SUPPLEMENTARY MATERIAL FOR SUBMISSION #8904

Anonymous authors

Paper under double-blind review

1 PROOF OF THEOREM 3.1

Lemma 3.1. Given an ODE $\frac{dx(t)}{dt} = g(x(t), t)$ with a Lipschitz continuous drift function g(x(t), t), the probability density $p_t(x)$ satisfies the continuity equation:

$$\frac{\partial p_t(x(t))}{\partial t} + \nabla \cdot p_t(x(t))g(x(t), t) = 0.$$
(1)

Theorem 3.1. Suppose the evolving of $x(t) \in \mathbb{R}^d$ satisfies an ODE $\frac{dx(t)}{dt} = -D_t \nabla_x \log p(x(t))$, the conditional probability density of x(t) given x(0) is:

$$p(x(t)|x(0)) = \mathcal{N}(x(t); x(0), \sigma_t^2 I) = \frac{1}{(2\pi\sigma_t^2)^{d/2}} \exp(-\frac{||x(t) - x(0)||^2}{2\sigma_t^2}).$$
 (2)

Given two data distributions $x_1 \sim p_1(x_1)$ and $x_2 \sim p_2(x_2)$, based on Eq.(2), the ScoreFlow mapping data from x_1 to x_2 can be derived as:

$$\frac{dx(t)}{dt} = \dot{\sigma}_t \sigma_t \nabla_x \log \frac{p_2(x(t))}{p_1(x(t))} = \frac{\dot{\sigma}_t}{\sigma_t} (x_2 - x_1), \tag{3}$$

where $\sigma_t \ge 0$ denotes a monotonic increasing function with $\sigma_t \gg 1$ as $t \to \infty$, d denotes the number of dimensions.

Proof. Without loss of generality, we first consider the case of dimension 1. According to Lemma 3.1, we first substitute the given ODE into Equation (1) and obtain:

$$\frac{\partial p(x(t))}{\partial t} = D_t \nabla^2 p(x(t)), \tag{4}$$

To solve this equation, we perform a spatial Fourier transform on x:

$$\mathcal{F}\left[\frac{\partial p(x(t))}{\partial t}\right] = D_t \mathcal{F}\left[\nabla^2 p(x(t))\right]$$

$$\implies \quad \frac{\partial}{\partial t} \mathcal{F}_t(\omega) = (-i\omega)^2 D_t \mathcal{F}_t(\omega).$$
(5)

By solving this ODE, we have:

$$\mathcal{F}_t(\omega) = \mathcal{F}_0(\omega) e^{-\omega^2 \int_0^t D_s ds}$$

$$\stackrel{\int_0^t D_s ds = \frac{1}{2} \sigma_t^2}{\Longrightarrow} \mathcal{F}_t(\omega) = \mathcal{F}_0(\omega) e^{-\frac{1}{2} \omega^2 \sigma_t^2}.$$
(6)

Using the convolution theorem, we perform the inverse Fourier transform and obtain:

$$p(x(t)) = \int p(x_0) \frac{1}{(2\pi\sigma_t^2)^{1/2}} \exp(-\frac{|x(t) - x(0)|^2}{2\sigma_t^2}) dx$$

$$\implies \quad p(x(t)|x(0)) = \frac{1}{(2\pi\sigma_t^2)^{1/2}} \exp(-\frac{||x(t) - x(0)||^2}{2\sigma_t^2}).$$
(7)

In multi-dimensional situations, we have:

$$p(x(t)|x(0)) = \frac{1}{(2\pi\sigma_t^2)^{d/2}} \exp(-\frac{||x(t) - x(0)||^2}{2\sigma_t^2})$$

= $\mathcal{N}(x(t); x(0), \sigma_t^2 I),$ (8)

and the ODE can be written as:

$$dx(t) = -\dot{\sigma}_t \sigma_t \nabla_x \log p(x(t)) dt.$$
(9)

Therefore, given $x(0) \in \mathbb{R}^d$ as the initial state of ODE (9), according to Equation (8), we can obtain x(t) by computing:

$$x(t) = x(0) + \sigma_t \epsilon, \epsilon \sim \mathcal{N}(0, I).$$
(10)

If $\sigma_t \ge 0$ denotes a monotonic increasing function with $\sigma_t \gg 1$ as $t \to \infty$, when t is sufficiently large, we have:

$$x(t) = \sigma_t \epsilon \tag{11}$$

Therefore, given $x_1 \sim p_1$ and $x_2 \sim p_2$ as the initial states of the ODE (9), when T is sufficiently large, we have:

$$x_1(T) = x_1 + \int_0^T -\dot{\sigma}_t \sigma_t \nabla_{x_1} \log p_1(x(t)) dt = \sigma_t \epsilon,$$

$$x_2(T) = x_2 + \int_0^T -\dot{\sigma}_t \sigma_t \nabla_{x_2} \log p_2(x(t)) dt = \sigma_t \epsilon,$$
(12)

Therefore, we have:

$$x_{2} = x_{1} + \int_{0}^{T} -\dot{\sigma}_{t}\sigma_{t}\nabla_{x_{1}}\log p_{1}(x(t))dt - \int_{0}^{T} -\dot{\sigma}_{t}\sigma_{t}\nabla_{x_{2}}\log p_{2}(x(t))dt$$
$$= x_{1} + \int_{0}^{T} \dot{\sigma}_{t}\sigma_{t}\nabla_{x}\log \frac{p_{2}(x(t))}{p_{1}(x(t))}dt$$
$$\implies \qquad \frac{dx(t)}{dt} = \dot{\sigma}_{t}\sigma_{t}\nabla_{x}\log \frac{p_{2}(x(t))}{p_{1}(x(t))}$$
(13)

Utilizing the Equation (8), we obtain:

$$\frac{dx(t)}{dt} = \dot{\sigma}_t \sigma_t \nabla_x \log \frac{p_2(x(t))}{p_1(x(t))}
= \dot{\sigma}_t \sigma_t \nabla_x \log \frac{\mathcal{N}(x(t); x_2, \sigma_t^2 I)}{\mathcal{N}(x(t); x_1, \sigma_t^2 I)}
= \dot{\sigma}_t \sigma_t \frac{x_2 - x_1}{\sigma_t^2} = \frac{\dot{\sigma}_t}{\sigma_t} (x_2 - x_1)$$
(14)

This completes the proof.

-	-	_	

2 MORE EXPERIMENTAL RESULTS

2.1 256×256 Images Generated by a Unified ScoreFlow Trained on CelebA and MetFace

Figure 1: Generated Images on CelebA

Figure 2: Generated Images on MetFace

(a) CelebA \rightarrow MetFace

(b) MetFace \rightarrow CelebA

Figure 3: (a) The image translation from CelebA to MetFace, via solving $dx = [f_{\theta}(x(t), t, c = 1) - f_{\theta}(x(t), t, c = 0)]dt$. (b) The reverse translation from MetFace to CelebA.

$2.2-256\times256$ Images Generated by a Conditional ScoreFlow Trained on AFHQ

Figure 4: Generated Images on AFHQ