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1 PROOF OF THEOREM 3.1

Lemma 3.1. Given an ODE dx(t)
dt = g(x(t), t) with a Lipschitz continuous drift function g(x(t), t),

the probability density pt(x) satisfies the continuity equation:

∂pt(x(t))

∂t
+∇ · pt(x(t))g(x(t), t) = 0. (1)

Theorem 3.1. Suppose the evolving of x(t) ∈ Rd satisfies an ODE dx(t)
dt = −Dt∇x log p(x(t)),

the conditional probability density of x(t) given x(0) is:

p(x(t)|x(0)) = N (x(t);x(0), σ2
t I) =

1

(2πσ2
t )

d/2
exp(−||x(t)− x(0)||2

2σ2
t

). (2)

Given two data distributions x1 ∼ p1(x1) and x2 ∼ p2(x2), based on Eq.(2), the ScoreFlow
mapping data from x1 to x2 can be derived as:

dx(t)

dt
= σ̇tσt∇x log

p2(x(t))

p1(x(t))
=

σ̇t

σt
(x2 − x1), (3)

where σt ≥ 0 denotes a monotonic increasing function with σt ≫ 1 as t → ∞, d denotes the
number of dimensions.

Proof. Without loss of generality, we first consider the case of dimension 1. According to Lemma
3.1, we first substitute the given ODE into Equation (1) and obtain:

∂p(x(t))

∂t
= Dt∇2p(x(t)), (4)

To solve this equation, we perform a spatial Fourier transform on x:

F
[
∂p(x(t))

∂t

]
= DtF

[
∇2p(x(t))

]
=⇒ ∂

∂t
Ft(ω) = (−iω)2DtFt(ω).

(5)

By solving this ODE, we have:

Ft(ω) = F0(ω)e
−ω2

∫ t
0
Dsds∫ t

0
Dsds = 1

2σ
2
t

=⇒ Ft(ω) = F0(ω)e
− 1

2ω
2σ2

t .
(6)

Using the convolution theorem, we perform the inverse Fourier transform and obtain:

p(x(t)) =

∫
p(x0)

1

(2πσ2
t )

1/2
exp(−|x(t)− x(0)|2

2σ2
t

)dx

=⇒ p(x(t)|x(0)) = 1

(2πσ2
t )

1/2
exp(−||x(t)− x(0)||2

2σ2
t

).

(7)

In multi-dimensional situations, we have:

p(x(t)|x(0)) = 1

(2πσ2
t )

d/2
exp(−||x(t)− x(0)||2

2σ2
t

)

= N (x(t);x(0), σ2
t I),

(8)
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and the ODE can be written as:

dx(t) = −σ̇tσt∇x log p(x(t))dt. (9)

Therefore, given x(0) ∈ Rd as the initial state of ODE (9), according to Equation (8), we can obtain
x(t) by computing:

x(t) = x(0) + σtϵ, ϵ ∼ N (0, I). (10)
If σt ≥ 0 denotes a monotonic increasing function with σt ≫ 1 as t → ∞, when t is sufficiently
large, we have:

x(t) = σtϵ (11)
Therefore, given x1 ∼ p1 and x2 ∼ p2 as the inital states of the ODE (9), when T is sufficiently
large, we have:

x1(T ) = x1 +

∫ T

0

−σ̇tσt∇x1
log p1(x(t))dt = σtϵ,

x2(T ) = x2 +

∫ T

0

−σ̇tσt∇x2 log p2(x(t))dt = σtϵ,

(12)

Therefore, we have:

x2 = x1 +

∫ T

0

−σ̇tσt∇x1
log p1(x(t))dt−

∫ T

0

−σ̇tσt∇x2
log p2(x(t))dt

= x1 +

∫ T

0

σ̇tσt∇x log
p2(x(t))

p1(x(t))
dt

=⇒ dx(t)

dt
= σ̇tσt∇x log

p2(x(t))

p1(x(t))

(13)

Utilizing the Equation (8), we obtain:

dx(t)

dt
= σ̇tσt∇x log

p2(x(t))

p1(x(t))

= σ̇tσt∇x log
N (x(t);x2, σ

2
t I)

N (x(t);x1, σ2
t I)

= σ̇tσt
x2 − x1

σ2
t

=
σ̇t

σt
(x2 − x1)

(14)

This completes the proof.
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2 MORE EXPERIMENTAL RESULTS

2.1 256× 256 IMAGES GENERATED BY A UNIFIED SCOREFLOW TRAINED ON CELEBA AND
METFACE

Figure 1: Generated Images on CelebA
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Figure 2: Generated Images on MetFace
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(a) CelebA→MetFace (b) MetFace→CelebA

Figure 3: (a) The image translation from CelebA to MetFace, via solving dx = [fθ(x(t), t, c =
1)− fθ(x(t), t, c = 0)]dt. (b) The reverse translation from MetFace to CelebA.
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2.2 256× 256 IMAGES GENERATED BY A CONDITIONAL SCOREFLOW TRAINED ON AFHQ

Figure 4: Generated Images on AFHQ
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