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1 PROOF OF THEOREM 3.1

Lemma 3.1. Given an ODE dzgt) = g(x(t), t) with a Lipschitz continuous drift function g(x(t),t),

the probability density p;(x) satisfies the continuity equation:
Opy (1))
ot
Theorem 3.1. Suppose the evolving of x(t) € R? satisfies an ODE dflgt) = —D;V logp(z(t)),
the conditional probability density of x(t) given x(0) is:
1 ||z (t) — 2(0)]|?
(2mo?)d/2 exp( 207

+ V- pe(x(t))g(x(t), 1) = 0. (1

p(a(t)|2(0) = N (x(t); 2(0), 07 1) = ) 2)

Given two data distributions ©1 ~ pi1(x1) and xo ~ pa(x2), based on Eq., the ScoreFlow
mapping data from x1 to xo can be derived as:

dz(t) Ot
it pr@@) ~ o T2 T ®)

where o > 0 denotes a monotonic increasing function with oy > 1 as t — o0, d denotes the
number of dimensions.
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Proof. Without loss of generality, we first consider the case of dimension 1. According to Lemma
3.1, we first substitute the given ODE into Equation (I)) and obtain:

t
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To solve this equation, we perform a spatial Fourier transform on x:
Op(z(t
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&)
— %Ft(&)) = (*ZW)QDt.Ft(W)

By solving this ODE, we have:
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Using the convolution theorem, we perform the inverse Fourier transform and obtain:

p(x(t)) = /p(ggo)(%012)l/2 exp(_|x(t)2—a;;ﬂ(0)| )z
L e @, @
== p(x(t)]2(0)) = (ro?)i2 eXP(—T)
In multi-dimensional situations, we have:
R e "

= N(z(t); 2(0),021),
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and the ODE can be written as:
dz(t) = —640¢Vy log p(x(t))dt. )

Therefore, given 2(0) € R? as the initial state of ODE @), according to Equation (8]), we can obtain
z(t) by computing:

z(t) = x(0) + ore, e ~ N(0,I). (10)
If oy > 0 denotes a monotonic increasing function with oy > 1 as t — oo, when ¢ is sufficiently

large, we have:
x(t) = o€ (11)

Therefore, given 1 ~ p; and zo ~ po as the inital states of the ODE (9)), when T is sufficiently
large, we have:

T
x1(T) =21 + / —6+0tV 4, log p1 (2(t))dt = oye,
0

- (12)
x2(T) = z3 + / —610tV g, log pa(x(t))dt = oye,
0
Therefore, we have:
T T
ro =21 + / —6¢0¢Vy, logpy (x(t))dt — / —610¢V g, log pa(x(t))dt
0 0
T
: p2(z(?)) o,
=z —|—/ 0104V, log ———= bz (13)
T Gy ™
da(t) p2(z(t))
= V.l
at R ()
Utilizing the Equation (8], we obtain:
da(t) p2(z(t))
= V. log ——%=
at T ()
N (x(t); z2,021)
= 1 Lt 14
= 00V 18 {r e 0); 2, 07) (1
- To — T1 o O't
=010i——5— = —(x2 — 71)
(e Ot
This completes the proof. O
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2 MORE EXPERIMENTAL RESULTS

2.1 256 x 256 IMAGES GENERATED BY A UNIFIED SCOREFLOW TRAINED ON CELEBA AND
METFACE

\ﬂgv /

Figure 1: Generated Images on CelebA
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Figure 2: Generated Images on MetFace
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(a) CelebA—MetFace (b) MetFace—CelebA

Figure 3: (a) The image translation from CelebA to MetFace, via solving dz = [fo(x(¢),t,c =
1) = fo(z(t),t,c = 0)]dt. (b) The reverse translation from MetFace to CelebA.
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2.2 256 x 256 IMAGES GENERATED BY A CONDITIONAL SCOREFLOW TRAINED ON AFHQ

Figure 4: Generated Images on AFHQ
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