
Under review as submission to TMLR

A Appendix

Section B summarizes our experimental setup, while Section C, D, and E respectively detail the tangent
Hessian computation method, the geodesic path generation algorithm, and the weak data augmentation
strategy used for geodesic Monte Carlo integration. Finally, in section F we extend our discussion of related
works. Additional experiments are reported in section G.

B Network Architectures and Training Setup

Network Architectures The ConvNets and ResNets used follow the experimental settings of Nakkiran
et al. (2019b), with the only difference that we disable batch normalization in order to focus our study on
implicit regularization. In summary, the ConvNets are composed of 4 convolutional stages (each with a
single conv + ReLU block) with kernel size 3× 3, stride 1, padding 1, each followed by maxpooling of stride
2 and kernel size 2 × 2. Finally, a max pooling layer of stride 2 and kernel size 2 × 2 is applied, followed
by a linear layer. The Residual networks used in this study are ResNet18s (He et al., 2015) without batch
normalization.

Both ConvNets and ResNets are formed by 4 convolutional stages at which the number of learned feature
maps doubles, i.e. the base width of each stage follows the progression [w, 2w, 4w, 8w], with w = 64 denoting
a standard ResNet18. To control the number of parameters in each network, the base width w varies from
1 to 64.

Throughout our experiments, augmentations x̃n of a sample (xn, yn) are labelled with their respective
(potentially noisy) training target yn.

Dataset Splits To tune the training hyperparameters of all networks, a validation split of 1000 samples
was drawn uniformly at random from the training split of CIFAR-10 and CIFAR-100.

ConvNet Training Setup The training settings are the same for CIFAR-10 and CIFAR-100. All Con-
vNets are trained for 4k epochs with SGD with momentum 0.9, fixed learning rate 1e − 3, batch size 128,
and no weight decay. All learned layers are initialized with Pytorch’s default weight initialization (version
1.11.0). To stabilize prolonged training in the absence of batch normalization, we use learning rate warmup:
starting from a base value of 1e− 4 the learning rate is linearly increased to 1e− 3 during the first 5 epochs
of training, after which it remains constant at 1e− 3.

ResNet Training Setup All ResNets are trained for 4k epochs using Adam with base learning rate 1e−4,
batch size 128, and no weight decay. All learned layers are initialized with Pytorch’s default initialization
(version 1.11.0). All residual networks are trained with data augmentation, consisting of 4 − pixel random
shifts, and random horizontal flips.

Computational Resources Our experiments are conducted on a local cluster equipped with NVIDIA
Tesla A100s with 40GB onboard memory. For each dataset and architecture, we train 64 different networks
for 4000 epochs with 3 different seeds. The total time for computing our experiments, excluding training
networks and hyperparameter finetuning, amounts to approximately 6 GPU years. Furthermore, computing
our statistics requires evaluating per-sample Jacobians for each training point and corresponding augmenta-
tions, for increasing volumes around each point. For each training setting, this was performed for 72 model
checkpoints collected during training, to produce the heatmaps in Figures 5, 11, 12, 13 and 14.

C Tangent Hessian Computation

To estimate the tangent Hessian norm at a point xn through Equation 5, we approximate the tangent space
to the data manifold local to xn by using a set of random weak augmentations of xn. To guarantee that all
augmentations xn + um, as well as the displacements xn + δum lie on the data manifold, we use weak colour
augmentations as follows.

17



Under review as submission to TMLR

Color augmentations
0 5 10 15 20 22 25 28 30

Erased SVD values

Figure 8: (Left) Visualization of random colour augmentations used to estimate the tangent Hessian norm.
Each row represents a set of random augmentation, with the first image per-row showing the corresponding
base sample. (Right) Each row represents SVD augmentations of increasing strength. Also in this case, the
first column represents the base sample used to generate the corresponding augmentations in each row.

For each sample xn, we apply in random order the following photometric transformations:

• random brightness transformation in the range [0.9, 1.1], with 1. denoting the identity transforma-
tion.

• random contrast transformation in [0.9, 1.1], with 1. denoting the identity transformation.

• random saturation transformation in [0.9, 1.1], with 1. denoting the identity transformation.

• random hue transformation in [− 0.05, 0.05], with 0. denoting the identity transformation.

Furthermore, a step size δ = 0.1 is used for computing the finite differences in Equation 5. 4 augmentations
xn + um are sampled for each point. All randomness is controlled to ensure reproducibility. Figure 8 (left)
shows a visualization of the colour augmentations used.

D Geodesic Paths Generation

In this section, we provide pseudocode for the algorithm used for generating geodesic paths, used for Monte
Carlo integration. Let x0 ∈ Rd denote a training point, which we use as the starting point of geodesic paths
πp emanating from x0. Let Ts : Rd → Rd denote a family of smooth transformations (data augmentation),
dependent on a parameter s controlling the magnitude and direction of the transformation (e.g. radial
direction and displacement for pixel shifts). Let S := {s1, . . . , sK} denote a sequence of parameters for the
family Ts, each with strength Sk = ‖sk‖2 for k = 1, . . . ,K, such that S1 < . . . < SK . Then, Algorithm 1
returns a geodesic path π : [0, 1]→ Rd, based at x0, i.e. π(0) = x0, which is anchored to the data manifold
local to x0 by a sequence of augmentations of increasing strength, for k = 1, . . . ,K.

Particularly, Algorithm 1 can be applied P times to generate paths πp emanating from x0. Finally, by
integrating metrics of interest (e.g. Jacobian and tangent Hessian norms) along each path πp, we obtain

18



Under review as submission to TMLR

Algorithm 1 Generate a geodesic path π emanating from a training point x0.
1: function Geodesic Path(x0, Ts, S := {s1, . . . , sK})
2: P ← {x0} . Set of on-manifold points.
3: for sk ∈ S do
4: sample s ∼ sk . Sample augmentation of strength Sk = ‖s‖2.
5: xk = Ts(x0) . Generate weak data augmentation.
6: P ← P ∪ {xk}
7: end for
8: return P . Set of data augmentations forming a path

π, with points sorted by distance from x0.
9: end function

estimates of sharpness of the loss along each path, which we use as Monte Carlo samples in Equation 7 for
estimating volume-sharpness. We recall that the size of the volume considered is controlled by the maximum
augmentation strength SK used for generating weak augmentations, which is proportional to the distance
travelled away from x0 in input space.

E SVD Augmentation

The SVD augmentation method presented in section 3.4 allows for generating images that lie in close prox-
imity to the base sample xn. Figure 8 shows an illustration of the original image (first column) and several
augmented images, as the augmentation strength (number of erased singular values) increases. Figure 9
shows the average (over the CIFAR-10 training set) Euclidean distance of augmented samples from their
respective base sample, as well as the length of the polygonal path formed by connecting augmentations of
increasing strength. We note that for k < 30, in expectation, augmentations lie in close proximity to the
original base sample in Euclidean space.

5 10 15 20 25 30
Augmentation strength

0

5

10

15

20

25

30

35

L2
 d

ist
an

ce

Dist. from base sample
Path length

Figure 9: Average L2 distance from the base samples, for augmentations of increasing strength.

F Extended Related Works

In this section, we extend the related work discussion of section 2 to contextualize our findings in relationship
to linear models.

In linear regression, the model-wise double descent phenomenon has been studied in terms of harmless inter-
polation (Muthukumar et al., 2020) or benign overfitting of noisy data (Bartlett et al., 2020), by controlling
the number of input features θ considered. Particularly, for the least squares solution to a noisy linear

19



Under review as submission to TMLR

regression problem with random input and features, the impact of noise on generalization is mitigated by
the abundance of weak features (Belkin et al., 2020). In this context, interpolation is studied for data whose
population is described by noisy observations from a linear ground truth model. In the following, we delineate
the main differences between linear regression and the experimental setting considered in our study.

We begin by noting that, since the model function of linear models has zero curvature (both w.r.t. model
input x and parameters θ), the only source of nonlinearity and curvature in linear regression is the error
function (MSE). To see this, let f(x,θ) = θTx denote a linear regression model, estimated by minimizing

the mean squared error L(θ,x, y) = 1
2N

N∑
n=1

(f(xn,θ)− yn)2, where yn is a noisy target ∀n. Then, the error

function L has constant curvature H = ‖ ∂2L
∂x∂xT ‖2 = ‖θθT ‖2, independent of x.

In contrast, we study the case of nonlinear classification problems and nonlinear models, which have notable
differences from the linear case. First, there is no a priori closed form solution of the learning problem, thus
providing relevance to empirical studies. Second, curvature of the model function is non-constant, and the
function may oscillate arbitrarily outside of the training data (this is known as the Runge phenomenon).
Third, studies that rely exclusively on the test error suggest that interpolation is harmless also in overpa-
rameterized nonlinear models. Finally, the model function of convolutional architectures is independent of
input-data dimensionality, and the relationship between complexity of the model function and its underlying
parameterization is therefore implicit.

In this setting, we experimentally show that, in the interpolating regime, (1) curvature at training points
depends non-monotonically on model size; (2) oscillations occur especially for small interpolating models,
which are worst affected by noise; (3) large models achieve low-curvature interpolation of both clean and noisy
samples (in contrast with the polynomial intuition), and such property is observed over large volumes (non-
zero measure) around each training point (in contrast with the Runge phenomenon, thus providing evidence
of implicit regularization); (4) Interpolation of noise impacts generalization even for large models (contrary to
the overparameterized linear regression case); (5) Double descent observed for input space curvature occurs
even when fitting 100% noisy data, more clearly pinpointing properties that are consistently promoted by
overparameterization in deep nonlinear networks.

Our methodology enables the study of sharpness of fit of training data for nonlinear models, providing a
comparative study of the regularity with which different parameterizations achieve interpolation and (in
some cases) generalization.

G Additional Experiments

G.1 Transformers

0 100 200 300 400 500
Embedding Dimension

0

100

200

300

400

500

Er
ro

r

iwslt14_de_en
wmt14_en_fr

(a)

0 100 200 300 400 500
Embedding Dimension

0.005

0.010

0.015

0.020

0.025

0.030

Lo
ss

 Ja
co

bi
an

 n
or

m

iwslt14_de_en
wmt14_en_fr

(b)

Figure 10: a) Double descent of the test error for transformers trained on translation tasks, as the embed-
ding dimension and model width vary. b) Average Jacobian norm.

20



Under review as submission to TMLR

We consider multi-head attention-based Transformers (Vaswani et al., 2017) for neural machine translation
tasks. We vary model size by controlling the embedding dimension de, as well as the width h of all fully
connected layers, which we set to h = 4de following the architecture described in Vaswani et al. (2017). We
train the transformer networks on the WMT’14 En-Fr task (Macháček & Bojar, 2014), as well as ISWLT’14
De-En (Cettolo et al., 2012). The training set of WMT’14 is reduced by randomly sampling 200k sentences,
fixed for all models. The networks are trained for 80k gradient steps, to optimize per-token perplexity, with
10% label smoothing, and no dropout, gradient clipping or weight decay.

For both datasets, Figure 10a shows the double descent curve for the test error for both datasets considered.
Figure 10b extends our main result beyond vision models, showing that loss sharpness at each training point,
as measured by the Jacobian norm, follows double descent for the test error.

G.2 ConvNets

Figures 11 and 13 summarize our main findings with heatmaps showing modelwise and epochwise trends for
the test error, train loss, as well as our sharpness metrics, individually computed over the clean and noisy
subsets of CIFAR-10.

Figure 11: Test error (left), crossentropy loss over cleanly-labelled training samples (middle) and corrupted
training samples (right) over epochs (y-axis) for different model sizes (x-axis), for ConvNets on CIFAR-10.

G.3 ResNets

Figures 12 and 14 present heatmaps showing modelwise and epochwise trends for the test error, train loss,
as well as our sharpness metrics, individually computed over the clean and noisy subsets of CIFAR-10.

Figure 12: Test error (left), crossentropy loss over cleanly-labelled training samples (middle) and corrupted
training samples (right) over epochs (y-axis) for different model sizes (x-axis), for ResNets on CIFAR-10.

21



Under review as submission to TMLR

Figure 13: (Left column) Metrics evaluated on the training set without Monte Carlo integration on ConvNets.
(Right column) Monte Carlo integration over a neighborhood with paths consisting of 7 augmentations.

22



Under review as submission to TMLR

Figure 14: (Left column) Metrics evaluated on the training set without Monte Carlo integration on ResNets.
(Right column) Monte Carlo integration over a neighborhood with paths consisting of 7 augmentations.

23


