1

0

∫ τ

0

∥∥∇2f(x1 + α(x2 − x1))−∇2f(x1)
∥∥ dαdτ · ‖x2 − x1‖2

≤
∫ 1

0

∫ τ

0

ρ

2
α‖x2 − x1‖dαdτ · ‖x2 − x1‖2

=
ρ

6
‖x2 − x1‖3,

which complete the proof.

Lemma A.4 When ρx,0 = ρy,0 = ρxy,0 = ρ0

2
√

2
and ρx,1 = ρy,1 = ρxy,1 = ρ1

2
√

2
, Definition 3.4

implies that for any u,u′ such that ‖u− u′‖ ≤ Rρ, we have

‖∇2
uf(u)−∇2

uf(u′)‖ ≤ (ρ0 + ρ1‖∇uf(u)‖)‖u− u′‖ (12)

In other words, (ρx,0, ρx,1, ρy,0, ρy,1, ρxy,0, ρxy,1)-Hessian smoothness can recover to the second-
order generalized smoothness assumption for single-level optimization (Assumption 3.2).
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Proof. Let Rρ = 1/
√

2(ρ2
x,1 + ρ2

y,1 + 2ρ2
xy,1), with ρx,0 = ρy,0 = ρxy,0 = ρ0

2
√

2
and ρx,1 =

ρy,1 = ρxy,1 = ρ1

2
√

2
. Definition 3.4 implies that

‖u− u′‖ ≤ 1√
2(ρ2

x,1 + ρ2
y,1 + 2ρ2

xy,1)
≤ 1

ρ1

Moreover we have
‖∇2

uf(u)−∇2
uf(u′)‖

=
√
‖∇2

xxf(u)−∇2
xxf(u′)‖2 + ‖∇2

yyf(u)−∇2
yyf(u′)‖2 + 2‖∇2

xyf(u)−∇2
xyf(u′)‖2

≤
√

1

4
(ρ0 + ρ1‖∇xf(u)‖)2‖u− u′‖2 +

1

4
(ρ0 + ρ1‖∇yf(u)‖)2‖u− u′‖2

≤
√

(ρ2
0 + ρ2

1‖∇uf(u)‖2)‖u− u′‖2

≤ (ρ0 + ρ1‖∇uf(u)‖)‖u− u′‖,
where the first inequality holds by using

‖∇2
xyf(u)−∇2

xyf(u′)‖2 ≤ 1

8
(ρ0 + ρ1 min {‖∇xf(u)‖, ‖∇yf(u)‖})2‖u− u′‖2

Then we finish the proof.

Lemma A.5 Under Assumption 4.1, running Algorithm 1 with parameters setting in Theorem 4.3.
For iterations in the epochs that the if condition on Line 9 of Algorithm 1 triggers, we have

‖xt − xt−k+1‖ ≤ B, ‖zt − xt−k+1‖ ≤ 2B. (13)

Otherwise we have

‖xt+1 − xt−k+1‖ ≤ B, ‖zt+1 − xt−k+1‖ ≤ 2B. (14)

Proof. Denote tK to be the iteration number when Line 9 triggers and K to be the value of k in that
iteration with K ≤ K. Then we have

K = min
k

{
k | k

t∑
i=t−k+1

‖xi+1 − xi‖2 > B2

}
. (15)

Then for any iteration with tK −K + 1 ≤ t′ ≤ tK and 0 ≤ k′ < K, we have

‖xt′ − xt′−k′+1‖2 =

∥∥∥∥∥∥
t′−1∑

i=t′−k′+1

xi+1 − xi

∥∥∥∥∥∥
2

≤ k′
t′−1∑

i=t′−k′+1

‖xi+1 − xi‖2 ≤ B2 (16)

Also, from the update of z we have

‖zt′ − xt′−k′+1‖ ≤ ‖xt′ − xt′−k+1‖+ ‖xt′ − xt′−1‖ ≤ 2B (17)

On the other hand, in the epochs that the condition k = K on Line 11 triggers, for any iteration with
tK −K + 1 ≤ t′ ≤ tK and 0 ≤ k′ ≤ K, we have

‖xt′+1 − xt′−k′+1‖2 ≤ k′
t′∑

i=t′−k′+1

‖xi+1 − xi‖2 ≤ B2

‖zt′+1 − xt′−k′+1‖ ≤ 2B

(18)

For all the other iterations, if the condition on Line 20 triggers, where we have

‖zt′+1 − xt′−k′+1‖ = ‖xt′+1 − xt′−k′+1‖ ≤
1

4
B (19)

Otherwise from the setting of r in Theorem 4.3 we have

‖zt′+1 − xt′−k′+1‖ = ‖xt′+1 − xt′−k′+1‖ ≤ r ≤ B (20)

which complete the proof.
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Lemma A.6 Under Assumption 4.1, running Algorithm 1 with parameters setting in Theorem 4.3.
Denote ∆Φ := Φ(x0)− Φ∗, there must exist a constant G such that

G = max
{

2‖∇Φ(x0)‖,max
{
u ≥ 0 | u2 ≤ 2L · (Φ(x0)− Φ∗)

}}
Proof. Consider the first epoch before Line 9, 11, or 20 trigger. By Lemma A.2 and the choice of
G, it is easy to verify that ‖∇Φ(x0)‖ ≤ G. By Lemma A.5 we have ‖xt − x0‖ ≤ B ≤ r(G) and
‖zt − x0‖ ≤ 2B ≤ r(G) for any t. Therefore, by Lemma A.1 we have

‖∇Φ(xt)‖ ≤ ‖∇Φ(x0)‖+ L‖xt − x0‖ ≤
1

2
G+ L ·B ≤ G (21)

Similarally, we have ‖∇Φ(zt)‖ ≤ G. Without loss of generality, we first consider that only the if
condition on Line 9 triggers in all epochs. From C.1 we directly obtain that Φ(zK−1) ≤ Φ(x0).
Then by Lemma A.2, we have ‖∇Φ(zK−1)‖ ≤ ‖∇Φ(x0)‖ ≤ 1

2G. By the restart operation we have
xK = zK = zK−1. Telescoping to all epochs, we have ‖∇Φ(xt)‖ ≤ G and ‖∇Φ(zt)‖ ≤ G.

For the epoch that Line 11 triggers, according to A.5, from the updates of ẑ we have ‖ẑ−xt−K+1‖ ≤
2B ≤ G. Then by the settings of G and r we have

‖xt+1 − xt−K+1‖ = ‖zt+1 − xt−K+1‖ ≤ ‖ẑ− xt−K+1‖+ r ≤ G

L
, (22)

which yields that ‖∇Φ(zt+1)‖ = ‖∇Φ(xt+1)‖ ≤ G.

For the other epochs, before the condition on Line 20 triggers (i.e. k < T ), we have ‖xt+1 − ẑ‖ =
‖zt+1 − ẑ‖ = r. When Line 20 triggers, we have ‖xt+1 − ẑ‖ = ‖zt+1 − ẑ‖ = 1

4B ≤ r(G).
Therefore for iterations in these epochs we have ‖∇Φ(zt+1)‖ = ‖∇Φ(xt+1)‖ ≤ G, which finish
the proof.

Lemma A.7 (Li et al., 2024a) Consider the first AGD routine. Denote ∆f = f(x0,y
0
0) −

f(x0,y
∗(x0)), there must exist a constant Gy such that for Ly = ly,0 + 2ly,1Gy we have

Gy ≥ max

{
2‖∇f(x0,y

0
0)‖, 8 max

{√
Ly, 1

}√
Ly (∆f + µ‖y0 − y∗(x0)‖2) /min{µ, 1}

}
(23)

Also, for any d ≤ D, we have ‖∇yf(x0,y
d
0)‖ ≤ Gy.

Lemma A.8 For any t ≤ T in Algorithm 1 and d ≤ D in all the AGD routine of Algorithm 2 we
have ‖∇yf(xt,y

d
t )‖ ≤ Gy.

Proof. By Lemma A.5 and the setting of Gy we have for any t ≤ T , ‖xt − xt−1‖ ≤ B ≤ Gy

Ly
. Also

by warm start strategy on y we have y0
t+1 = ydt . Together with Lemma A.1 we complete the proof.

Lemma A.9 (Chen et al., 2021) Under Assumption 4.1, ‖∇yyf(x,y)‖−1 is bounded. i.e.
‖∇yyf(x,y)‖−1 ≤ µ−1

A.1 PROOF OF LEMMA 4.2

Under Assumption 4.1, indeed, a function y∗(·) is well-defined since f(x, ·) is strongly concave for
each x ∈ Rm. Then, let x1,x2 ∈ Rm, the definition of y∗(x1) and the definition of y∗(x2) imply
that

(y − y∗(x1))>∇yf(x1,y
∗(x1)) ≤ 0, for all y ∈ Y (24)

(y − y∗(x2))>∇yf(x2,y
∗(x2)) ≤ 0, for all y ∈ Y (25)

Letting y = y∗(x2) in Eq. (A.6) and y = y∗(x1) in Eq. (A.7) and adding them yields

(y∗(x2)− y∗(x1))>(∇yf(x1,y
∗(x1))−∇yf(x2,y

∗(x2))) ≤ 0 (26)

Recall that f(x1, ·) is µ-strongly concave, we have

(y∗(x2)− y∗(x1))>(∇yf(x1,y
∗(x2))−∇yf(x1,y

∗(x1))) + µ ‖y∗(x2)− y∗(x1)‖2 ≤ 0 (27)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

By combining Eq. (A.8) and Eq. (A.9) with the (lx,0, lx,1, ly,0, ly,1)-smoothness of f , we have

µ ‖y∗(x2)− y∗(x1)‖2 ≤ (ly,0 + ly,1‖∇yf(x2,y
∗(x2))‖)‖y∗(x2)− y∗(x1)‖‖x2 − x1‖ (28)

Combine with the definition of y∗(·), we obtain that y∗(·) is ly,0
µ -Lipschitz.

Then, we prove the smoothness of Φ(·). Let u = (x,y∗(x)) and u′ = (x′,y∗ (x′)), by (6) and the
ly,0
µ -Lipschitz of y′(x) we have

‖u− u′‖ =

√
‖x− x′‖2 + ‖y∗(x)− y∗ (x′)‖2 ≤

(
1 +

ly,0
µ

)
‖x− x′‖ ≤ G

L
(29)

Then we have

‖∇Φ(x)−∇Φ(x′)‖
≤ ‖∇xf(x,y(x))−∇xf(x′,y′(x))‖
≤ (lx,0 + lx,1‖∇xf(x′,y∗(x′))‖) (‖x− x′‖+ ‖y∗(x)− y∗(x′)‖)

≤ (lx,0 + lx,1‖∇Φ(x′)‖)
(

1 +
ly,0
µ

)
‖x− x′‖

(30)

Therefore, the function Φ(x) is (lΦ,0, lΦ,1)-smooth, where we denote

lΦ,0 =

(
1 +

ly,0
µ

)
lx,0, lΦ,1 =

(
1 +

ly,0
µ

)
lx,1 (31)

For minimax optimization (1), we know that ∇2
xyf(x,y) = ∇2

yxf(x,y). According to (2), with
the setting of Gy and Lemma A.7, A.8 we can easily verify that

‖∇2
xyf(x,y)‖ ≤ lx,0 + lx,1‖∇yf(x,y)‖ ≤ lx,0 + lx,1Gy = M,

Next, we prove the Hessian Lipschitz continuity of Φ(x). Define mapping H(x,y) = [∇xxf −
∇xyf(∇yyf)−1∇yxf ](x,y). Also, denote that u = (x,y) and u′ = (x′,y′), by the assumptions
we have

‖H(x′,y′)−H(x,y)‖

≤ ‖∇xxf(x′,y′)−∇xxf(x,y)‖+ ‖∇xyf(x,y)‖‖ (∇yyf(x′,y′))
−1 − (∇yyf(x,y))

−1 ‖‖∇yxf(x′,y′)‖

+ ‖∇xyf(x′,y′)−∇xyf(x,y)‖‖ (∇yyf(x′,y′))
−1 ‖‖∇yxf(x′,y′)‖

+ ‖∇xyf(x,y)‖‖
(
∇yyf(x,y)−1

)
‖‖∇yxf(x′,y′)−∇yxf(x,y)‖

≤ (ρx,0 + ρx,1‖∇xf(u)‖)‖u′ − u‖+ (ρxy,0 + ρxy,1‖∇yf(u)‖)‖u′ − u‖µ−1M

+Mµ−1(ρxy,0 + ρxy,1‖∇yf(u)‖)‖u′ − u‖
+M2‖(∇yyf(x′,y′))−1‖‖∇yyf(x,y)−∇yyf(x′,y′)‖‖ (∇yyf(x,y))

−1 ‖
≤ (ρx,0 + ρx,1‖∇xf(u)‖)‖u′ − u‖+ 2(ρxy,0 + ρxy,1‖∇yf(u)‖)‖u′ − u‖µ−1M

+ (ρy,0 + ρy,1‖∇yf(u)‖)‖u′ − u‖µ−2M2

≤ (ρx,0 + ρx,1‖∇xf(u)‖)‖u′ − u‖+ (µ−1M
√
ρy,0 +

ρxy,0√
ρy,0

)2‖u′ − u‖

+ (µ−1M
√
ρy,1 +

ρxy,1√
ρy,1

)2‖∇yf(u)‖‖u′ − u‖

(32)

From the definition of y∗(x), we know that ∇yf(x,y∗(x)) = 0 for all x ∈ Rdx , Thus we can
obtain that

0 = ∇x∇yf(x,y∗(x)) = ∇yxf (x,y∗(x)) +∇yyf (x,y∗(x))∇y∗(x) (33)

which implies that
∇y∗(x) = − [∇yyf(x,y∗(x))]

−1∇yxf(x,y∗(x)) (34)
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Substitute all above, with∇Φ(x) = ∇xf(x,y∗(x)), we have

∇2Φ(x) = ∇xxf(x,y∗(x)) +∇xyf(x,y∗(x))∇y∗(x)

= ∇xxf(x,y∗(x))−∇xyf(x,y∗(x))[∇yyf(x,y∗(x))]−1∇yxf(x,y∗(x))

= H(x,y∗(x))

(35)

Then,
‖∇2Φ(x′)−∇2Φ(x)‖ = ‖H(x′,y∗(x′))−H(x,y∗(x))‖

≤
(
ρx,0 + ρx,1‖∇xf(x,y∗(x)‖+

(
(µ−1M

√
ρy,0 +

ρxy,0√
ρy,0

)2 + (µ−1M
√
ρy,1 +

ρxy,1√
ρy,1

)2‖∇yf(x,y∗(x)‖
))
‖u′ − u‖

≤
(

(ρx,0 + ρx,1‖∇xf(x,y∗(x)‖) + (µ−1M
√
ρy,0 +

ρxy,0√
ρy,0

)2

)
‖u′ − u‖

≤
(
ρx,0 + (µ−1M

√
ρy,0 +

ρxy,0√
ρy,0

)2 + ρx,1‖∇xf(x,y∗(x)‖
)

(‖x′ − x‖+ ‖y∗(x′)− y∗(x)‖)

≤
(
ρx,0 + (µ−1M

√
ρy,0 +

ρxy,0√
ρy,0

)2 + ρx,1‖∇Φ(x)‖
)(

1 +
ly,0
µ

)
‖x′ − x‖

(36)

Therefore, the function Φ(x) is (ρφ,0, ρφ,1)-Hessian Lipschitz continuous, where

ρφ,0 =

(
1 +

ly,0
µ

)
(ρx,0 + (µ−1M

√
ρy,0 +

ρxy,0√
ρy,0

)2),

ρφ,1 =

(
1 +

ly,0
µ

)
ρx,1

(37)

Lemma A.10 Running Algorithm 1 with the parameters on 4.3. Denote Ly = ly,0 + 2ly,0Gy as
the efficient smoothness constant of f(x, ·) and κ =

Ly

µ . For the AGD procedure of Algorithm 2, set
ηy, θy to be

ηy =
1

Ly
, θy =

√
κ− 1√
κ+ 1

(38)

the output yt satisfying ‖yD−y∗‖22 ≤ (κ+1)
(

1− 1√
κ

)D
‖y0−y∗‖22, where y∗ = arg miny h(y).

Proof. For Algorithm 2 with function h′(·) that is lh-Lipschitz smooth and µh strongly-convex, from
the analysis of Wang & Li (2020) it yields that ‖yD − y∗‖22 ≤ (κh + 1)(1 − 1√

κh
)D‖y0 − y∗‖22,

where κh = lh
µh

.

For a (ly,0, ly,1)-smooth and µ-strongly-convex function −f(x, ·), it is easy to verify that by the
setting of Gy and Lemma A.7 the condition still holds, which complete the proof.

B PROOF OF SECTION 4.4.1

Lemma B.1 Denote ∇̂Φ(xt) = ∇xf(xt,yt). Let ι be a constant with ι = c · log( 1
δ0

√
n
πρ ) > 1

and κ =
Ly

µ . Running Algorithm 1 with the parameters setting in Theorem 4.3, Denote δy0 =

‖y0 − y∗(x0)‖, then the estimation error δΦ̂ = ‖∇Φ(xt)− ∇̂Φ(xt)‖ can be bounded as

‖∇Φ(xt)− ∇̂Φ(xt)‖ ≤ min

{
1

4
,

1

ι226−ι

}
· ε (39)

Proof. Denote κ =
Ly

µ , The gradient estimation error can be bounded by∥∥∥∇̂Φ(xt)−∇Φ(xt)
∥∥∥ =

∥∥∇xf(xt,y
D
t )−∇xf(xt,y

∗(xt))
∥∥ ≤ L∥∥yDt − y∗(xt)

∥∥
≤ L (κ+ 1)

(
1− 1√

κ

)D/2 ∥∥y0
t − y∗(xt)

∥∥ (40)
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where the last inequality follows Lemma A.10. By the warm start strategy y0
t = yDt−1, we have∥∥y0

t − y∗(xt)
∥∥ ≤ ∥∥yDt−1 − y∗(xt−1)

∥∥+ ‖y∗(xt−1)− y∗ (xt)‖

≤
(

1− 1√
κ

)D
2 ∥∥y0

t−1 − y∗(xt−1)
∥∥+

ly,0
µ
‖xt − xt−1‖

≤
(

1− 1√
κ

)D
2 ∥∥y0

t−1 − y∗ (xt−1)
∥∥+

ly,0
µ
B.

(41)

By setting

D > 2 log 2/ log

(
1

1− κ−1/2

)
= O(κ) (42)

we have ∥∥y0
t − y∗(xt)

∥∥ ≤ 1

2

∥∥y0
t−1 − y∗ (xt−1)

∥∥+
ly,0B

µ

≤
(

1

2

)t
‖y0 − y∗(x0)‖+

t−1∑
j=0

(
1

2

)t−1−j
ly,0
µ
B

≤ δy0 + 2
ly,0B

µ
,

(43)

which yields that∥∥∥∇̂Φ(xt)−∇Φ(xt)
∥∥∥ ≤ L (κ+ 1) (δy0 + 2κB)

(
1− 1√

κ

)D/2
(44)

Then, it is easy to verify that let

D = 2 log

L (κ+ 1)
(
δy0

+ 2
ly,0B
µ

)
min

{
1
4 ,

1
ι226−ι

}
· ε

 / log

(
1

1− κ−1/2

)
= O

(√
κ log

(
1

ε

))
(45)

finish the proofs.

C PROOF OF SECTION 4.4.2

Lemma C.1 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. If ‖∇̂Φ(ztK)‖ > B

ηx
, we have

Φ(xtK+1)− Φ(xt0) ≤ − 5B2

128ηx
(46)

Proof. Denote δΦ̂ = ∇Φ(zt) − ∇̂Φ(zt). From the L-smoothness condition and Lemma A.1, we
have for t0 ≤ t ≤ tK

Φ(xt+1) ≤ Φ(zt) + 〈∇Φ(zt),xt+1 − zt〉+
L
2
‖xt+1 − zt‖2

≤ Φ(zt) +
L
2
‖xt+1 − zt‖22 + 〈∇Φ(zt)− ∇̂Φ(zt),xt+1 − zt〉+ 〈∇̂Φ(zt),xt+1 − zt〉

≤ Φ(zt) +
L
2
‖xt+1 − zt‖22 + 8ηx‖δΦ̂‖

2 +
1

16ηx
‖xt+1 − zt‖2 − ηx‖∇̂Φ(zt)‖2

≤ Φ(zt)−
13

16
ηx‖∇̂Φ(zt)‖2 + 8ηx‖δΦ̂‖

2

(47)

where we use the AGD iteration and ηx ≤ 1
4L . We also have

Φ(xt) ≥ Φ(zt) + 〈∇Φ(zt),xt − zt〉 −
L
2
‖xt − zt‖2 (48)
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So we have
Φ(xt+1)− Φ(xt)

≤ −〈∇Φ(zt),xt − zt〉+
L
2
‖xt − zt‖2 −

13

16
ηx‖∇̂Φ(zt)‖2 + 8ηx‖δΦ̂‖

2

= −〈∇̂Φ(zt),xt − zt〉+ 〈∇̂Φ(zt)−∇Φ(zt),xt − zt〉+
L
2
‖xt − zt‖2 −

13

16
ηx‖∇̂Φ(zt)‖2 + 8ηx‖δΦ̂‖

2

≤ 1

ηx
〈xt+1 − zt,xt − zt〉+ 4ηx‖δΦ̂‖

2 +
1

8ηx
‖xt − zt‖2 +

L
2
‖xt − zt‖2 −

13

16
ηx‖∇̂Φ(zt)‖2 + 8ηx‖δΦ̂‖

2

=
1

2ηx
(‖xt+1 − zt‖2 + ‖xt − zt‖2 − ‖xt+1 − xt‖2) +

1

8ηx
‖xt − zt‖2 +

L
2
‖xt − zt‖2 −

13

16
ηx‖∇̂Φ(zt)‖2 + 12ηx‖δΦ̂‖

2

≤ 3

4ηx
‖xt − zt‖2 −

1

2ηx
‖xt+1 − xt‖2 −

5

16
ηx‖∇̂Φ(zt)‖2 + 12ηx‖δΦ̂‖

2

≤ 3

4ηx
‖xt − xt−1‖2 −

1

2ηx
‖xt+1 − xt‖2 −

5

16
ηx‖∇̂Φ(zt)‖2 + 12ηx‖δΦ̂‖

2

(49)

where we use L ≤ 1
4ηx

and ‖xt − zt‖ = (1 − θx)‖xt − xt−1‖ ≤ ‖xt − xt−1‖. Summing over
t = t0, ..., tK and using xt0 = xt0−1, we have

Φ(xtK+1)− Φ(xt0) ≤ 1

4ηx

tK−1∑
k=t0

‖xk+1 − xk‖2 −
5ηx

16

tK∑
k=t0

‖∇̂Φ(zk)‖2 + 12ηx

tK∑
k=t0

‖δΦ̂‖
2

≤ B2

4ηx
− 5

16
ηx‖∇̂Φ(ztK)‖2 + 12ηxK‖δΦ̂‖

2

≤ B2

4ηx
− 5B2

16ηx
+ 12ηxK‖δΦ̂‖

2

≤ − 5B2

128ηx

(50)

Lemma C.2 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK−K+1. If ‖∇̂Φ(ztK)‖ ≤ B

ηx
, denote H = ∇2Φ(xt0) and H = UΛUT to be its eigenvalue

decomposition with U,Λ ∈ Rd×d. Define the quadratic approximation function g as

g(x) =
〈
∇̃Φ(xt0),x− x̃t0

〉
+

1

2
(x− x̃t0)TΛ(x− x̃t0)

where we denote x̃ = UTx, z̃ = UT z, ∇̃Φ(z) = UT∇Φ(z) and ˜̂∇Φ(z) = UT ∇̂Φ(z). Then, the
approximation error δ̃t = ∇̃Φ(zt)−∇g(z̃t) at iteration t can be bounded as ‖δ̃t‖ ≤ 9

4ρB
2, where

ρ = ρΦ,0 + 2ρΦ,1G denotes the efficient hessian smoothness constant.

Proof. If ‖∇̂Φ(ztK)‖ ≤ B
ηx

, from the AGD iteration we have

‖xtK+1 − xt0‖ ≤ ‖ztK − xt0‖+ ηx‖∇̂Φ(ztK)‖ ≤ 3B (51)
From the generalized Hessian smoothness condition and Lemma A.3 we have

Φ(xtK+1)− Φ(xt0)

≤ 〈∇Φ(xt0),xtK+1 − xt0〉+
1

2
(xtK+1 − xt0)TH(xtK+1 − xt0) +

ρ

6
‖xtK+1 − xt0‖3

≤
〈
∇̃Φ(xt0), x̃tK+1 − x̃t0

〉
+

1

2
(x̃tK+1 − x̃t0)TΛ(x̃tK+1 − x̃t0) +

ρ

6
‖xtK+1 − xt0‖3

≤ g(x̃tK+1)− g(x̃t0) + 4.5ρB3

(52)

where ρ is the effective Hessian smoothness constant. Let λj be the jth eigenvalue. Denote

g(j)(x) =
〈
∇̃(j)Φ(xt0), x− x̃

(j)
t0

〉
+

1

2
λ(j)(x− x̃

(j)
t0 )2

δ̃
(j)
t = ∇̃(j)Φ(zt)−∇gj(z̃(j)

t )
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Then the AGD iterations can be rewritten as

z̃
(j)
t = x̃

(j)
t + (1− θx)(x̃

(j)
t − x̃

(j)
t−1),

x̃
(j)
t+1 = z̃

(j)
t − ηx

˜̂∇jΦ(zt) = z̃
(j)
t − ηx∇gj(z̃(j)

t )− ηxδ̃
(j)
t

and ‖δ̃t‖ can be bounded as

‖δ̃t‖ = ‖ ˜̂∇Φ(zt)− ∇̃Φ(xt0)−Λ(z̃t − x̃t0)‖
= ‖∇̂Φ(zt)−∇Φ(xt0)−H(zt − xt0)‖
= ‖∇Φ(zt)−∇Φ(xt0) + ∇̂Φ(zt)−∇Φ(zt) + H(zt − xt0)‖

≤ ‖(
∫ 1

0

∇2Φ(xt0 + t(zt − xt0))−H)(zt − xt0)dt‖+ ‖∇̂Φ(zt)−∇Φ(zt)‖

≤ ρ

2
‖zt − xt0‖2 + ‖∇̂Φ(zt)−∇Φ(zt)‖ ≤

9

4
ρB2

(53)

To prove the decrease from Φ(xt0) to Φ(xtK+1), we only need to study the decrease of the
quadratic approximation function g(x). The quadratic function g(x) equals to the sum of d scalar
functions g(j)(x(j)). We decompose g(x) into

∑
j∈S1

g(j)(x(j)) and
∑
j∈S2

g(j)(x(j)), where

S1 =
{
j : λj ≥ − θx

ηx

}
and S2 =

{
j : λj < − θx

ηx

}
. We see that g(j)(x) is approximate convex

when j ∈ S1, and strongly concave when j ∈ S2. We will prove the approximate decrease of
g(j)(x(j)) in the two cases. We first consider

∑
j∈S1

g(j)(x(j)).

Lemma C.3 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. If ‖∇̂Φ(ztK)‖ ≤ B

ηx
, we have

∑
j∈S1

g(j)(x̃
(j)
tK+1) ≤

∑
j∈S1

g(j)(x̃
(j)
t0 )−

∑
j∈S1

3θx
8ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
9ηxρ

2B4K
θx

(54)

Proof. Since g(j)(x) is quadratic, we have

g(j)(x̃
(j)
t+1) = g(j)(x̃

(j)
t ) +

〈
∇(j)g(x̃

(j)
t ), x̃

(j)
t+1 − x̃

(j)
t

〉
+
λj
2
‖x̃(j)

t+1 − x̃
(j)
t ‖2

a
= g(j)(x̃

(j)
t )− 1

ηx

〈
x̃

(j)
t+1 − z̃

(j)
t + ηxδ

(j)
t , x̃

(j)
t+1 − x̃

(j)
t

〉
+
〈
∇(j)g(x̃

(j)
t )−∇(j)g(z̃

(j)
t ), x̃

(j)
t+1 − x̃

(j)
t

〉
+
λj
2
‖x̃(j)

t+1 − x̃
(j)
t ‖2

= g(j)(x̃
(j)
t )− 1

ηx

〈
x̃

(j)
t+1 − z̃

(j)
t , x̃

(j)
t+1 − x̃

(j)
t

〉
−
〈
δ

(j)
t , x̃

(j)
t+1 − x̃

(j)
t

〉
+ λj

〈
x̃

(j)
t − z̃

(j)
t , x̃

(j)
t+1 − x̃

(j)
t

〉
+
λj
2
‖x̃(j)

t+1 − x̃
(j)
t ‖2

≤ g(j)(x̃
(j)
t ) +

1

2ηx
(‖x̃(j)

t − z̃
(j)
t ‖2 − ‖x̃

(j)
t+1 − z̃

(j)
t ‖2 − ‖x̃

(j)
t+1 − x̃

(j)
t ‖2)

+
1

2α
‖δ(j)
t ‖2 +

α

2
‖x̃(j)

t+1 − x̃
(j)
t ‖2 +

λj
2

(‖x̃(j)
t+1 − z̃

(j)
t ‖2 − ‖x̃

(j)
t − z̃

(j)
t ‖2)

(55)
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Using L ≥ λj ≥ − θx
ηx

when j ∈ S1 =
{
j : λj ≥ − θx

ηx

}
and (− 1

2ηx
+

λj
2 )‖x̃(j)

t+1 − z̃
(j)
t ‖2 ≤

(−2L+ L
2 )‖x̃(j)

t+1 − z̃
(j)
t ‖2 ≤ 0, we have for each j ∈ S1,

g(j)(x̃
(j)
t+1) ≤ g(j)(x̃

(j)
t ) +

1

2ηx
(‖x̃(j)

t − z̃
(j)
t ‖2 − ‖x̃

(j)
t+1 − x̃

(j)
t ‖2)

+
1

2α
‖δ(j)
t ‖2 +

α

2
‖x̃(j)

t+1 − x̃
(j)
t ‖2 +

θx
2ηx
‖x̃(j)

t − z̃
(j)
t ‖2

b
= g(j)(x̃

(j)
t ) +

(1− θx)2(1 + θx)

2ηx
‖x̃(j)

t − x̃
(j)
t−1‖2

− (
1

2ηx
− α

2
)‖x̃(j)

t+1 − x̃
(j)
t ‖2 +

1

2α
‖δ(j)
t ‖2

(56)

Defining the potential function

p
(j)
t+1 = g(j)(x̃

(j)
t+1) +

(1− θx)2(1 + θx)

2ηx
‖x̃(j)

t+1 − x̃
(j)
t ‖2 (57)

we have

p
(j)
t+1 ≤ p

(j)
t − (

1

2ηx
− α

2
− (1− θx)2(1 + θx)

2ηx
)‖x̃(j)

t+1 − x̃
(j)
t ‖2 + ‖ 1

2α
δ

(j)
t ‖2

c
≤ p(j)

t −
3θx
8ηx
‖x̃(j)

t+1 − x̃
(j)
t ‖2 +

2ηx

θx
‖δ(j)
t ‖2,

(58)

where we let α = θx
4ηx

in
c
≤ such that 1

2ηx
− θx

8ηx
− (1−θx)2(1+θx)

2ηx
= 3θx

8ηx
+

θ2
x

2ηx
− θ3

x

2ηx
≥ 3θx

8ηx
.

Summing over t = t0, · · · , tK and j ∈ S1, using xt0 − xt0−1 = 0, we have∑
j∈S1

g(j)(x̃
(j)
tK+1)) ≤

∑
j∈S1

pKj ≤
∑
j∈S1

g(j)(x̃
(j)
t0 ))−

∑
j∈S1

3θx
8ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
2ηx

θx

K−1∑
k=t0

‖δt‖2

≤
∑
j∈S1

g(j)(x̃
(j)
t0 ))−

∑
j∈S1

3θx
8ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
9ηxρ

2B4K
θx

(59)

Next, we consider
∑
j∈S2

g(j)(x(j)).

Lemma C.4 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. If ‖∇̂Φ(ztK)‖ ≤ B

ηx
, we have∑

j∈S2

gj(x̃
(j)
tK+1)−

∑
j∈S2

gj(x̃
(j)
t0 ) ≤ −

∑
j∈S2

θx
2η

tK∑
k=t0

|x̃(j)
k+1 − x̃

(j)
k |

2 +
9ηρ2B4K

4θx
(60)

Proof. Denoting vj = x̃
(j)
t0 −

1
λj
∇̃(j)Φ(xt0), g(j)(x) can be rewritten as

g(j)(x) =
λj
2

(x− x̃
(j)
t0 +

1

λj
∇̃(j)Φ(xt0))2 − 1

2λj
‖∇̃jΦ(xt0)‖2

=
λj
2
‖x− vj‖2 −

1

2λj
‖∇̃(j)Φ(xt0)‖2

(61)

For each j ∈ S2 =
{
j : λj < − θx

ηx

}
, we have

g(j)(x̃
(j)
t+1)− g(j)(x̃

(j)
t ) =

λj
2
‖x̃(j)

t+1 − vj‖2 −
λj
2
‖x̃(j)

t − vj‖2

=
λj
2
‖x̃(j)

t+1 − x̃
(j)
t ‖2 + λj

〈
x̃

(j)
t+1 − x̃

(j)
t , x̃

(j)
t − vj

〉
≤ − θx

2ηx
‖x̃(j)

t+1 − x̃
(j)
t ‖2 + λj

〈
x̃

(j)
t+1 − x̃

(j)
t , x̃

(j)
t − vj

〉
.

(62)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

So we only need to bound the second term, where

x̃
(j)
t+1 − x̃

(j)
t = ỹ

(j)
t − x̃

(j)
t − ηx∇(j)g(ỹ

(j)
t )− ηxδ

(j)
t

= (1− θx)(x̃
(j)
t − x̃

(j)
t−1)− ηx∇(j)g(ỹ

(j)
t )− ηxδ

(j)
t

= (1− θx)(x̃
(j)
t − x̃

(j)
t−1)− ηxλj(ỹ

(j)
t − vj)− ηxδ

(j)
t

= (1− θx)(x̃
(j)
t − x̃

(j)
t−1)− ηxλj(x̃

(j)
t − vj + (1− θx)(x̃

(j)
t − x̃

(j)
t−1))− ηxδ

(j)
t

(63)

So for each j ∈ S2, we have

λj

〈
x̃

(j)
t+1 − x̃

(j)
t , x̃

(j)
t − vj

〉
= (1− θx)λj

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t − vj

〉
− ηxλ

2
j‖x̃

(j)
t − vj‖2

− ηxλ
2
j (1− θx)

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t − vj

〉
− ηxλj

〈
δ

(j)
t , x̃

(j)
t − vj

〉
≤ (1− θx)λj

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t − vj

〉
− ηxλ

2
j‖x̃

(j)
t − vj‖2

+
ηxλ

2
j (1− θx)

2
(‖x̃(j)

t − x̃
(j)
t−1‖2 + ‖x̃(j)

t − vj‖2)

+
ηx

2(1 + θx)
‖δ(j)
t ‖2 +

ηxλ
2
j (1 + θx)

2
‖x̃(j)

t − vj‖2

= (1− θx)λj

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t − vj

〉
+
ηxλ

2
j (1− θx)

2
‖x̃(j)

t − x̃
(j)
t−1‖2 +

ηx

2(1 + θx)
‖δ(j)
t ‖2

= (1− θx)λj

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t−1 − vj

〉
+ (1− θx)λj‖x̃(j)

t − x̃
(j)
t−1‖2

+
ηxλ

2
j (1− θx)

2
‖x̃(j)

t − x̃
(j)
t−1‖2 +

ηx

2(1 + θx)
‖δ(j)
t ‖2

≤ (1− θx)λj

〈
x̃

(j)
t − x̃

(j)
t−1, x̃

(j)
t−1 − vj

〉
+
ηx

2
‖δ(j)
t ‖2,

(64)

where we use (1 +
ηxλj

2 )(1− θx) ≥ (1− ηxL
2 )(1− θx) ≥ 0 and λj < 0 when j ∈ S2. Then,

λj

〈
x̃

(j)
t+1 − x̃

(j)
t , x̃

(j)
t − vj

〉
≤ (1− θx)kλj

〈
x̃

(j)
t0+1 − x̃

(j)
t0 , x̃

(j)
t0 − vj

〉
+
ηx

2

k∑
t=1

(1− θx)k−t‖δ(j)
t ‖2

b
= −(1− θx)kηxλ

2
j‖x̃

(j)
t0 − vj‖2 +

ηx

2

k∑
t=1

(1− θx)k−t‖δ(j)
t ‖2

≤ ηx

2

k∑
t=1

(1− θx)k−t‖δ(j)
t ‖2,

(65)

where b
= holds by using

x̃
(j)
t0+1 − x̃

(j)
t0 = x̃

(j)
t0+1 − z̃

(j)
t0 = −ηx∇̃(j)Φ(zt0) = −ηx∇̃(j)Φ(xt0)

= −ηx∇(j)g(x̃
(j)
t0 ) = −ηxλj(x̃

(j)
t0 − vj).

(66)

Plugging (65) into (62), we have

g(j)(x̃
(j)
t+1)− g(j)(x̃

(j)
t ) ≤ − θx

2ηx
‖x̃(j)

t+1 − x̃
(j)
t ‖2 +

ηx

2

k∑
t=t0+1

(1− θx)k−t‖δ(j)
t ‖2 (67)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Summing over t = t0, · · · , tK and j ∈ S2, we have∑
j∈S2

g(j)(x̃
(j)
tK+1)−

∑
j∈S2

g(j)(x̃
(j)
t0 ) ≤ −

∑
j∈S2

θx
2ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
ηx

2

tK∑
k=t0

k∑
i=t0+1

(1− θx)k−i‖δk‖2

≤ −
∑
j∈S2

θx
2ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
ηxK
2θx
‖δt‖2

≤ −
∑
j∈S2

θx
2ηx

tK∑
k=t0

‖x̃(j)
k+1 − x̃

(j)
k ‖

2 +
9ηxρ

2B4K
4θx

(68)
Puts Lemma C.3 and C.4 together, we introduce the following lemma.

Lemma C.5 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. If ‖∇̂Φ(ztK)‖ ≤ B

ηx
, we have

Φ(xtK+1)− Φ(xt0) ≤ −3θxB
2

8ηxK
+

9ρB3

2
+

45ηxρ
2B4K

4θx
(69)

Proof. Summing over (54) and (60), we have

g(x̃tK+1)− g (x̃t0) =
∑

j∈S1∪S2

gj(x̃
(j)
tK+1)− gj(x̃(j)

t0 )

≤ −3θx
8ηx

tK∑
k=t0

‖x̃k+1 − x̃k‖2 +
45ηxρ

2B4K
4θx

= −3θx
8ηx

tK∑
k=t0

‖xk+1 − xk‖2 +
45ηxρ

2B4K
4θx

≤ −3θxB
2

8ηxK
+

45ηxρ
2B4K

4θx
,

(70)

where the second equility holds from the definition of x̃. Pluging into (52) and using K ≤ K, we
have

Φ(xtK+1)− Φ(xt0) ≤ −3θxB
2

8ηxK
+

9ρB3

2
+

45ηxρ
2B4K

4θx
(71)

Then we can establish the decrease of Φ(x) in epochs that Line 9 triggers.

C.1 PROOF OF LEMMA 4.5

Lemma C.6 Running Algorithm 1 with parameters setting in Theorem 4.3. When the condition on
Line 9 triggers, denote tK to be the iteration number, K to be the value of k on that iteration and
t0 = tK −K + 1. In each epoch of Algorithm 1 where the Line 9 triggers, we have

Φ(xtK+1)− Φ(xt0) ≤ −51ε3/2

64
√
ρ

(72)

Proof. Combing two lemmas togethers, we have

Φ(xtK+1)− Φ(xt0) ≤ −min

{
3θxB

2

8ηxK
− 9ρB3

2
− 45ηxρ

2B4K

4θx
,

5B2

128ηx

}
= −min

{
51ε3/2

64
√
ρ
,

5ε

128ηxρ

} (73)

Taking θx = 4
(
ερη2

x

)1/4 ≤ 1 we have

Φ (xtK+1)− Φ (xt0) ≤ −51ε3/2

64
√
ρ

(74)

Then we finish the proof.
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C.2 PROOF OF LEMMA 4.6

Lemma C.7 Running Algorithm 1 with parameters setting in Theorem 4.3. In the epoch that the
condition on Line 11 triggers, the point ẑ in Line 13 satisfies ‖∇Φ(ẑ)‖ ≤ O(ε).

Proof. Denote z̃ = UT ẑ = 1
K0+1

∑t0+K0

k=t0
UT zt = 1

K0+1

∑t0+K0

k=t0
z̃t. Since g is quadratic, we

have

‖∇g(z̃)‖ =

∥∥∥∥∥ 1

K0 + 1

t0+K0∑
k=t0

∇g(z̃k)

∥∥∥∥∥
=

1

ηx(K0 + 1)

∥∥∥∥∥
t0+K0∑
k=t0

(x̃k+1 − z̃k + ηxδ̃k)

∥∥∥∥∥
a
=

1

ηx(K0 + 1)

∥∥∥∥∥
t0+K0∑
k=t0

(x̃k+1 − x̃k + ηxδ̃k)−
t0+K0∑
k=t0+1

(1− θx)(x̃k − x̃k−1)

∥∥∥∥∥
=

1

ηx(K0 + 1)

∥∥∥∥∥x̃t0+K0+1 − x̃t0 − (1− θx)(x̃t0+K0
− x̃t0) + ηx

t0+K0∑
k=t0

δ̃k

∥∥∥∥∥
=

1

ηx(K0 + 1)

∥∥∥∥∥x̃t0+K0+1 − x̃t0+K0 + θx(x̃t0+K0 − x̃t0) + ηx

t0+K0∑
k=t0

δ̃k

∥∥∥∥∥
≤ 1

ηx(K0 + 1)
(‖x̃t0+K0+1 − x̃t0+K0‖+ θx‖x̃t0+K0 − x̃t0‖+ ηx

t0+K0∑
k=t0

‖δ̃k‖)

≤ 2

ηxK
‖x̃t0+K0+1 − x̃t0+K0‖+

2θxB

ηxK
+

9ρB2

4
,

(75)

where we use zt0 = xt0 in a
=. From K0 = arg mint0+bK2 c≤k≤t0+K−1 ‖xk+1 − xk‖, we have

‖xt0+K0+1 − xt0+K0
‖2 ≤ 1

K − bK/2c

t0+K−1∑
k=t0+bK/2c

‖xk+1 − xk‖2

≤ 1

K − bK/2c

t0+K−1∑
k=t0

‖xk+1 − xk‖2

≤ 1

K − bK/2c
B2

K
≤ 2B2

K2

(76)

On the other hand, we also have

‖∇Φ(ẑ)‖ = ‖∇̃Φ(ẑ)‖

≤ ‖∇g(z̃)‖+ ‖ ˜̂∇Φ(ẑ)−∇g(z̃)‖

= ‖∇g(z̃)‖+ ‖ ˜̂∇Φ(ẑ)− ∇̃Φ(xt0)−Λ(z̃− x̃t0)‖
≤ ‖∇g(z̃)‖+ ‖∇Φ(ẑ)−∇Φ(xt0)−H(ẑ− x0)‖+ ‖∇̂Φ(zt)−∇Φ(zt)‖

≤ ‖∇g(z̃)‖+
ρ

2
‖ẑ− xt0‖2 + ‖∇̂Φ(zt)−∇Φ(zt)‖

≤ ‖∇g(z̃)‖+
9ρB2

4

(77)

So we have

‖∇Φ(ẑ)‖ ≤ 2
√

2B

ηxK2
+

2θxB

ηxK
+

9ρB2

2
≤ 82ε (78)
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D PROOF OF SECTION 4.4.3

First, we set

r =
δ0ε

64L

√
π

n
, T =

32
√
L

(ρε)1/4
log

(
L
δ0

√
n

πρε

)
, δ0 =

δ

384∆Φ

√
ε3

ρ
. (79)

Without loss of generality we assume ẑ = 0 by shifting Rn such that ẑ is mapped to 0. Define a
new n-dimensional function

hΦ(x) = Φ(x)− 〈∇Φ(0),x〉, (80)

Since 〈∇Φ(0),x〉 is a linear function with Hessian being 0, the Hessian of hΦ equals to the Hessian
of Φ, and hΦ(x) is also (lΦ,0, lΦ,1)-smooth and (ρΦ,0, ρΦ,1)-Hessian Lipschitz. In addition, note
that∇hΦ(0) = ∇Φ(0)−∇Φ(0) = 0. Then for all x ∈ Rn we have

∇hΦ(x) =

∫ 1

ξ=0

H(ξx) · xdξ =

∫ 1

ξ=0

(H(ξx)−H(0)) · xdξ +H(0)x (81)

Furthermore, due to the (ρΦ,0, ρΦ,1)-Hessian Lipschitz condition of both Φ and hΦ, for any ξ ∈
[0, G/L] we have ‖H(ξx)−H(0)‖ ≤ ρ‖x‖, where ρ is the effective Hessian-smoothness constant,
which leads to

‖∇hΦ(x)−H(0)x‖ ≤ ρ‖x‖2 (82)

Use H(ẑ) to denote the Hessian matrix of Φ at z̃. Observe that H(ẑ) admits the following eigen-
decomposition:

H(ẑ) =

n∑
i=1

λiuiu
T
i , (83)

where the set {ui}ni=1 forms an orthonormal basis of Rn. Without loss of generality, we assume the
eigenvalues λ1, λ2, . . . , λn corresponding to u1,u2, . . . ,un satisfy

λ1 ≤ λ2 ≤ · · · ≤ λn (84)

in which λ1 ≤ −
√
ρε. If λn ≤ −

√
ρε/2, Lemma 4.3 holds directly, since no matter the value

of ê, we can have Φ(xT ) − Φ(ẑ) ≤ − 1
384

√
ε3

ρ . Hence, we only need to prove the case where
λn > −

√
ρε, in which there exists some p with

λp ≤ −
√
ρε < λp+1 (85)

We use S‖to denote the subspace of Rn spanned by {u1,u2, . . . ,up}, and use S⊥ to denote the
subspace spanned by {up+1,up+2, . . . ,un}. Then we can have the following lemma:

Lemma D.1 Running Algorithm 1 with parameters setting in Theorem 4.3. Denote t0 to be the
iteration number after the condition on Line 11 triggers. Define α′t to be

α′t =
‖xt,‖‖
‖xt‖

, (86)

in which xt,‖ is the component of xt in the subspace S‖. Define vt+1 := xt+1 − xt for each
iteration. Then, during all the T iterations after Line 11 triggers, we have α′t ≥ α′min for

α′min =
δ0
8

√
π

n
(87)

given that α′0 ≥
√

π
nδ0.

Proof. Without loss of generality, assume ẑ = 0 and ∇Φ(ẑ) = 0. If not, . . . We consider the worst
case, where the initial value α′0 =

√
π
nδ0 and the component x0,1 along u1 equals 0 . Also, the

eigenvalues satisfy

λ2 = λ3 = · · · = λp = −√ρε, λp+1 = λp+2 = · · · = λn−1 = −√ρε+ ν, (88)
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for an arbitrarily small positive constant ν, which can make components of xt in S⊥ as large as
possible to make α′t smaller. Out of the same reason, we assume that each time we make a gradient
call at point zt, the derivation term ∆ from pure quadratic approximation

∆ =
‖zt‖
r

(
∇̂Φ(r

zt
‖zt‖

)−H(0) · r zt
‖zt‖

)
=
‖zt‖
r
·
(
∇Φ(r

zt
‖zt‖

)−H(0) · r zt
‖zt‖

+ ∇̂Φ(r
zt
‖zt‖

)−∇Φ(r
zt
‖zt‖

)

) (89)

lies in the direction that can make α′t as small as possible. Then, the component ∆‖ in S‖ should
be in the opposite direction to z‖, and the component ∆⊥ in S⊥ should be in the direction of z⊥.
Hence in this case, we have both ‖xt,⊥‖/‖xt‖ and ‖zt,⊥‖/‖zt‖ being non-decreasing, since ν can
be arbitrarily small. Also, it admits the following recurrence formula:

‖xt+2,⊥‖ ≤ (1 + ηx(
√
ρε− ν)) (‖xt+1,⊥‖+ (1− θx) (‖xt+1,⊥‖ − ‖xt,⊥‖)) + ηx‖∆⊥‖

≤ (1 + ηx
√
ρε) (‖xt+1,⊥‖+ (1− θx) (‖xt+1,⊥‖ − ‖xt,⊥‖)) + ηx‖∆⊥‖,

(90)

where the second inequality is due to the fact that ν can be an arbitrarily small positive number.
Note that since ‖xt,⊥‖/‖xt‖ is non-decreasing in this worst-case scenario, we have

‖∆⊥‖
‖xt+1,⊥‖

≤ ‖∆‖
‖xt+1‖

· ‖xt0‖
‖xt0,⊥‖

≤ 2‖∆‖
‖xt+1‖

≤ 2ρr + 2‖δΦ̂‖ ≤ 4ρr (91)

which leads to

‖xt+2,⊥‖ ≤ (1 + η
√
ρε+ 4ηρr) ((2− θx) ‖xt+1,⊥‖ − (1− θx) ‖xt,⊥‖) . (92)

On the other hand, suppose for some value t, we have α′k ≥ α′min with any t0 + 1 ≤ k ≤ t + 1.
Then,

‖xt+2,‖‖ ≥ (1 + ηx(
√
ρε− ν))

(∥∥xt+1,‖
∥∥+ (1− θx)

(∥∥xt+1,‖
∥∥− ∥∥xt,‖∥∥))+ ηx‖∆‖‖

≥ (1 + ηx
√
ρε)
(∥∥xt+1,‖

∥∥+ (1− θx)
(∥∥xt+1,‖

∥∥− ∥∥xt,‖∥∥))− ηx‖∆‖.
(93)

Note that since ‖xt+1,‖‖/‖xt‖ ≥ α′min, we have

‖∆‖
‖zt+1,‖‖

≤ ‖∆‖
α′min‖zt+1‖

≤
ρr + ‖δΦ̂‖
α′min

≤ 2ρr

α′min

(94)

which leads to

‖xt+2,‖‖ ≥ (1 + η
√
ρε− 2ηρr/α′min)

(
(2− θx)‖xt+1,‖‖ − (1− θx)‖xt,‖‖

)
(95)

Consider the sequences with recurrence that can be written as

ξt+2 = (1 + p) ((2− θx)ξt+1 − (1− θx)ξt) (96)

for some p > 0. Its characteristic equation can be written as

x2 − (1 + p)(2− θx)x+ (1 + p)(1− θx) = 0, (97)

whose roots satisfy

x =
1 + p

2

(
(2− θx)±

√
(2− θx)2 − 4(1− θx)

1 + p

)
, (98)

indicating

ξt =

(
1 + p

2

)t (
C1(2− θx + q)t + C2(2− θx − q)t

)
, (99)

where q :=
√

(2− θx)2 − 4(1−θx)
1+p , for constants C1 and C2 being{

C1 = − 2−θx−q
2q ξ0 + 1

(1+p)q ξ1

C2 = 2−θx+q
2q ξ0 − 1

(1+p)q ξ1
(100)
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Then by the inequalities 92 and 95, as long as α′k ≥ α′min for any t0 + 1 ≤ k ≤ t − 1, the values
‖xt,⊥‖ and ‖xt,‖‖ satisfy

‖xt,⊥‖ ≤
(
−2− θx − µ⊥

2µ⊥
ξ0,⊥ +

1

(1 + κ⊥)µ⊥
ξ1,⊥

)
·
(

1 + κ⊥
2

)t
· (2− θx + µ⊥)

t

+

(
2− θx + µ⊥

2µ⊥
ξ0,⊥ −

1

(1 + κ⊥)µ⊥
ξ1,⊥

)
·
(

1 + κ⊥
2

)t
· (2− θx − µ⊥)

t
,

(101)

and ∥∥xt,‖∥∥ ≥
(
−

2− θx − µ‖
2µ‖

ξ0,‖ +
1(

1 + κ‖
)
µ‖
ξ1,‖

)
·
(

1 + κ‖

2

)t
·
(
2− θx + µ‖

)t
+

(
2− θx + µ‖

2µ‖
ξ0,‖ −

1(
1 + κ‖

)
µ‖
ξ1,‖

)
·
(

1 + κ‖

2

)t
·
(
2− θx − µ‖

)t
,

(102)

where
κ⊥ = η

√
ρε+ 4ηρr, ξ0,⊥ = ‖xt0,⊥‖ , ξ1,⊥ = (1 + κ⊥) ξ0,⊥

κ‖ = η
√
ρε− 2ηρr/α′min, ξ0,‖ =

∥∥xt0,‖∥∥ , ξ1,‖ =
(
1 + κ‖

)
ξ0,‖

(103)

Further we can derive that

‖xt,⊥‖ ≤ ‖xt0,⊥‖ ·
(

1 + κ⊥
2

)t
· (2− θx + µ⊥)

t (104)

and

‖xt,‖‖ ≥
‖x0,‖‖

2
·
(

1 + κ‖

2

)t
·
(
2− θx + µ‖

)t
. (105)

Then we can observe that
‖xt,‖‖
‖xt,⊥‖

≥
‖xt0,‖‖

2‖xt0,⊥‖
·
(

1 + κ‖

1 + κ⊥

)t
·
(

2− θx + µ‖

2− θx + µ⊥

)t
, (106)

where
1 + κ‖

1 + κ⊥
≥
(
1 + κ‖

)
(1− κ⊥)

≥ 1− (4 + 2/α′min) ηρr − κ‖κ⊥
≥ 1− 4ηρr/α′min,

(107)

and
2− θx + µ‖

2− θx + µ⊥
=

1 + µ‖/(2− θx)

1 + µ⊥/(2− θx)

=

1 +

√
1− 4(1−θx)

(1+κ‖)(2−θx)2

1 +
√

1− 4(1−θx)
(1+κ⊥)(2−θx)2

≥

(
1 +

1

2− θx

√
θ2
x + κ‖(2− θx)2

1 + κ‖

)1− 1

2− θx

√
θ2
x + κ⊥(2− θx)2

1 + κ⊥


≥ 1−

2
(
κ⊥ − κ‖

)
θx

≥ 1− 6ηρr

α′minθx
(108)

by which we can derive that
‖xt,‖‖
‖xt,⊥‖

≥
‖xt0,‖‖

2‖xt0,⊥‖
·
(

1− 8ρr

α′minθx

)t
≥
‖xt0,‖‖

2‖xt0,⊥‖
· (1− 1/T )t

≥
‖xt0,‖‖

2‖xt0,⊥‖
· exp

(
− t

T − 1

)
≥
‖xt0,‖‖

4‖xt0,⊥‖
,

(109)
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indicating

α′t =
‖xt,‖‖√

‖xt,‖‖2 + ‖xt,⊥‖2
≥
‖xt0,‖‖

8‖xt0,⊥‖
≥ α′min (110)

Hence, as long as α′k ≥ α′min for any t0 + 1 ≤ k ≤ t − 1, we can also have α′t ≥ α′min if t ≤ T .
Since we have α′0 ≥ α′min and α′1 ≥ α′min, we can claim that α′t ≥ α′min for any t ≤ T using
recurrence.

D.1 PROOF OF LEMMA 4.7

Lemma D.2 Running Algorithm 1 with parameters setting in Theorem 4.3. Denote t0 to be the
iteration number after the condition on Line 11 triggers. Define vt+1 = xt+1−xt for each iteration.
For the point ẑ satisfying λmin

(
∇2Φ(ẑ)

)
≤ −√ρε, adding an uniform perturbation in Line 16, the

unit vector ê in Line 21 obtained after T iterations satisfies

P
(
êTH(x)ê ≤ −√ρε/4

)
≥ 1− δ0 (111)

Proof. If λn ≤ −
√
ρε/2, Lemma D.2 holds directly. Hence, we only need to consider the case

where λn > −
√
ρε/2 , in which there exists some p′ with

λ′p ≤ −
√
ρε/2 < λp+1 (112)

We use S′‖, S
′
⊥ to denote the subspace of Rn spanned by

{u1,u2, . . . ,up′} , {up′+1,up+2, . . . ,un}

Furthermore, we define

xt,‖′ :=

p′∑
i=1

〈ui,xt〉ui, xt,⊥′ :=

n∑
i=p′

〈ui,xt〉ui,

vt,‖′ :=

p′∑
i=1

〈ui,vt〉ui, vt,⊥′ :=

n∑
i=p′

〈ui,vt〉ui

respectively to denote the component of x′t and v′t in the subspaces S′‖, S′⊥, and let α′t :=

‖xt,‖‖/‖xt‖. Consider the case where α′0 ≥
√

π
nδ0, which can be achieved with probability

Pr

{
α′0 ≥

√
π

n
δ0

}
≥ 1−

√
π

n
δ0 ·

Vol
(
Bn−1

0 (1)
)

Vol (Bn0 (1))
≥ 1−

√
π

n
δ0 ·

√
n

π
= 1− δ0 (113)

we prove that there exists some t′ with t0 + 1 ≤ t′ ≤ T such that

‖xt′,⊥′‖
‖xt′‖

≤
√
ρε

8L
(114)

Assume the contrary, for any t with 1 ≤ t ≤ K ′, we all have ‖xt,⊥′‖‖xt‖ >
√
ρε

8L and ‖zt,⊥′‖‖zt‖ >
√
ρε

8L .
Focus on the case where ‖xt,⊥′‖, the component of xt in subspace S′⊥, achieves the largest value
possible. Then in this case, we have the following formula:

‖xt+2,⊥′‖ ≤ (1 + ηx
√
ρε/2) (‖xt+1,⊥′‖+ (1− θx) (‖xt+1,⊥′‖ − ‖xt,⊥′‖)) + ηx‖∆⊥′‖. (115)

Since ‖zk,⊥′‖‖zk‖ ≥
√
ρε

8L for any t0 + 1 ≤ k ≤ t+ 1, we can derive that

‖∆⊥‖
‖xt+1,⊥‖+ (1− θx) (‖xt+1,⊥‖ − ‖xt,⊥‖)

≤ ‖∆‖
‖zt,⊥′‖

≤
2ρr + 2‖δΦ̂‖√

ρε
(116)

which leads to

‖xt+2,⊥′‖ ≤ (1 + ηx
√
ρε/2) (‖xt+1,⊥′‖+ (1− θx) (‖xt+1,⊥′‖ − ‖xt,⊥′‖)) + ηx‖∆⊥′‖

≤ (1 + ηx
√
ρε/2 + 4ρr/

√
ρε) ((2− θx)‖xt+1,⊥′‖ − (1− θx)‖xt,⊥′‖)

(117)
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Similar to the proof of Lemma D.1, it can be further derived that

‖xt,⊥′‖ ≤ ‖xt0,⊥′‖ ·
(

1 + κ⊥′

2

)t
· (2− θx + µ⊥′)

t (118)

for κ⊥′ = ηx
√
ρε/2 + 4ρr/

√
ρε and µ⊥′ =

√
(2− θx)2 − 4(1−θx)

1+κ⊥′
, given ‖xk,⊥′‖‖xk‖ ≥

√
ρε

8L and
‖zk,⊥′‖
‖zk‖ ≥

√
ρε

8L for any t0 + 1 ≤ k ≤ t− 1. By Lemma D.1,

α′t ≥ α′min =
δ0
8

√
π

n
, ∀t0 + 1 ≤ t ≤ T (119)

and it is demonstrated in the proof of Lemma D.1 that,

‖xt,‖‖ ≥
‖xt0,‖‖

2
·
(

1 + κ‖

2

)t
·
(
2− θx + µ‖

)t
, ∀t0 + 1 ≤ t ≤ T , (120)

for κ‖ = ηx
√
ρε− 2ηxρr/α

′
min and µ‖ =

√
(2− θx)2 − 4(1−θx)

1+κ‖
. Observe that

‖xT ,⊥′‖
‖xT ,‖‖

≤ 2 ‖xt0,⊥′‖∥∥xt0,‖∥∥ ·
(

1 + κ⊥′

1 + κ‖

)T

·
(

2− θx + µ⊥′

2− θx + µ‖

)T

≤ 2

δ0

√
n

π

(
1 + κ⊥′

1 + κ‖

)T

·
(

2− θx + µ⊥′

2− θx + µ‖

)T
(121)

where

1 + κ⊥′

1 + κ‖
≤ 1

1 +
(
κ‖ − κ⊥′

) = 1− 1

ηx
√
ρε/2 + 2ρr

(
ηx/αmin′ + 2/

√
ρε
) ≤ 1−

ηx
√
ρε

4
(122)

and

2− θx + µ⊥′

2− θx + µ‖
=

1 +
√

1− 4(1−θx)
(1+κ⊥′ )(2−θx)2

1 +

√
1− 4(1−θx)

(1+κ‖)(2−θx)2

≤ 1

1 +

(√
1− 4(1−θx)

(1+κ⊥′ )(2−θx)2 −
√

1− 4(1−θx)

(1+κ‖)(2−θx)2

)
≤ 1−

κ‖ − κ⊥′
θx

≤ 1−
η
√
ρε

4θx
= 1− (ρε)1/4

8
√
L
.

(123)

Hence,
‖xT ,⊥′‖

‖xT ,‖‖
≤ 2

δ0

√
n

π

(
1− (ρε)1/4

8
√
L

)T

≤
√
ρε

8L
(124)

Since ‖xT ,‖‖ ≤ ‖xT ‖, we have ‖xT ,⊥′‖
‖xT ‖

≤
√
ρε

8L , contradiction. Hence, there here exists some t0

with t0 + 1 ≤ t′ ≤ T such that ‖xt′,⊥′‖‖xt′‖
≤
√
ρε

8L . Consider the normalized vector ê = xt′/r, we
use ê⊥′ and ê‖′ to separately denote the component of ê in S′⊥ and S′‖. Then, ‖ê⊥′‖ ≤

√
ρε/(8L)

whereas ‖ê‖′‖ ≥ 1− ρε/(8L)2. Then,

êTH(0)ê =
(
ê⊥′ + ê‖′

)T H(0)
(
ê⊥′ + ê‖′

)
, (125)

sinceH(0)ê⊥′ ∈ S′⊥ andH(0)ê‖′ ∈ S′‖, it can be further simplified to

êTH(0)ê = êT⊥′H(0)ê⊥′ + êT‖′H(0)ê‖′ (126)
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Due to the L-smoothness of the function, all eigenvalue of the Hessian matrix has its absolute value
upper bounded by L. Hence,

êT⊥′H(0)ê⊥′ ≤ L‖êT⊥′‖2 =
ρε

64L2
. (127)

Further according to the definition of S‖, we have

êT‖′H(0)ê‖′ ≤ −
√
ρε

2
‖ê‖′‖2 (128)

Combining these two inequalities together, we can obtain

êTH(0)ê = êT⊥H(0)ê⊥′ + êT‖′H(0)ê‖′ ≤ −
√
ρε

2

∥∥ê‖′∥∥2
+

ρε

64L2
≤ −
√
ρε

4
, (129)

which finish the proof.

D.2 PROOF OF LEMMA 4.8

Lemma D.3 Running Algorithm 1 with parameters setting in Theorem 4.3. For each ẑ if there exists
a unit vector ê satisfying êTH(ẑ)ê ≤ −

√
ρε

4 where H stands for the Hessian matrix of function Φ,
the following inequality holds

Φ

(
ẑ− 1

4

√
ε

ρ
· ê
)
≤ Φ(ẑ)− 1

384

√
ε3

ρ
, (130)

where Φ′ê stands for the gradient component of Φ along the direction of ê.

Proof. Without loss of generality, we assume ẑ = 0. We can also assume 〈∇Φ(0), ê〉 ≤ 0; if this is
not the case we can pick −ê instead, which still satisfies (−ê)TH(ẑ)(−ê) ≤ −

√
ρε

4 . Then, for any
x = eê with some e > 0, we have ∂2Φ

∂(eê)2 (x) ≤ −
√
ρε

4 +ρe due to the ρ-Hessian Lipschitz condition
of Φ. Hence,

∂Φ

∂eê
(x) ≤ Φ′ê(0)−

√
ρε

4
e+ ρe2 (131)

by which we can further derive that

Φ(eê)− Φ(0) ≤ Φ′ê(0)e−
√
ρε

8
e2 +

ρ

3
e3 ≤ −

√
ρε

8
e2 +

ρ

3
e3. (132)

Settings e = 1
4

√
ε
ρ finishes the proof.

E PROOF OF THEOREM 4.3

Proof. Denote F = 51
64

√
ε3

ρ . Set the total step number T to be

T = max

{
308∆Φ (K + T )

F
, 768∆ΦT

√
ρ

ε3

}
= O

(
∆Φ

ε1.75
· log n

)
(133)

We first assert that for each iteration xt+1 that a uniform perturbation is added, after T iterations we
can successfully obtain a unit vector ê with êTHê ≤ −√ρε/4, as long as λmin (H(xt+1)) ≤ −√ρε.
Under this assumption, the uniform perturbation can be called for at most NT = 384∆Φ

√
ρ
ε3

times, for otherwise the function value decrease will be greater than Φ (x0) − Φ∗, which is not
possible. Then, the probability that at least one negative curvature finding subroutine after uniform
perturbation fails is upper bounded by

384∆Φ

√
ρ

ε3
· δ0 = δ (134)

For the rest of steps which is not within T steps after uniform perturbation, they are either de-
scent steps, ‖∇Φ(xt)‖ ≥ 82ε, or (ε,

√
ε)-second-order second-order stationary points. Next, we
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demonstrate that at least one of these steps is an (ε,
√
ε)-second-order stationary point. Assume the

contrary. We use NK to denote the number of epochs where Line 9 triggers. Therefore, it satisfies

T ≤ NK ·K +NT · (K + T ) (135)

Then, we have

NK ≥ NK ·
K

K + T
≥ T

K + T
−NT ≥

T

K + T
−384∆Φ

√
ρ

ε3
≥ 308∆Φ

F
−384∆Φ

√
ρ

ε3
≥ ∆Φ

F
(136)

During these iterations the function value of Φ will decrease in total at least NK ·F ≥ ∆Φ, which
is impossible due to Lemma 4.5, the function value of Φ decreases monotonically for every epoch
except when the Line 11 triggers and the T steps after uniform perturbation, and the overall decrease
cannot be greater than ∆Φ. Therefore, we conclude that at least one of the iterations must be an
(ε,
√
ε) second-order stationary point, with probability at least 1− δ.
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