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Abstract

Decomposing model activations into interpretable
components is a key open problem in mechanis-
tic interpretability. Sparse autoencoders (SAEs)
are a popular method for decomposing the inter-
nal activations of trained transformers into sparse,
interpretable features, and have been applied to
MLP layers and the residual stream. In this work
we train SAEs on attention layer outputs and show
that also here SAEs find a sparse, interpretable
decomposition. We demonstrate this on trans-
formers from several model families and up to 2B
parameters. We perform a qualitative study of the
features computed by attention layers, and find
multiple families: long-range context, short-range
context and induction features. We qualitatively
study the role of every head in GPT-2 Small, and
estimate that at least 90% of the heads are polyse-
mantic, i.e. have multiple unrelated roles. Further,
we show that Sparse Autoencoders are a useful
tool that enable researchers to explain model be-
havior in greater detail than prior work. For exam-
ple, we explore the mystery of why models have
so many seemingly redundant induction heads,
use SAEs to motivate the hypothesis that some
are long-prefix whereas others are short-prefix,
and confirm this with more rigorous analysis. We
use our SAEs to analyze the computation per-
formed by the Indirect Object Identification cir-
cuit (Wang et al. (2023)), validating that the SAEs
find causally meaningful intermediate variables,
and deepening our understanding of the semantics
of the circuit. We open-source the trained SAEs
and a tool for exploring arbitrary prompts through
the lens of Attention Output SAEs.

*Equal contribution . Correspondence to: Connor Kissane <ck-
kissane@gmail.com>.

1 Introduction
Mechanistic interpretability aims to reverse engineer neu-
ral network computations into human-understandable algo-
rithms (Olah, 2022; Olah et al., 2020). A key sub-problem is
to decompose high dimensional activations into meaningful
concepts, or features. If successful at scale, this research
would enable us to identify and debug model errors (Hernan-
dez et al., 2022; Vig et al., 2020; Gandelsman et al., 2024;
Marks et al., 2024), control and steer model behavior (Rim-
sky et al., 2024; Turner et al., 2023; Zou et al., 2023), and
better predict out-of-distribution behavior (Mu and Andreas,
2020; Carter et al., 2019; Goh et al., 2021).

Prior work has successfully analyzed many individual model
components, such as neurons and attention heads. However,
both neurons (Wang et al., 2023) and attention heads (Gould
et al., 2023) are often polysemantic (Olah et al., 2017): they
appear to represent multiple unrelated concepts or perform
different functions depending on the input. Polysemanticity
makes it challenging to interpret the role of individual neu-
rons or attention heads in the model’s overall computation,
suggesting the need for alternative units of analysis.

Our paper builds on literature using Sparse Autoencoders
(SAEs) to extract interpretable feature dictionaries from the
residual stream (Cunningham et al., 2023; Yun et al., 2023)
and MLP activations (Bricken et al., 2023). While these
approaches have shown promise in disentangling activations
into interpretable features, attention layers have remained
difficult to interpret. In this work, we apply SAEs to recon-
struct attention layer outputs, and develop a novel technique
(weight-based head attribution) to associate learned fea-
tures with specific attention heads. This allows us to sidestep
challenges posed by polysemanticity (Section 2).

Since SAEs applied to LLM activations are already widely
used in the field, we do not see the application of SAEs to
attention outputs as our main contribution. Instead, we hope
our main contribution to be making a case for Attention
Output SAEs as a valuable research tool that others in the
mechanistic interpretability community should adopt. We
do this by rigorously showing that Attention Output SAEs
find sparse, interpretable reconstructions, that they easily
enable qualitative analyses to gain insight into the function-
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Figure 1: Overview. We train Sparse Autoencoders (SAEs) on zcat, the attention layer outputs pre-linear, concatenated
across all heads. The SAEs extract linear directions that correspond to concepts in the model, giving us insight into what
attention layers learn in practice. Further, we uncover what information was used to compute these features with direct
feature attribution (DFA, Section 2).

ing of attention layers, and that they are a valuable tool for
novel research questions such as why models have so many
seemingly redundant induction heads (Olsson et al., 2022)
or better understanding the semantics of the Indirect Object
Identification circuit (Wang et al., 2023).

In more detail, our main contributions are as follows:

1. We demonstrate that Sparse Autoencoders decompose
attention layer outputs into sparse, interpretable linear
combinations of feature vectors, giving us deeper in-
sight into what concepts attention layers learn up to 2B
parameter models (Section 3). We perform a qualita-
tive study of the features computed by attention layers,
and find multiple families: long-range context, short-
range context and induction features (Section 3.3).

2. We apply SAEs to systematically inspect every atten-
tion head in GPT-2 Small (Section 4.1), and extend this
analysis to make progress on the open question of why
there are be multiple, seemingly redundant induction
heads (Section 4.2). Our method identifies differences

between induction heads (Olsson et al., 2022) which
specialize in "long prefix induction" (Goldowsky-Dill
et al., 2023) vs "short prefix induction", demonstrating
the utility of these SAEs for interpretability research.

3. We show that Attention Output SAEs are useful for
circuit analysis (Section 4.3), by finding and inter-
preting causally relevant SAE features for the widely-
studied Indirect Object Identification circuit (Wang
et al., 2023), and resolving a way our prior understand-
ing was incomplete.

4. We introduce Recursive Direct Feature Attribution
(RDFA, Section 2) - a technique that exploits the lin-
ear structure of transformers to discover sparse feature
circuits through the attention layers. We release an ac-
companying tool for finding and visualizing the circuits
on arbitrary prompts.1

1The RDFA tool is available at: https://robertzk.
github.io/circuit-explorer
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2 Methodology
Reconstructing attention layer outputs: We closely fol-
low the setup from Bricken et al. (2023) to train Sparse
Autoencoders that reconstruct the attention layer outputs.
Specifically, we train our SAEs on the z ∈ Rdhead vec-
tors (Nanda and Bloom, 2022) concatenated across all
heads of some arbitrary layer (i.e. zcat ∈ Rdmodel where
dmodel = nheads · dhead). Note that z is the attention weighted
sum of value vectors v ∈ Rdhead before they are converted to
the attention output by a linear map (Figure 1), and should
not be confused with the final output of the attention layer.
We choose to concatenate each z vector in the layer, rather
than training an SAE per head, so that our method is robust
to features represented as a linear combination of multiple
head outputs (Olah et al., 2023).

Given an input activation zcat ∈ Rdmodel , Attention Output
SAEs compute a decomposition (using notation similar to
Marks et al. (2024)):

zcat = ẑcat + ε(zcat) =

dsae∑
i=0

fi(zcat)di + b + ε(zcat) (1)

where ẑcat is an approximate reconstruction and ε(zcat) is
an error term. We define di as unit-norm feature directions
with sparse coefficients fi(zcat) ≥ 0 as the corresponding
feature activations for zcat. We also include an SAE bias
term b.

As mentioned, we do not train SAEs on the output of the at-
tention layer WOzcat ∈ Rdmodel (where WO is the out projec-
tion weight matrix of the attention layer (Figure 1)). Since
WOzcat is a linear transformation of zcat, we expect to find
the same features. However, we deliberately trained our
SAE on zcat since we find that this allows us to attribute
which heads the decoder weights are from for each SAE
feature, as described below.

Weight-based head attribution: We develop a technique
specific to this setup: decoder weight attribution by head.
For each layer, our attention SAEs are trained to reconstruct
zcat, the concatenated outputs of each head. Thus each SAE
feature direction di is a 1D vector in Rnheads·dhead .

We can split each feature direction, di, into a concatena-
tion of nheads smaller vectors, each of shape dhead: di =
[d⊤

i,1,d⊤
i,2, . . . ,d⊤

i,nheads
]⊤ where di,j ∈ Rdhead for j =

1, 2, . . . , nheads.

We can intuitively think of each di,j as reconstructing the
part of feature direction that comes from head j. We then
compute the norm of each slice as a proxy for how strongly
each head writes this feature. Concretely, for any feature i,
we can compute the weights based attribution score to head

k as

hi,k =
∥di,k∥2∑nheads

j=1 ∥di,j∥2
(2)

For any head k, we can also sort all features by their head
attribution to get a sense of what features that head is most
responsible for outputting (see Section 4.1).

Direct feature attribution: We provide an activation
based attribution method to complement the weights based
attribution above. As attention layer outputs are a linear
function of attention head outputs (Elhage et al., 2021), we
can rewrite SAE feature activations in terms of the contribu-
tion from each head.

f pre
i (zcat) = w⊤

i zcat = w⊤
i,1z1+w⊤

i,2z2+· · ·+w⊤
i,nheads

znheads

(3)

where wi ∈ Rdmodel is the ith row of the encoder
weight matrix, wi,j ∈ Rdhead is the jth slice of wi, and
f pre
i (zcat) is the pre-ReLU feature activation for feature i

(i.e. ReLU(f pre
i (zcat)) := fi(zcat)). Note that we exclude

SAE bias terms for brevity.

We call this “direct feature attribution” (as it’s analogous to
direct logit attribution (Nanda, 2022c)), or "DFA" by head.
We apply the same idea to perform direct feature attribution
on the value vectors at each source position, since the z
vectors are a linear function of the value vectors if we freeze
attention patterns (Elhage et al., 2021; Chughtai et al., 2024).
We call this "DFA by source position".

3 Attention Output SAEs find Sparse,
Interpretable Reconstructions

In this section, we show that Attention Output SAE recon-
structions are sparse, faithful, and interpretable. We first ex-
plain the metrics we use to evaluate our SAEs (Section 3.1).
We then show that our SAEs find sparse, faithful, inter-
pretable reconstructions (Section 3.2). Finally we demon-
strate that our SAEs give us better insights into the concepts
that attention layers learn in practice by discovering three
attention feature families (Section 3.3).

3.1 Setup

To evaluate the sparsity and fidelity of our trained SAEs we
use two metrics from Bricken et al. (2023) (using notation
similar to Rajamanoharan et al. (2024)):

L0. The average number of features firing on a given
input, i.e. Ex∼D∥f(x)∥0.
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Table 1: Evaluations of sparsity, fidelity, and interpretability
for Attention Output SAEs trained across multiple models
and layers. Percentage of interpretable features were based
on 30 randomly sampled live features inspected per layer.

MODEL LAYER L0 % CE REC. % INTERP.

GEMMA-2B 6 90 75% 66%
GPT-2 SMALL 0 3 99% 97%
GPT-2 SMALL 1 20 78% 87%
GPT-2 SMALL 2 16 90% 97%
GPT-2 SMALL 3 15 84% 77%
GPT-2 SMALL 4 15 88% 97%
GPT-2 SMALL 5 20 85% 80%
GPT-2 SMALL 6 19 82% 77%
GPT-2 SMALL 7 19 83% 70%
GPT-2 SMALL 8 20 76% 60%
GPT-2 SMALL 9 21 83% 77%
GPT-2 SMALL 10 16 85% 80%
GPT-2 SMALL 11 8 89% 63%
GPT-2 SMALL ALL 80%

GELU-2L 1 12 87% 83%

Loss recovered. The average cross entropy loss of the
language model recovered with the SAE "spliced in" to the
forward pass, relative to a zero ablation baseline. More
concretely:

1− CE(x̂ ◦ f)− CE(Id)

CE(ζ)− CE(Id)
, (4)

where x̂◦ f is the autoencoder function, ζ : x → 0 is the zero
ablation function and Id: x → x is the identity function. Ac-
cording to this definition, an SAE that reconstructs its inputs
perfectly would get a loss recovered of 100%, whereas an
SAE that always outputs the zero vector as its reconstruction
would get a loss recovered of 0%.

Feature Interpretability Methodology. We use dash-
boards (Bricken et al., 2023; McDougall, 2024) showing
which dataset examples SAE features maximally activate
on to determine whether they are interpretable. These dash-
boards also show the top Direct Feature Attribution by
source position, weight-based head attribution for each head
(Section 2), approximate direct logit effects (Bricken et al.,
2023) as well as activating examples from randomly sam-
pled activation ranges, giving a holistic picture of the role
of the feature. See Appendix C for full details about this
methodology.

3.2 Evaluating Attention Output SAEs

We train and evaluate Attention Output SAEs across a vari-
ety of different models and layers. For GPT-2 Small (Rad-
ford et al., 2019), we notably evaluate an SAE for every
layer. We find that our SAEs are sparse (oftentimes with

< 20 average features firing), faithful (oftentimes > 80%
of cross entropy loss recovered relative to zero ablation)
and interpretable (oftentimes > 80% of live features inter-
pretable). In Table 1, we show per model and layer details2,
as well as the average over percentage interpretable across
all layers for GPT-2 Small. We note that these are relatively
small samples of features, and list confidence intervals for
percentage of interpretable features in Appendix C.1.

3.3 Exploring Feature Families

In this section we more qualitatively show that Attention
Output SAEs are interpretable by examining different fea-
ture families: groups of SAE features that share some com-
mon high level characteristic.

We first evaluate randomly sampled features from SAEs
across multiple models and layers (as described in Sec-
tion 3.1) and report the percentage of live features that are
interpretable in Table 1. We notice that in all cases, the
majority of live features are interpretable, often >80%.

We now use our understanding of these extracted features to
share deeper insights into the concepts attention layers learn.
Attention Output SAEs enable us to taxonomize a large frac-
tion of what these layers are doing based on feature families,
giving us better intuitions about how transformers use at-
tention layers in practice. Throughout our SAEs trained on
multiple models, we repeatedly find three common feature
families: induction features (e.g. "board" token is next by
induction), local context features (e.g. current sentence is
a question, Figure 1), and high level context features (e.g.
current text is about pets). All of these features involve
moving prior information with the context, consistent with
the high level conceptualization of the attention mechanism
from Elhage et al. (2021). We present these for illustrative
purposes and do not expect these to nearly constitute a com-
plete set of feature families. We also share additional feature
families discovered in GPT-2 Small in Appendix O.

To more rigorously understand these feature families, we
performed a case study for each of these features (similar
to Bricken et al. (2023)). For brevity, we highlight a case
study of an induction feature below and leave the remaining
to Appendix G and H.

Induction features. Our analysis revealed multiple "in-
duction features" across different models studied. As we
are not aware of any induction features extracted by MLP
SAEs in prior work, we hypothesize that induction features
are unique to attention (Bricken et al., 2023). In what fol-
lows, we showcase a “‘board’ is next by induction” feature

2We release weights for every SAE, corresponding feature
dashboards, and an interactive tool for exploring several attention
SAEs throughout a model in Appendix A
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Figure 2: Specificity plot (Bricken et al., 2023) (a) which
compares the distribution of the board induction feature acti-
vations to the activation of our proxy. Note red is stacked on
top of blue, where blue represents examples that our proxy
identified as board induction. We notice high specificity
above the weakest feature activations.

from our L1 GELU-2L (Nanda, 2022b) SAE. However, we
note that “board induction” is just one example from hun-
dreds of “<token> is next by induction” features discovered
by our analysis (see Appendix I). We also detail the fea-
ture’s upstream computations and downstream effects in
Appendix F.

The ‘board’ induction feature activates on the second in-
stance of <token> in prompts of the form “<token> board . .
. <token>”. To demonstrate ‘board induction’ is a genuinely
monosemantic feature, we provide evidence that the feature
is both: (i) specific and (ii) sensitive to this context (Bricken
et al., 2023).

Specificity was established through creation of a proxy that
checks for cases of ‘board’ induction. Thereafter, we com-
pared the activation of our proxy to the activation of the
feature. We found that the upper parts of the activation
spectrum clearly responded, with high specificity, to ‘board’
induction (Figure 2 and Figure 3). Although some false
positives were observed in the lower activation ranges (as
in Bricken et al. (2023); Templeton et al. (2024)), we be-
lieve there are mundane reasons to expect such results (see
Appendix E).

We now move onto sensitivity. Our activation sensitivity
analysis found 68 false negatives in a dataset of 1 million
tokens, and all false negatives were manually checked. Al-
though these examples satisfy the ‘board’ induction pattern,
it is clear that ‘board’ should not be predicted. Often, this
was because there were even stronger cases of induction for
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Figure 3: The expected value plot (Bricken et al., 2023)
shows the distribution of feature activations weighted by
activation level, compared to the activation of the proxy.
Note red is stacked on top of blue. We notice high specificity
in the middle-high activation ranges. Note red is stacked on
top of blue, where blue represents examples that our proxy
identified as board induction.

another token (Appendix D).

4 Interpretability investigations using
Attention Output SAEs

In this section we demonstrate that Attention SAEs are use-
ful as general purpose interpretability tools, allowing for
novel insights about the role of attention layers in the model.
We first develop a technique that allows us to systematically
interpret every attention head in a model (Section 4.1), dis-
covering new behaviors and gaining high level insight into
the phenomena of attention head polysemanticity (Gould
et al., 2023). We then apply our SAEs to make progress on
the open question of why models have many seemingly re-
dundant induction heads (Olsson et al., 2022), finding induc-
tion heads with subtly different behaviors: some primarily
perform induction where there is a long prefix (Goldowsky-
Dill et al., 2023) whereas others generally perform short
prefix induction (Section 4.2). Finally, we apply Attention
Output SAEs to circuit analysis (Section 4.3), unveiling
novel insights about the Indirect Object Identification cir-
cuit (Wang et al., 2023) through the SAE lens, and finding
causally relevant SAE features in the process.

4.1 Interpreting all heads in GPT-2 Small

In this section, we use our weight-based head attribution
technique (see Section 2) to systematically interpret every
attention head in GPT-2 Small (Radford et al., 2019). As
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in Section 2, we apply Equation 2 to compute the weights
based attribution score hi,k to each head k and identify the
top ten features {dir}10r=1 with highest attribution score to k.
Although Attention Output SAE features are defined relative
to an entire attention layer, this identifies the features most
salient to a given head with minimal contributions from
other heads.

Using the feature interpretability methodology from Sec-
tion 3.1, we manually inspect these features for all 144
attention heads in GPT-2 Small. Broadly, we observe that
features become more abstract in middle-layer heads and
then taper off in abstraction at late layers:

Early heads. Layers 0-3 exhibit primarily syntactic fea-
tures (single-token features, bigram features) and fire sec-
ondarily on specific verbs and entity fragments. Some long
and short range context tracking features are also present.

Middle heads. Layers 4-9 express increasingly more
complex concept feature groups spanning grammatical and
semantic constructs. Examples include heads that express
primarily families of related active verbs, prescriptive and
active assertions, and some entity characterizations. Late-
middle heads show feature groups on grammatical com-
pound phrases and specific concepts, such as reasoning and
justification related phrases and time and distance relation-
ships.

Late heads. Layers 10-11 continue to express some com-
plex concepts such as counterfactual and timing/tense as-
sertions, with the last layer primarily exhibiting syntactic
features for grammatical adjustments and some bigram com-
pletions.

We identify many existing known motifs (including induc-
tion heads (Olsson et al., 2022; Kissane, 2023), previous
token heads (Voita et al., 2019; Kissane, 2023), successor
heads (Gould et al., 2023) and duplicate token heads (Wang
et al., 2023; Kissane, 2023)) in addition to new motifs (e.g.
preposition mover heads). More details on each layer and
head are available in Appendix R. Our method also suggests
that over 90% of attention heads in GPT-2 Small are pol-
ysemantic, as we find features corresponding to multiple
unrelated tasks. In Appendix J we provide more detail, in-
cluding an example polysemantic head in GPT-2 Small. We
note that there are some limitations to this methodology, as
discussed in Appendix R.1.

4.2 Long-prefix induction head

In this section we apply Attention Output SAEs to make
progress on a long-standing open question: why do models
have so many seemingly redundant induction heads (Olsson
et al., 2022)? We use our weight-based head attribution

technique (see Section 4.1) to inspect the top SAE features
attributed to two different induction heads and find one
which specializes in “long prefix induction” (Goldowsky-
Dill et al., 2023), while the other primarily does “short prefix
induction”.

As a case study, we focus on GPT-2 Small (Radford et al.,
2019), which has two induction heads in layer 5 (heads 5.1
and 5.5) (Wang et al., 2023). To distinguish between these
two heads, we qualitatively inspect the top ten SAE features
attributed to both heads (as in Section 4.1) and look for
patterns. Glancing at the top features attributed to head 5.1
shows “long induction” features, defined as features that
activate on examples of induction with at least two repeated
prefix matches (e.g. completing “... ABC ... AB” with C).

We now confirm this hypothesis with independent lines
of evidence that don’t require SAEs. We first generate
synthetic induction datasets with random repeated tokens
of varying prefix lengths. For each dataset, we compute
the induction score, defined as the average attention to the
token which induction would suggest comes next, for both
heads. We confirm that while both induction scores rise
as we increase prefix length, head 5.1 has a much more
dramatic phase change as we transition to long prefixes (i.e.
≥ 2 ) (Figure 4).
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Figure 4: On synthetic datasets we see that 5.1’s induction
score (Olsson et al., 2022) sharply increases from less than
0.3 to over 0.7 as we transition to long prefix lengths, while
5.5 already has a much higher induction score for short
prefixes.

We also find and intervene on real examples of long prefix
induction from the training distribution, corrupting them
to only be one prefix by replacing the 2nd left repeated
token (i.e ’A’ in ABC ... AB -> C) with a different, random
token. We find that this intervention effectively causes head
5.1 to stop doing induction, as its average induction score
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falls from 0.55 to 0.05. Head 5.5, meanwhile, maintains an
average induction score of 0.43 (Figure 5). See Appendix P
for additional lines of evidence.
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Figure 5: Intervening on examples long prefix induction
causes 5.1 to essentially stop attending to that token, while
5.5 continues to show an induction attention pattern.

4.3 Analyzing the IOI circuit with Attention Output
SAEs

We now show that Attention Output SAEs are useful tools
for circuit analysis. In the process, we also go beyond early
work to find evidence that our SAEs find causally relevant
intermediate variables. As a case study, we apply our SAEs
to the widely studied Indirect Object Identification circuit
(Wang et al., 2023), and find that our SAEs improve upon
attention head interpretability based techniques from prior
work.

The Indirect Object Identification (IOI) task (Wang et al.,
2023) is to complete sentences like “After John and Mary
went to the store, John gave a bottle of milk to” with “ Mary”
rather than “ John”. We refer to the repeated name (John)
as S (the subject) and the non-repeated name (Mary) as IO
(the indirect object). For each choice of the IO and S names,
there are two prompt templates: one where the IO name
comes first (the ’ABBA’ template) and one where it comes
second (the ’BABA’ template).

Wang et al. (2023) analyzed this circuit by localizing and
interpreting several classes of attention heads. They argue
that the circuit implements the following algorithm:

1. Induction heads and Duplicate token heads identify
that S is duplicated. They write information to indicate
that this token is duplicated, as well as “positional
signal” pointing to the S1 token.

2. S-inhibition heads route this information from S2 to
END via V-composition (Elhage et al., 2021). They
output both token and positional signals that cause the

Name mover heads to attend less to S1 (and thus more
to IO) via Q-composition (Elhage et al., 2021).

3. Name mover heads attend strongly to the IO position
and copy, boosting the logits of the IO token that they
attend to.

Although Wang et al. (2023) find that “positional signal”
originating from the induction heads is a key aspect of this
circuit, they don’t figure out the specifics of what this signal
is, and ultimately leave this mystery as one of the “most in-
teresting future directions” of their work. Attention Output
SAEs immediately reveal the positional signal through the
feature lens. We find that rather than absolute or relative
position between S tokens, the positional signal is actually
whether the duplicate name comes after the “ and” token
that connects “John and Mary”.

Identifying the positional features: To generate this hy-
pothesis, we localized and interpreted causally relevant SAE
features from the outputs of the attention layers that contain
induction heads (Layers 5 and 6) with zero ablations. For
now we focus on our Layer 5 SAE, and leave other layers
to Appendix M. In Appendix K we also evaluate that, for
these layers, the SAE reconstructions are faithful on the IOI
distribution, and thus viable for circuit analysis.

During each forward pass, we replace the L5 attention layer
output activations with a sparse linear combination of SAE
feature directions plus an error term, as in (1). We then zero
ablate each feature, one at a time, and record the resulting
change in logit difference between the IO and S tokens.
This localizes three features that cause a notable decrease in
average logit difference. See Appendix L for more details.

Interpreting the “positional” features: We then inter-
preted these causally relevant features. Shallow investiga-
tions of feature dashboards (see Section 3.1, Appendix A)
suggests that all three of these fire on duplicate tokens, that
were previously before or after “ and” tokens (e.g. “I am
a duplicate token that previously followed ‘ and’”). These
feature interpretations motivated the hypothesis that the “po-
sitional signal” in IOI is solely determined by the position
of the name relative to (i.e. before or after) the ‘ and’ token.

Confirming the hypothesis: We now verify this hypothe-
sis without reference to SAEs. We design a noising (defined
in Heimersheim and Nanda (2024)) experiment that per-
turbs three properties of IOI prompts simultaneously, while
preserving whether the duplicate name is before or after
the ‘ and’ token. Concretely, our counterfactual distribution
makes the following changes:

1. Replace each name with another random name (remov-
ing "token signal" (Wang et al., 2023))

2. Prepend filler text (e.g. "It was a nice day") (corrupting
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Figure 6: Results from two noising experiments on induc-
tion layers’ attention outputs at S2 position. Noising from a
distribution that just changes " and" to " alongside" degrades
performance, while 3 simultaneous perturbations that main-
tains whether the duplicate name is after the ‘ and’ token
preserve 93% of average logit difference.

absolute positions of all names)
3. Add filler text between S1 and S2 (corrupting the rela-

tive position between S tokens)

Despite being almost entirely different prompts, noising the
attention layer outputs for both induction layers [5, 6] at the
S2 position still recovers 93% of average logit diff relative
to zero ablating the outputs at this position (Figure 6).

One alternate hypothesis is that the positional signal is
a more general emergent positional embedding (Nanda,
2023a) (e.g. “I am the second name in the sentence”) that
doesn’t actually depend on the “ and” token. We falsify this
by noising attention outputs at layers [5,6] S2 position from
a corrupted distribution which only changes “ and” to the
token “ alongside”. Note that this only corrupts one piece of
information (the ‘ and’) compared to the three corruptions
above, yet we only recover 43% of logit difference relative
to zero ablation (Figure 6).

5 Related Work
Mechanistic Interpretability. Mechanistic interpretabil-
ity research aims to reverse engineer neural network compu-
tations into human-understandable algorithms (Olah, 2022;
Olah et al., 2020). Prior mechanistic interpretability work
has identified computation subgraphs of models that imple-
ment tasks (Wang et al., 2023; Hanna et al., 2023; Lieberum
et al., 2023), found interpretable, reoccurring model com-
ponents over models of multiple sizes (Olsson et al., 2022;
Gould et al., 2023), and reverse-engineered how toy tasks

are carried out in small transformers (Nanda et al., 2023a;
Chughtai et al., 2023). Some have successfully interpreted
attention heads (McDougall et al., 2023; Olsson et al., 2022;
Wang et al., 2023), though the issue has been raised that
heads are often polysemantic (Gould et al., 2023; Janiak
et al., 2023), and may not be the correct unit of analysis
(Jermyn et al., 2023). Our technique goes beyond prior work
by decomposing the outputs of the entire attention layer into
finer-grained linear features, without assuming that heads
are the right unit of analysis.

Induction heads (Elhage et al., 2021) have been studied ex-
tensively by Olsson et al. (2022), who first observed that
LLMs had many, seemingly redundant induction heads.
Goldowsky-Dill et al. (2023) investigated two induction
heads in a 2-layer attention-only model, and discovered
the "long induction" (long-prefix induction) variant in both
heads. In contrast, we find that two different induction
heads specialize in long-prefix and short-prefix induction
respectively in GPT-2 Small.

Classical Dictionary Learning. Elad (2010) explores
how both discrete and continuous representations can in-
volve more representations than basis vectors, and sur-
veys various techniques for extracting and reconstructing
these representations. Traditional sparse coding algorithms
(Olshausen and Field, 1997; Aharon et al., 2006) employ
expectation-maximization, while contemporary approaches
(Gregor and LeCun, 2010; Barello et al.) based on gradient
descent and autoencoders have built upon these ideas.

Sparse Autoencoders. Motivated by the hypothesized
phenomenon of superposition (Elhage et al., 2022), recent
work has applied dictionary learning, specifically sparse
autoencoders (Ng, 2011), to LMs in order to interpret their
activations (Subramanian et al., 2017; Sharkey et al., 2022;
Cunningham et al., 2023; Yun et al., 2023; Bricken et al.,
2023; Templeton et al., 2024). Our feature interpretabil-
ity methodology was inspired by Bricken et al. (2023),
though we additionally study how features are computed up-
stream with direct feature attribution (Nanda et al., 2023b;c).
Progress is rapid, with the following parallel work occurring
within the last two months: Rajamanoharan et al. (2024)
took a similar approach to our work and scaled attention
output SAEs up to 7B models. Marks et al. (2024) also suc-
cessfully used multiple types of SAEs including attention
for finer-grained circuit discovery with gradient based patch-
ing techniques. In contrast, we use both causal interventions
and DFA, exploiting the linear structure of the attention
mechanism.
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6 Conclusion
In this work, we have introduced Attention Output SAEs,
and demonstrated their effectiveness in decomposing atten-
tion layer outputs into sparse, interpretable features (Sec-
tion 3). We have also highlighted the promise of Attention
Output SAEs as a general purpose interpretability tool (Sec-
tion 4). Our analysis identified novel and extant attention
head motifs (Section 4.1), made progress on our understand-
ing of apparently ‘redundant’ induction heads (Section 4.2),
and improved upon attention head circuit interpretability
techniques from prior work (Section 4.3). We have also
introduced a more general technique, recursive direct fea-
ture attribution, to trace models’ computation on arbitrary
prompts and released an accompanying visualization tool
(Section 2).

6.1 Limitations

Our work focuses on understanding attention outputs, which
we consider to be a valuable contribution. However, we
leave much of the transformer unexplained, such as the QK
circuits (Elhage et al., 2021) by which attention patterns are
computed. Further, though we scale up to a 2B model, our
work was mostly performed on the 100M parameter GPT-2
Small model. Exploring Attention Output SAEs on larger
models in depth is thus a natural direction of future work.

We also highlight some methodological limitations. While
we try to validate our conclusions with multiple independent
lines of evidence, our research often relies on qualitative
investigations and subjective human judgment. Additionally,
like all sparse autoencoder research, our work depends on
both the assumptions made by the SAE architecture, and
the quality of the trained SAEs. SAEs represent the sparse,
linear components of models’ computation, and hence may
provide an incomplete picture of how to interpret attention
layers (Rajamanoharan et al., 2024). Our SAEs achieve
reasonable reconstruction accuracy (Table 1), though they
are far from perfect.
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A Open Source SAE Weights and Feature Dashboards
Here we provide weights for all trained SAEs (Table 1) as well as the interface for feature dashboards that we used to evaluate
feature interpretability discussed in Section 3.3. Weights are provided at an anonymous link: https://huggingface.
co/attention-saes-paper/attention-saes-paper-weights

For GPT-2 Small (Radford et al., 2019), you can view feature dashboards for 30 randomly sampled feature per each
layer here: https://attention-saes-paper.github.io/attention-saes-paper-dashboards/
attn-sae-gpt2-small-viz/.

For our GELU-2L (Nanda, 2022b) SAE trained on Layer 1 (the second layer), you can view dash-
boards for 50 randomly sampled features here: https://attention-saes-paper.github.io/
attention-saes-paper-dashboards/attn-sae-gelu-2l-viz/.

To view the top 10 features attributed to all 144 attention heads in GPT-2 Small (as in Section 4.1) see here: https://
attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/.
We will release dashboards for the Gemma-2B (Gemma Team et al., 2024) SAE upon publication.

You can also view similar dashboards for any feature from all of our GPT-2 Small SAEs on neuronpedia (Lin and Bloom,
2023) here: https://www.neuronpedia.org/gpt2-small/att-kk.

Further, we introduce an interactive tool for exploring several attention SAEs throughout a model at https://
attention-saes-paper.github.io/attention-saes-paper-dashboards/circuit-explorer/
and discuss this more fully in Appendix Q. Code will be released upon publication.

B SAE Training: hyperparameters and other details
Important details of SAE training include:

• SAE Widths. Our GELU-2L (Nanda, 2022b) and Gemma-2B (Gemma Team et al., 2024) SAEs have width 16384.
All of our GPT-2 Small SAEs have width 24576, with the exception of layers 5 and 7, which have width 49152.

• Loss Function. We trained our Gemma-2B SAE with a different loss function than the SAEs from other models. For
Gemma-2B we closely follow the approach from Olah et al. (2024), while for GELU-2L and GPT-2 Small, we closely
follow the approach from Bricken et al. (2023).

• Training Data. We use activations from hundreds of millions to billions of activations from LM forward
passes as input data to the SAE. Following Nanda (2023b), we use a shuffled buffer of these activations, so
that optimization steps don’t use data from highly correlated activations. For GELU-2L we use a mixture of
80% from the C4 Corpus (Raffel et al., 2023) and 20% code (https://huggingface.co/datasets/
NeelNanda/c4-code-tokenized-2b). For GPT-2 Small we use OpenWebText (https://huggingface.
co/datasets/Skylion007/openwebtext). For Gemma-2B we use https://huggingface.co/
datasets/HuggingFaceFW/fineweb. The input activations have sequence length of 128 tokens for all training
runs.

• Resampling. For our GELU-2L and GPT-2 Small SAEs we used resampling, a technique which at a high-level
reinitializes features that activate extremely rarely on SAE inputs periodically throughout training. We mostly follow
the approach described in the ‘Neuron Resampling’ appendix of Bricken et al. (2023), except we reapply learning rate
warm-up after each resampling event, reducing learning rate to 0.1x the ordinary value, and, increasing it with a cosine
schedule back to the ordinary value over the next 1000 training steps. Note we don’t do this for Gemma-2B.

• Optimizer hyperparameters. For the GELU-2L and GPT-2 Small SAEs we use the Adam optimizer with β2 = 0.99
and β1 = 0.9 and a learning rate of roughly 0.001. For Gemma-2B SAEs we also use the Adam optimizer with
β2 = 0.999 and β1 = 0.9 and a learning rate of 0.00005.
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B.1 Compute resources used for training

Our GELU-2L SAE was trained on a single A6000 instance available from Vast AI3 overnight. Our GPT-2 Small SAEs
were each trained overnight on a single A100 instance also available from Vast AI. Our Gemma-2B (Gemma Team et al.,
2024) SAE was also trained overnight on a single A100 instance from Paperspace4.

The analyses described in the paper were performed on either an A6000 or A100 instance depending on memory bandwidth
requirements. In no case were multiple machines or distributed tensors required for training or obtaining our experimental
results. Most experiments take seconds or minutes, and all can be performed in under an hour.

The RDFA tool described in Appendix Q is hosted on an A6000 instance available from https://www.paperspace.
com/deployments.

C Methodology for feature interpretability
To evaluate interpretability for Attention Output SAE features, we manually rate the interpretability of a set of randomly
sampled SAE features. For each SAE, the two raters (paper authors) collectively inspected 30 randomly sampled features.5.

To assess a feature, the rater determined if there was a clear explanation for the feature’s behavior. The rater viewed
the top 20 maximum activating dataset examples for that feature, approximate direct logit effects (i.e. WUWOdi), and
randomly sampled activating examples from lower activation ranges (as in Bricken et al. (2023)). For each max activating
dataset example, we also show the corresponding source tokens with the top direct feature attribution by source position
(Section 2), and additionally show the weight based head attribution for all heads in that layer (Section 2). The raters used an
interface based on an open source SAE visualizer library (McDougall, 2024) modified to support attention layer outputs (see
Appendix A). Note that we filter out dead features (features that don’t activate at least once in 100,000 inputs, sometimes
also referred to as "ultra low frequency cluster") from our interpretability analysis. These features were excluded from the
denominator in reporting percentage interpretable in Table 1.

The raters had a relatively high bar for labeling a feature as interpretable (e.g. noticing a clear pattern with all 20
max activating dataset examples, as well as throughout the randomly sampled activations). However, we note that this
methodology heavily relies on subjective human judgement, and thus there is always room for error. We expect both false
positives (e.g. the raters are overconfident in their interpretations, despite the feature actually being polysemantic) and false
negatives (e.g. the raters might miss more abstract features that are hard to spot with our feature dashboards).

C.1 Confidence intervals for percentage of interpretable features

In this section, we provide 95% confidence intervals for the percentage of features that are reported as interpretable in
Table 1. For each layer, we treat the number of features that are interpretable as a binomial random variable with proportion
of success p (percentage interpretable) sampled over n trials (number of features inspected).

The Clopper-Pearson interval S≤ ∩ S≥ provides an exact method for calculating binomial confidence intervals (Clopper and
Pearson, 1934), with:

S≤ :=
{
p
∣∣∣P [Bin(n; p) ≤ x] >

α

2

}
(5)

and

S≥ :=
{
p
∣∣∣P [Bin(n; p) ≥ x] >

α

2

}
(6)

where α is the confidence level and Bin(n; p) is the binomial distribution. Due to a relationship between the binomial
distribution and the beta distribution, the Clopper–Pearson interval can be calculated (Thulin, 2014) as:

3https://vast.ai/
4https://www.paperspace.com/
5For GELU-2L we evaluated 50 randomly sampled features and didn’t use DFA by source position
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Figure 7: Two examples of false negatives for the board induction feature. The red highlight indicates that our proxy is
active, but the board feature is not.

B
(α
2
;x, n− x+ 1

)
< p < B

(
1− α

2
;x+ 1, n− x

)
(7)

where x = np is the number of successes and B(p; v, w) is the pth quantile of a beta distribution with shape v and w. We
present 95% confidence intervals (α = 0.025) for Table 1 in Table 2.

Table 2: Confidence intervals for interpretability of Atten-
tion Output SAEs trained across multiple models and layers.

Model Layer % Interp. 95% CI

Gemma-2B 6 66% [47.2%, 82.7%]
GPT-2 Small 0 97% [82.2%, 99.9%]
GPT-2 Small 1 87% [59.5%, 98.3%]
GPT-2 Small 2 95% [77.2%, 99.8%]
GPT-2 Small 3 75% [55.1%, 89.3%]
GPT-2 Small 4 100% [88.0%, 100.0%]
GPT-2 Small 5 82% [56.6%, 96.2%]
GPT-2 Small 6 75% [50.9%, 91.3%]
GPT-2 Small 7 70% [44.0%, 89.7%]
GPT-2 Small 8 64% [40.7%, 82.8%]
GPT-2 Small 9 85% [62.1%, 96.8%]
GPT-2 Small 10 81% [58.1%, 94.6%]

GELU-2L 1 82% [65.7%, 92.3%]

D Induction feature deep dive: Analyzing false negatives
In this section we display in Figure 7 two random examples of false negatives identified during the sensitivity analysis
from Section 3.3. To recap, these are examples where our proxy identified a case of board induction (i.e. "<token> board
... <token>), but the board induction feature did not fire. We generally notice that while they technically satisfy the board
induction pattern, "board" should clearly not be predicted as the next token. This is often because there are even stronger
cases of induction for another token (Appendix D and Appendix D).

E Induction feature deep dive: Explaining polysemanticity at lower activation ranges
In Section 3.3 we noticed that while the upper parts of the activation spectrum clearly respond with high specificity to ‘board’
induction, there were also many false positives in the lower activation ranges (as in Bricken et al. (2023)), we believe these
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are expected for mundane reasons:

• Imperfect proxy: Manually staring at the false positives in the medium activation ranges reveals examples of fuzzy
‘board’ induction that weren’t identified by our simple proxy.

• Undersized dictionary: Our GELU-2L SAE has a dictionary of roughly 16,000 features. We expect our model to have
many more “true features” (note there are 50k tokens in the vocabulary). Thus unrecovered features may show up as
linear combinations of many of our learned features.

• Superposition: The superposition hypothesis (Elhage et al., 2022) suggests that models represent sparse features as
non-orthogonal directions, causing interference. If true, we should expect some polysemanticity at the lower activation
ranges by default.

We also agree with the following intuition from Bricken et al. (2023): “large feature activations have larger impacts on
model predictions, so getting their interpretation right matters most”. Thus we reproduced their expected value plots to
demonstrate that most of the magnitude of activation provided by this feature comes from ‘board’ induction examples in
Figure 3.

F Induction feature deep dive: upstream computation and downstream effects
In Section 3.3 we found a monosemantic SAE feature that represents that the "board" token is next by induction. In this
section we show that we can also understand its causal downstream effects, as well as how it’s computed by upstream
components.

We first demonstrate that the presence of this feature has an interpretable causal effect on the outputs: we find that this
feature is primarily used to directly predict the "board" token. We start by analyzing the approximate direct logit effect:
WUWOdi where di is this feature direction. We clearly see that the “board” token is the top logit in Figure 8.

Figure 8: Direct logit effects of individual features: We show the top and bottom 20 affected output tokens from "’board’ is
next by induction" (a), "in a question starting with ’Which’" (b), and "in text about pets" (c) features.

This interpretation is also corroborated by feature ablation experiments. Across all activating dataset examples over 10
million tokens, we splice in our Attention Output SAE at Layer 1 of the model (the last layer of GELU-2L), ablate the board
induction feature, and record the effect on loss. We find that 82% of total loss increase from ablating this feature is explained
by examples where board is the correct next token.

Finally, we demonstrate that we can understand how this feature is computed by upstream components. We first show that
this feature is almost entirely produced by attention head 1.6, an induction head (Nanda, 2022a). Over 10 million tokens, we
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compute the direct feature attribution by head (see (3)) for this feature. We find that head 1.6 stands out with 94% fraction
of variance explained.

Going further upstream, we now show that 1.6 is copying prior "board" tokens to activate this feature. We apply DFA by
source position (see Section 2) for all feature activations over 10 million tokens and record aggregate scores for each source
token. We find that the majority of variance is explained by “board” source tokens. This effect is stronger if we filter for
feature activations above a certain threshold, reaching over 99.9% at a threshold of 5, mirroring results from Bricken et al.
(2023) that there’s more polysemanticity in lower ranges. We note that this "copying" is consistent with our understanding
of the induction (Olsson et al., 2022) algorithm.

G Local context feature deep dive: In question starting with "Which"
We now consider an “In questions starting with ‘Which’” feature. We categorized this as one of many “local context”
features: a feature that is active in some context, but often only for a short time, and which has some clear ending marker
(e.g. a question mark, closing parentheses, etc).

Unlike the induction feature (Section 3.3), we also find that it’s computed by multiple attention heads. The fact that our
Attention SAEs extracted a feature relying on multiple heads, and made progress towards understanding it, suggests that we
may be able to use Attention Output SAEs as a tool to tackle the hypothesized phenomenon of attention head superposition
(Olah et al., 2023).

We first show that our interpretation is faithful over the entire distribution. We define a crude proxy that checks for the first
10 tokens after "Which" tokens, stopping early at punctuation. Similar to the induction feature, we find that this feature
activates with high specificity to this context in the upper activation ranges, although there is polysemanticity for lower
activations (Figure 9).
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Figure 9: Specificity plots for "in question starting with ’Which’" (left) and "In text about pets" (right) features

We now show that the feature is computed by multiple heads in layer 1. Over 10 million tokens, we compute the direct
feature attribution by head (3) for this feature. We find that head 3 heads have non-trivial (>10%) fraction of variance
explained (Figure 10).

Despite this, we still get traction on understanding this feature, motivating attention SAEs as a valuable tool to deal with
attention head superposition. We first understand the causal downstream effects of this feature. We find that it primarily
"closes the question", by directly boosting the logits of question mark tokens (Figure 8).

We also show that the heads in aggregate are moving information from prior "Which" tokens to compute this feature. We
apply DFA by source position (aggregated across all heads) (see Section 2) for all feature activations over 10 million tokens
and record aggregate scores for each source token. We find that “Which” source tokens explain >50% the variance, and over
95% of the variance if we filter for feature activations greater than 2, suggesting that the heads are moving this "Which" to
compute the feature.
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Figure 10: Fraction of variance of DFA by head explained for the "In a question starting with ’Which’" feature over 10
million tokens. We notice that this feature is distributed across multiple heads

H High level context feature deep dive: In text related to pets
We now consider an “in a text related to pets” feature. This is one example from a family of ‘high level context features’
extracted by our SAE. High level context features often activate for almost the entire context, and don’t have a clear ending
marker (like a question mark). To us they appear qualitatively different from the local context features, like “in a question
starting with ‘Which’”, which just activate for e.g. all tokens in a sentence.

We first show our interpretation of this feature is faithful. We define a proxy that checks for all tokens that occur after any
token from a handcrafted set of pet related tokens (’dog’, ’ pet’, ‘ canine’, etc), and compare the activations of our feature to
the proxy. Though the proxy is crude, we find that this feature activates with high specificity in this context in Figure 9.

We show that we can understand the downstream effects of this feature. The feature directly boosts logits of pet related
tokens (’dog’, ’ pet’, ‘ canine’, etc) in Figure 8.

In this case study we highlight that we were able to use techniques like direct feature attribution to learn that high level
context features are natural to implement with a single attention head: the head can just look back for past “pet related
tokens” (‘dog’, ‘ pet’, ‘ canine’, ‘ veterinary’, etc) , and move these to compute the feature.

We find that the top attention head is using the pet source tokens to compute the feature. We track the direct feature
contributions from source tokens in a handcrafted set of pet related tokens (’dog’, ’pet’, etc) and compute the fraction of
variance explained from these source tokens. We confirm that “pet” source tokens explain the majority of the variance,
especially when filtering by higher activations, with over 90% fraction of variance explained for activations greater than 2.

18



Interpreting Attention Layer Outputs with Sparse Autoencoders

I Automatic Induction Feature Detection
In this section we automatically detect and quantify a large “<token> is next by induction” feature family from our GELU-2L
SAE trained on layer 1. This represents roughly 5% of the non-dead features in the SAE. This is notable, as if there are
many “one feature per vocab token” families like this, we may need extremely wide SAEs for larger models.

Based on the findings of the “‘board’ is next by induction” feature (see Section 3.3), we surmised that there might exist more
features with this property for different suffixes. Guided by this motivation, we were able to find 586 additional features
that exhibited induction-like properties from our GELU-2L SAE. We intend this as a crude proof of concept for automated
SAE feature family detection, and to show that there are many induction-like features. We think our method could be made
significantly more rigorous with more time, and that it likely has both many false positives and false negatives.

While investigating the “board” feature, we confirmed that attention head 1.6 was an induction head. For each feature
dashboard, we also generated a decoder weights distribution that gave an approximation of how much each head is attributed
to a given feature. We then chose the following heuristic to identify additional features that exhibited induction-like
properties:

Induction Selection Heuristic. For each feature, we compute the weight based head attribution score (2) to head 1.6. We
consider features that have a head attribution score of at least 0.6 as induction feature candidates.

Intuitively, given the normalized norms sum to 1, we expect features satisfying this property to primarily be responsible
for producing induction behavior for specific sets of suffix tokens. In our case, we found 586 features that pass the above
induction heuristic and are probably related to induction. We note that this is a conservative heuristic, as head 1.4 gets a
partial score on the random tokens induction metric, and other heads may also play an induction-like role on some tokens,
yet fail the random tokens test (Olsson et al., 2022).

We verified that these are indeed behaviorally related to induction using the following behavioral heuristic:

Induction Behavior Heuristic. For each feature, consider the token corresponding to the max positive boosted logit through
the direct readout from WUWOdi. For a random sample of 200 examples that contain that token, identify which proportion
satisfy:

1. For any given instance of the token corresponding to the max positive boosted logit for that feature, the feature does
not fire on the first prefix of that token (i.e., the first instance of an “AB” pattern).

2. For any subsequent instances of the token corresponding to the max positive boosted logit for that feature occurring in
the example, the feature activates on the preceding token (i.e. subsequent instances of an “AB” pattern).

We call the proportion of times the feature activates when it is expected to activate (on instances of A following the first
instance of an AB pattern) the induction pass rate for the feature. The heuristic passes if the induction pass rate is > 60%.

With the “board” feature, we saw that the token with the top positive logit boost passed this induction behavior heuristic:
for almost every example and each bigram that ends with “board”, the first such bigram did not activate the feature but all
subsequent repeated instances did.

We ran this heuristic on the 586 features identified by the Induction Selection Heuristic against 500 features that have
attribution < 10% to head 1.6 as a control group (i.e., features we would not expect to display induction-like properties as
they are not attributed to the induction head). We found the Induction Behavior Heuristic to perform well at separating the
features, as 450/586 features satisfied the > 60% induction pass rate. Conversely, only 3/500 features in the control group
satisfied the > 60% induction pass rate (Figure 11).

J Investigating attention head polysemanticity
While the technique from Section 4.1 is not sufficient to prove that a head is monosemantic, we believe that having multiple
unrelated features attributed to a head is evidence that the head is doing multiple tasks (i.e. exhibit polysemanticity (Elhage
et al., 2022)). We also note that there is a possibility we missed some monosemantic heads due to missing patterns at certain
levels of abstraction (e.g. some patterns might not be evident from a small sample of SAE features, and in other instances an
SAE might have mistakenly learned some red herring features).

During our investigations of each head, we found 14 monosemantic candidates (i.e. all of the top 10 attributed features for
these heads were closely related). This suggests that over 90% of the attention heads in GPT-2 small are performing at least
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Figure 11: Automated Induction: The features identified by our induction selection heuristic (a) selects 450/586 features that
satisfy the induction behavior heuristic, whereas (b) the control group only selects 3.
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Figure 12: An indication of polysemanticity for head 10.2: both digits copying (left) and URL completion (right) behavior
exhibits high mean loss change upon ablation relative to the other heads in layer 10.

two different tasks. In Appendix J.1, we list notable heads that are plausibly monosemantic or have suggested roles based on
this technique.

As one example of a validation of polysemanticity, Figure 12 demonstrates two completely different behaviors6 of 10.2
found in the top SAE features. Ablating this head and recording the mean change in loss on synthetic datasets for each task
shows a clear jump for 10.2 relative to other heads, confirming that this head is involved in both tasks.

J.1 Polysemantic attention heads in GPT-2 Small

Based on the analysis in the previous section, we determined the statistics in Table 3 on polysemanticity within attention
heads in GPT-2 Small.

Notably, the existence of any top features that do not belong to a conceptual grouping are sufficient evidence to dispute
monosemanticity. On the other hand, all top features belonging to a conceptual grouping are weak evidence towards
monosemanticity. Therefore, the results in this section form a lower bound on the percentage of attention heads in GPT-2
Small that are polysemantic.

We say that a feature is plausibly monosemantic when all top 10 features were deemed conceptually related by our annotator,
and plausibly monosemantic (minor exception) when all features were deemed conceptually related with only one or two
exceptions. Finally, a feature is plausibly bisemantic when features were clearly in only two conceptual categories.

Finally, note that the line between polysemantic and monosemantic heads is a spectrum. For example, consider head 5.10: all

6By digit copying behavior, we refer to instances of boosting a specific digit found earlier in the prompt: for example, as in "Image 2/8...
Image 5/8". By URL completion, we refer to instances of boosting plausible portions of a URL, such as the base64 tokens immediately
following "pic.twitter.com/".
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Table 3: Proportion of heads exhibiting monosemantic versus polysemantic behavior.

Head Type Fraction of Heads

Plausibly monosemantic 9.7% (14/144)
Plausibly monosemantic (minor exception) 5.5% (8/144)
Plausibly bisemantic 2.7% (4/144)
Polysemantic 81.9%
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Figure 13: Evaluating each GPT-2 Small attention SAE on the IOI task. We splice in an Attention Output SAE for each
layer and compare the resulting average logit difference (a) and KL divergence (b) to the model without SAEs. We also
compare to a baseline where we mean ablate that layer’s attention output from the ABC distribution (Wang et al., 2023). We
generally observe that our SAEs from layers [1, 6] are sufficient, while our SAEs from layers [7,11] and 0 have noticeable
reconstruction error.

top 10 SAE features look like context features, boosting the logits of tokens related to that context. However, our annotator
conservatively labeled this head as polysemantic given that some of the contexts are unrelated. At a higher-level grouping,
this head could plausibly be labeled a general monosemantic "context" head.

K Evaluating all GPT-2 Small SAEs on IOI
In this section we evaluate all of our GPT-2 Small attention SAEs on the IOI task. For each layer, we replace attention output
activations with their SAE reconstructed activations and observe the effect on the average logit difference (Wang et al.,
2023) between the correct and incorrect name tokens (as in Makelov et al. (2024)). We also measure the KL divergence
between the logits of the original model and the logits of the model with the SAE spliced in. We compare the effect of
splicing in the SAEs to mean ablating these attention layer outputs from the ABC distribution (as described in Wang et al.
(2023), this is the IOI distribution but with three different names, rather than one IO and two subjects) to also get a rough
sense of how necessary these activations are for the circuit.

We find that splicing in our SAEs at each of the early-middle layers [1, 6] maintains an average logit difference roughly
equal to the clean baseline, suggesting that these SAEs are sufficient for circuit analysis. On the other hand, we see layers
{0, 7, 8} cause a notable drop in logit difference. The later layers actually cause an increase in logit difference, but we think
that these are likely breaking things based on the relatively high average KL divergence, illustrating the importance of using
multiple metrics that capture different things (Figure 13). We suspect that these late layer SAEs might be missing features
corresponding to the Negative Name Mover (Copy Suppression (McDougall et al., 2023)) heads in the IOI circuit, although
we don’t investigate this further.

Wang et al. (2023) identify many classes of attention heads spread across multiple layers. To investigate if our SAEs
are systematically failing to capture features corresponding to certain heads, we splice in our SAEs for each of these

21



Interpreting Attention Layer Outputs with Sparse Autoencoders

Clean Baseline {0,3} {2,4} {5,6} {7,8} {9,10,11}

−2

0

2

4

6

8

10
With SAEs

Mean Ablation

Avg Logit Diff after splicing in SAEs to multiple layers (relative to mean ablatio

Layers replaced with SAEs

A
v
g
 L

o
g
it

 D
iff

{0,3} {2,4} {5,6} {7,8} {9,10,11}

0

1

2

3

4 With SAEs

Mean Ablation

Average KL Divergence of predictions with SAEs spliced in at multiple layers

Layers with SAEs

A
v
g
 K

L
 D

iv
e
r
g
e
n
c
e

Figure 14: Evaluating cross sections of GPT-2 Small attention SAE on IOI. Here we splice in Attention Output SAEs for
subsets of multiple layers in the same forward pass. Mirroring results from Appendix K, we find that the middle layers
(corresponding the Previous Token and Induction Heads) are sufficient while later layers and Layer 0 have significant
reconstruction error.

cross-sections (similar to Makelov et al. (2024)).

For each role classified by Wang et al. (2023), we identify the set of attention layers containing all of these heads. We then
replace the attention output activations for all of these layers with their reconstructed activations. Note that we recompute
the reconstructed activations sequentially rather than patching all of them in at once. We do this for the following groups of
heads:

• Duplicate Token Heads {0, 3}
• Previous Token Heads {2, 4}
• Induction Heads {5, 6}
• S-inhibition Heads {7, 8}
• (Negative) Name Mover Heads {9, 10, 11}

We again see promising signs that the early-middle layer SAEs (corresponding to the Induction and Previous Token Heads)
seem sufficient for analysis at the feature level (Figure 14). Unfortunately, it’s also clear that our SAEs are likely not
sufficient to analyze the outputs of Layer 0 and the later layers (S-inhibition Heads and (Negative) Name Mover Heads).
Thus we are unable to study a full end-to-end feature circuit for IOI.

Why is there such a big difference between cross-sections? It is not clear from our analysis, but one hypothesis is that
the middle layers contain more general features such as “I am a duplicate token”, whereas the late layers contain niche
name-specific features such as “The name X is next”. Not only do we expect a much greater number of per-name features,
but we also expect these features to be relatively rare, and thus harder for the SAEs to learn during training. We are hopeful
that this will be improved by ongoing work on the science and scaling of SAEs (Nanda et al., 2024; Rajamanoharan et al.,
2024; Olah et al., 2024).

L IOI circuit analysis: Layer 5 "positional" features
In this section, we describe how we identified and interpreted the causally relevant "positional" features from L5 (Section 4.3).

As mentioned, we first identify these features by zero ablating each feature one at a time and recording the resulting change
in logit difference. Despite there being hundreds of features that fire at this position at least once, zero ablations narrow
down three features that cause an average decrease in logit diff greater than 0.2. Note that ablating the error term has a minor
effect relative to these features, corroborating our evaluations that our L5 SAE is sufficient for circuit analysis (Appendix K).
We distinguish between ABBA and BABA prompts, as we find that the model uses different features based on the template
(Figure 15). We also localize the same three features when path patching features out of the S-inhibition head’s (Wang et al.,
2023) values, suggesting that these features are meaningfully V-composing (Elhage et al., 2021) with these heads, as the
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Figure 15: On the IOI (Wang et al., 2023) task, we identify causally relevant features from the layer 5 features with both
zero ablations (a) and path patching (b) from the S-inhibition head values.

analysis from Wang et al. (2023) would suggest. We find that features L5.F7515 and L5.F27535 are the most important for
the BABA prompts, while feature L5.F44256 stands out for ABBA prompts.

We then interpreted these causally relevant features. Shallow investigations of feature dashboards (see Section 3.1,
Appendix A) suggests that all three of these fire on duplicate tokens, and all have some dependence on prior “ and” tokens.
We hypothesize that the two BABA features are representing “I am a duplicate token that previously preceded ‘ and’”
features, while the ABBA feature is “I am a duplicate token that previously followed ‘ and’”. Note we additionally find
similar causally relevant features from the induction head in Layer 6 and the duplicate token head in Layer 3 described in
Appendix M. The features motivate the hypothesis that the “positional signal” in IOI is solely determined by the position of
the name relative to (i.e. before or after) the ‘ and’ token.

M IOI circuit analysis: Finding and interpreting causally relevant features in other layers
In addition to the L5 attention SAE features we showcase in Section 4.3, we also find features in other layers that seem to
activate on duplicate tokens depending on their relative position to an “ and” token. Note we didn’t seek out features with
these properties: these were all identified as the top causally relevant features via zero ablations for their respective layers (at
the S2 position).

In Layer 3, a layer with duplicate token head 3.0 (Wang et al., 2023), we identify L3.F7803: "I am a duplicate token that
was previously followed by ‘and’/’or’" (Figure 16).

In Layer 6, a layer with induction head 6.9 (Wang et al., 2023), we find two subltly different features:

• L6.F17410: "I am a (fuzzy) duplicate token that previously preceded ‘ and’".

• L6.F13836: "I am a duplicate name that previously preceded ‘ and’."

All of these features can be viewed with neuronpedia (Lin and Bloom, 2023): https://www.neuronpedia.org/
gpt2-small/att-kk.

N IOI circuit analysis: Applying SAEs to QK circuits: S-Inhibition Heads Sometimes Do
IO-Boosting

In addition to answering an open question about the positional signal in IOI (Wang et al., 2023) (Section 4.3), we also can
use our SAEs to gain deeper insight into how these positional features are used downstream. Recall that Wang et al. (2023)
found that the induction head outputs V-compose (Elhage et al., 2021) with the S-inhibition heads, which then Q-compose
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Figure 16: We show max activating dataset examples and the corresponding top DFA by source position for L3.F7803 in
GPT-2 Small, a causally relevant feature in the IOI task. We interpret this feature as representing "I am a duplicate token
that was previously followed by ‘and’/’or’". Notice that it seems to fire on duplicated tokens, and the previous duplicate
(highlighted in blue) is almost always preceded by ’and’/’or’.

(Elhage et al., 2021) with the Name Mover heads, causing them to attend to the correct name. Our SAEs allow us to zoom in
on this sub-circuit in finer detail.

We use the classic path expansion trick from Elhage et al. (2021) to zoom in on a Name Mover head’s QK sub-circuit for
this path:

xattnW
S−inb
OV WNM

QK (xresid)T

Where xattn is the attention output for a layer with induction heads, WS−inb
OV is the OV matrix (Elhage et al., 2021) for an

S-inhibition head, WNM
QK is the QK matrix (Elhage et al., 2021) for a name mover head, and xresid is the residual stream

which is the input into the name mover head. For this case study we zoom into induction layer 5, S-inhibition head 8.6, and
name mover head 9.9 (Wang et al., 2023).

While the xattn and xresid terms on each side are not inherently interpretable units (e.g. the residual stream is tracking a
large number of concepts at the same time, cf the superposition hypothesis (Elhage et al., 2022)), SAEs allow us to rewrite
these activations as a weighted sum of sparse, interpretable features plus an error term (see 1).
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Figure 17: We decompose the attention score from the END destination position for the Name2 source position into sparse,
interpretable pairs of attention SAE features and residual stream SAE features. We notice that these features (a) boost the
attention score to this position an BABA prompt, but (b) inhibit it on an ABBA prompt.

This allows us to substitute both the xattn and xresid (using residual stream SAEs from Bloom (2024)) terms with their SAE
decomposition. We then multiply these matrices to obtain an interpretable lookup table between SAE features for this QK
subcircuit: Given that this S-inhibition head moves some Layer 5 attn SAE feature to be used as a Name Mover query, how
much does it “want” to attend to a residual stream feature on the key side?

We find that the attention scores for this path can be explained by just a handful of sparse, interpretable pairs of SAE features.
We zoom into the attention score from the END destination position (i.e. where we evaluate the model’s prediction) to the
Name2 source position (e.g. ‘ Mary’ in “ When John and Mary . . . ”).

We observe that these heatmaps are almost entirely explained by a handful of reoccurring SAE features (Figure 17). On
the query side we see the same causally relevant Attention SAE features previously identified by ablations: L5.F7515
and L5.F27535 (“I am a duplicate that preceded ‘ and’”) for BABA prompts while ABBA prompts show L5.F44256 and
L5.F3047 (“I am a duplicate that followed ‘ and’”). On the key side we also find just 2 common residual stream features
doing most of the heavy lifting: L9.F16927 and L9.F4444 which both appear to activate on names following “ and”.

We also observe a stark difference in the heatmaps between prompt templates: while these pairs of features cause a decrease
in attention score on the ABBA prompts, we actually see an increase in attention score on the BABA prompts. This suggests
a slightly different algorithm between the two templates. On ABBA prompts, the S-inhibition heads move “I am a duplicate
following ‘and’” to “don’t attend to the name following ‘ and’” (i.e. S-inhibition), while in BABA prompts it moves “I am a
duplicate before ‘ and’” to “attend to the name following and”. This suggests that the S-inhibition heads are partially doing
“IO-boosting” on these BABA prompts.

To sanity check that our SAE based interpretations are capturing something real about this QK circuit, we compute how
much of the variance in these heatmaps is explained by just these 8 pairs of interpretable SAE features. We find that these 8
pairs of SAE features explain 62% of the variance of the scores over all 100 prompts. For reference, all of the entries that
include at least one error term (for both the attention output and residual stream SAEs) only explain approximately 15% of
the variance.

O Additional feature families in GPT-2 Small

In this section we present new feature families that we found in GPT-2 Small, but did not find in the GELU-2L SAE7. This
suggests that SAEs are a useful tool that can provide hints about fundamentally different capabilities as we apply them to
bigger models.

7Note we didn’t exhaustively check every GELU-2L feature. However we never came across these in all of our analysis, whereas we
quickly discovered these when looking at random features from GPT-2 Small
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Figure 18: Two notable feature families extracted from the attention outputs of GPT-2 Small. L9.F18, a succession feature
(Gould et al., 2023; Michaud et al., 2024) (top) and L10.F1610, a suppression feature (McDougall et al., 2023) (bottom)

Duplicate Token Features. In our Layer 3 SAE, we find many features which activate on repeated tokens. However,
unlike induction features (Section 3.3), these have high direct feature attribution (by source position) to the previous instance
of that token (rather than the token following the previous instance).

We also notice that the norms of the decoder weights corresponding to head 3.0, identified as a duplicate token head by
Wang et al, stand out. This shows that, similar to the induction feature, we can use weight based attribution (2) to heads with
previously known mechanisms to suggest the existence of certain feature families and vice versa.

Successor Features. In our Layer 9 SAE, we find features that activate in sequences of numbers, dates, letters, etc. The
DFA by source position also suggests that the attention layer is looking back at the previous item(s) to compute this feature
(Figure 18).

The top logits of these features are also interpretable, suggesting that these features boost the next item in the sequence.
Finally, the decoder weight norms also suggest that they heavily rely on head 9.1, a successor head in GPT-2 Small.

Name Mover Features. In the later layers, we also find features that seem to predict a name in the context. The defining
characteristic of these features is a very high logit boost to the name. We also see very high DFA by source position to the
past instances of this name in the context. Once again, our decoder weights also suggest that heads 9.9 and 9.6 are the top
contributors of the feature, which were both identified as name mover heads by Wang et al. (2023).

We find a relatively large number of name movers within our shallow investigations of the first 30 random features, suggesting
that this might explain a surprisingly large fraction of what the late attention layers are doing.

Suppression Features. Finally, in our layer 10 SAE we find suppression features (Figure 18). These features show very
low negative logits to a token in the context, suggesting that they actually seem to suppress these predictions. We use DFA
to confirm that these features are being activated by previous instances of these tokens. Our decoder weights also identify
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Figure 19: Two additional evidence that in GPT-2 Small, head 5.1 specializes in long prefix induction whereas head 5.5 does
standard induction. (a) Head 5.1’s direct logit attribution to the token that is next by induction increases sharply for long
prefixes. (b) For examples where heads 5.1 and 5.5 are attending strongly to some token, head 5.1 is mostly performing long
prefix induction whereas 5.5 is mostly performing short prefix induction.

head 10.7 as the top contributing head, the same head identified to do copy suppression by McDougall et al. (2023).

N-gram Features. All of the features we have shown so far are related to previously studied behaviors, making them
easier to spot and understand. We now show that we can also use our SAE to find new, surprising information about what
attention layers have learned. We find a feature from Layer 9 that seems to be completing a common n-gram, predicting the
“half” in phrases like “<number> and a half”.

Though n-grams may seem like a simple capability, it’s worth emphasizing why this is surprising. The intuitive way to
implement n-grams would involve some kind of boolean AND (eg the current token is "and" AND the previous token is a
number). Intuitively, this appears it would make sense to implement in MLPs and not in attention.

P Additional long prefix induction experiments
Here we provide two additional lines of evidence to show that in GPT-2 Small, 5.1 specializes in "long prefix induction",
while 5.5 does "short prefix induction". Note we that we do not use SAEs in this section, but the original hypothesis was
motivated by our SAEs (see Section 4.2).

We first check each head’s average direct logit attribution (DLA) (Olsson et al., 2022) to the correct next token as a function
of prefix length. We again see that head 5.1’s DLA sharply increases as we enter the long prefix regime, while head 5.5’s
DLA remains relatively constant (Figure 19).

We then confirmed that these results hold on a random sample of the training distribution. We first filter for examples where
the heads are attending non-trivially to some token8 (i.e. not just attending to BOS), and check how often these are examples
of n-prefix induction. We find that head 5.1 will mostly attend to tokens in long prefix induction, while head 5.5 is mostly
doing normal 1-prefix induction (Figure 19).

Q Recursive Direct Feature Attribution
In this section, we expand on more manual circuit analysis techniques from Section 4.3. We can extend the DFA technique
described in Section 2 by taking advantage of the fact that once we have frozen attention patterns and LayerNorms scales,
there is a linear contribution from (1) different token position residual streams, (2) upstream model components, and (3)
upstream Attention Output SAE decoder weight features to downstream Attention Output SAE features. This enables us to

8We show a threshold of 0.3. The results generally hold for a range of thresholds.
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perform a fine-grained decomposition of attention SAEs recursively through earlier token position residual streams and
upstream components. We call this technique Recursive DFA (RDFA).

We open-source a tool that enables performing this kind of recursive DFA on arbitrary prompts for GPT-2 Small. We
currently only support this recursive attribution from attention to attention components, as we cannot pass upstream
linearly through MLPs due to the element wise non-linear activation function. The tool is available at: https://
attention-saes-paper.github.io/attention-saes-paper-dashboards/circuit-explorer/.

Q.1 Recursive Direct Feature Attribution (RDFA)

We use our Attention Output SAEs from Section 3.2 and residual stream SAEs from (Bloom, 2024) to repeatedly attribute
SAE feature activation to upstream SAE feature outputs, all the way back to the input tokens for an arbitrary prompt. We
provide the full Recursive DFA algorithm in Appendix Q.

In Table 6, we provide a full description of recursive direct feature attribution (RDFA).

Table 4: Recursive direct feature attribution (RDFA)

Step Operation

1. Choose an attention SAE feature
index i:

f pre
i (zcat) = zcat ·Wenc[:, i]

2. Compute DFA by source position: zdest =
∑dest

src=0 A[dest, src] · vsrc

3. Compute DFA by residual stream
feature at source position S:

vsrc = WV LN1(xresid) = WV LN1

(∑dsae
i=0 fi(xresid)di + ε(xresid) + b

)
4. Compute DFA by upstream
component for each resid feature:

xresid = e + p +
∑L−1

i=0 xattn +
∑L−1

i=0 xmlp

5. Decompose upstream attention
layer outputs into SAE features:

xattn =
∑dsae

i=0 fi(xattn)di + ε(xattn) + bdec

6. Recurse: Take one of the attention SAE features from the previous step and a prefix
of our prompt at S. Then, treat S as the destination position, and go back
to step 1.

R Notable heads in GPT-2 Small
As a continuation of Section 4.1, we describe the results of manually inspecting the most salient features for all 144 attention
heads to examine the role of every attention head in GPT-2 Small. As in Section 2, we apply equation 2 to identify the top
ten features by decoder weight attribution to determine which features are most attributed to a given head. We then identify
conceptual groupings that are exhibited in these features.

R.1 Limitations on interpreting all heads in GPT-2 Small

We note that this methodology is a rough heuristic to get a sense of the most salient effects of a head and likely does not
capture their role completely.

Through this technique we discover a wide range of previously unidentified behaviors. To validate that our technique
captures legitimate phenomena rather than spurious behaviors, we verified that our interpretations are consistent with
previously studied heads in GPT-2 Small. These include induction heads (Olsson et al., 2022; Kissane, 2023), previous
token heads (Voita et al., 2019; Kissane, 2023), successor heads (Gould et al., 2023) and duplicate token heads (Wang et al.,
2023; Kissane, 2023).
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R.2 Overview of attention heads in layers in GPT-2 Small

Broadly, we observe that top features attributed to heads become more abstract towards the middle layers of the model
before tapering off to syntactic features in late layers:

• Layers 0-3 exhibit primarily syntactic features (single-token features bigram features) and secondarily on specific verbs
and entity fragments. Some context tracking features are also present.

• From layer 4 onwards, features that activate on more complex grammatical structure are expressed, including families
of related active verbs, prescriptive and active assertions, and some entity characterizations. Some single-token and
bigram syntactic features continue to be present.

• In layers 5-6, we identify 2 out of the 3 known induction heads Wang et al. (2023) in these layers based on our features.
However, the rest of these layers is less interpretable through the lens of SAE features.

• In layers 7-8, increasingly more complex concept feature groups are present, such as phrasings related to specific
actions taken, reasoning and justification related phrases, grammatical compound phrases, and time and distance
relationships.

• Layer 9 expressed some of the most complex concepts, with heads focused on specific concepts and related groups of
concepts.

• Layer 10 exhibited complex concept groups, with heads focused on assertions about a physical or spatial property, and
counterfactual and timing/tense assertions.

• The last layer 11 exhibited mostly grammatical adjustments, some bigram completions and one head focused on
long-range context tracking.

Although the above summarizes what was distinctive about each layer, later layers continued to express syntactic features
(e.g. single token features, URL completion) and simple context tracking features (e.g. news articles).

R.3 Notable attention heads in GPT-2 Small

Table 5 lists some notable attention heads across all layers of GPT-2 Small.

Table 5: Notable attention heads in GPT-2 Small

Layer Feature groups / possible roles Notable Heads

0 Single-token ("of").
bigram features (following "S").
Micro-context features (cars, Apple tech, solar)

H0.1 Top 6 features are all variants capturing “of”.
H0.5: Identified as duplicate token head from 9/10 fea-
tures
H0.9: Long range context tracking family (headlines,
sequential lists).

1 Single-token (Roman numerals)
bigram features (following "L")
Specific noun tracking (choice, refugee, gender,
film/movie)

H1.5*: Succession (Gould et al., 2023; Michaud et al.,
2024) or pairs related behavior
H1.8: Long range context tracking with very weak
weight attribution

Continued on next page
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Table 5 – continued from previous page
Layer Feature groups / possible roles Notable Heads

2 Short phrases ("never been...")
Entity Features (court, media, govt)
bigram & tri-gram features ("un-") Physical direc-
tion and logical relationships ("under") Entities
followed by what happened (govt)

H2.0: Short phrases following a predicate (e.g.,
not/just/never/more)
H2.3: Short phrases following a quantifier (both, all, ev-
ery, either), or spatial/temporal predicate (after, before,
where)
H2.5: Subject tracking for physical directions (under,
after, between, by), logical relationships (then X, both
A and B)
H2.7: Groups of context tracking features
H2.9*: Entity followed by a description of what it did

3 Entity-related fragments (""world’s X")
Tracking of a characteristic (ordinality or extrem-
ity)
Single-token and double-token (eg)
Tracking following commands (while, though,
given)

H3.0: Identified as duplicate token head from 8/10
features
H3.2*: Subjects of predicates
(so/of/such/how/from/as/that/to/be/by)
H3.6: Government entity related fragments, extremity
related phrases
H3.11: Tracking of ordinality or entirety or extremity

4 Active verbs (do, share)
Specific characterizations (the same X, so Y)
Context tracking families (story highlights)
Single-token (predecessor)

H4.5: Characterizations of typicality or extremity
H4.7: Weak/non-standard duplicate token head
H4.11*: Identified as a previous token head based on all
features

5 Induction (F) H5.1: Long prefix Induction head
H5.5: Induction head

6 Induction (M)
Active verbs (want to, going to)
Local context tracking for certain concepts (vege-
tation)

H6.3:: Active verb tracking following a comma
H6.5: Short phrases related to agreement building
H6.7: Local context tracking for certain concepts (pay-
ment, vegetation, recruiting, death)
H6.9*: Induction head
H6.11: Suffix completions on specific verb and phrase
forms

7 Induction (al-)
Active verbs (asked/needed)
Reasoning and justification phrases (because, for
which)

H7.2*: Non-standard induction
H7.5: Highly polysemantic but still some groupings like
family relationship tracking
H7.8: Phrases related to how things are going or specific
action taken (decision to X, issue was Y, situation is Z)
H7.9: Reasoning and justification related phrasing (of
which, to which, just because, for which, at least, we
believe, in fact)
H7.10*: Induction head

8 Active verbs ("hold")
Compound phrases (either)
Time and distance relationships
Quantity or size comparisons or specifiers
(larger/smaller)
URL completions (twitter)

H8.1*: Prepositions copying (with, for, on, to, in, at, by,
of, as, from)
H8.5: Grammatical compound phrases (either A or B,
neither C nor D, not only Z)
H8.8: Quantity or time comparisons/specifiers

Continued on next page
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Table 5 – continued from previous page
Layer Feature groups / possible roles Notable Heads

9 Complex concept completions (time, eyes)
Specific entity concepts
Grammatical relationship joiners (between)
Assertions about characteristics (big/large)

H9.0*: Complex tracking on specific concepts (what is
happening to time, where focus should be, actions done
to eyes, etc.)
H9.2: Complex concept completions (death, diagnosis,
LGBT discrimination, problem and issue, feminism,
safety)
H9.9*: Copying, usually names, with some induction
H9.10: Grammatical relationship joiners (from X to, Y
with, aided by, from/after, between)

10 Grammatical adjusters
Physical or spatial property assertions
Counterfactual and timing/tense assertions (would
have, (hoped that)
Certain prepositional expressions (along, (under)
Capital letter completions (‘B’)

H10.1: Assertions about a physical or spatial property
(up/back/down/over/full/hard/soft)
H10.4: Various separator characters for quantifiers
(colon for time, hyphen for phone, period for counters)
H10.5: Counterfactual and timing/tense assertions
(if/than/had/since/will/would/until/has X/have Y)
H10.6: Official titles
H10.10*: Capital letter completions with some context
tracking (possibly non-standard induction)
H10.11: Certain conceptual relationships

11 Grammatical adjustments
bigrams
Capital letter completions
Long range context tracking

H11.3: Late layer long range context tracking, possibly
for output confidence calibration

S Step-by-step breakdown of RDFA with examples
In this section we describe the Recursive Direct Feature Attribution technique from Section 2 in more detail. We use
Attention Output SAEs from Section 3.2 and residual stream SAEs from Bloom (2024) to repeatedly attribute SAE feature
activation to upstream SAE feature outputs, all the way back to the input tokens for an arbitrary prompt. The key idea is
that if we freeze attention patterns and LayerNorm scales, we can decompose the SAE input activations, zcat, into a linear
function of upstream activations. Then we recursively decompose those upstream activations into linear contributions.

In Table 6, we provide a full description of the recursive direct feature attribution (RDFA) algorithm, accompanied by
equations for the key linear decomposition.

We now provide a few examples of using the Circuit Explorer tool available at https://robertzk.github.io/
circuit-explorer.

Example 1: Decomposing information about name. Consider the prompt: "Amanda Heyman, professional photographer.
She". In Figure 20, starting with Attention Output SAE feature L3.F15566, we observe that performing a DFA decomposition
along source position and then along residual features highlights:

• a residual feature (3.19755) that maximally activates on names ending with "anda": https://www.neuronpedia.
org/gpt2-small/3-res-jb/19755

• a residual feature (3.14186) that maximally activates on "Amanda" and boosts last names: https://www.
neuronpedia.org/gpt2-small/3-res-jb/14186

Example 2: Routing "Dave" through "is" to "isn’t". Consider the prompt: "So Dave is a really good friend isn’t" as
highlighted in Conmy et al. (2023). Focusing on layer 10, the top Attention Output SAE feature is L10.F14709. In Figure 21,

31

https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_0.html#feature_num_16056
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_0.html#feature_num_21955
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_10.html#feature_num_8127
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_7.html#feature_num_2997
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_0.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_2.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_9_9.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_2_5.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_5.html#feature_num_6174
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_5.html#feature_num_6174
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_5.html#feature_num_8327
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_11.html#feature_num_14525
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_11.html#feature_num_619
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_10.html#feature_num_6954
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_1.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_4.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_5.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_6.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_10.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_10_11.html
https://attention-saes-paper.github.io/attention-saes-paper-dashboards/gpt2-small-saes/cards/top_features_11_3.html
https://robertzk.github.io/circuit-explorer
https://robertzk.github.io/circuit-explorer
https://www.neuronpedia.org/gpt2-small/3-res-jb/19755
https://www.neuronpedia.org/gpt2-small/3-res-jb/19755
https://www.neuronpedia.org/gpt2-small/3-res-jb/14186
https://www.neuronpedia.org/gpt2-small/3-res-jb/14186


Interpreting Attention Layer Outputs with Sparse Autoencoders

we observe that performing a recursive DFA decomposition along source position and then to upstream attention components
shows that the model is routing information about "Dave" via the "is" token to the final "[isn]’t" position.

Table 6: Recursive direct feature attribution (RDFA)

Step Operation

1. Choose an attention SAE feature
index i active at destination position
D:

f pre
i (zcat) = zcat ·Wenc[:, i]

2. Compute DFA by source position: zcat = [z1, ..., znheads ]
where zj = vjAj for j = 1, ..., nheads and Aj

is the attention pattern for head j

3. Compute DFA by residual stream
feature at source position S (where ε
is the error term (1)):

vj = WV LN1(xresid) = WV LN1

(∑dsae
i=0 fi(xresid)di + ε(xresid) + b

)

4. Compute DFA by upstream
component for each resid feature:

xresid = xembed + xpos +
∑L−1

i=0 xattn,i +
∑L−1

i=0 xmlp,i

5. Decompose upstream attention
layer outputs into SAE features:

xattn,i =
∑dsae

j=0 fj(xattn,i)dj + ε(xattn,i) + b

6. Recurse: Take one of the Attention Output SAE features from the previous step and
a prefix of our prompt at S. Then, treat S as the destination position, and
go back to step 1.
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Figure 20: Example of decomposing an Attention Output SAE feature (L3.F15566) across residual features on a given
source position. The model attends back from "She" to "anda" and accesses an upstream residual feature for names ending
with "anda" as well as a residual feature for "Amanda".
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Figure 21: Example of recursively decomposing an Attention Output SAE feature (L10.F14709) across upstream Attention
Output SAE features. The model attends back from "isn’t" to "is" and accesses a "Dave" feature through an attention
connection.

34


