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Abstract

Constructing a directed cyclic graph (DCG) is challenged by both algorithmic
difficulty and computational burden. Comparing multiple DCGs is even more
difficult, compounded by the need of identifying perturbational causalities across
graphs. We propose to unify multiple DCGs with a single structural model and
develop a limited-information-based method to simultaneously construct multiple
networks and infer their disparities, which can be visualized by appropriate cor-
respondence analysis. The algorithm provides DCGs with robust non-asymptotic
theoretical properties. It is designed with two sequential stages, each of which
involves parallel computation tasks that are scalable to the network complexity.
Taking advantage of high-performance clusters, our method makes it possible
to evaluate the statistical significance of DCGs using the bootstrap method. We
demonstrated the effectiveness of our method by applying it to synthetic and real
datasets.

1 Introduction

Study of causal networks described by directed cyclic graphs (DCGs) becomes increasingly popular
in a variety of fields, such as biomedical and social sciences [10, 3]. Detecting perturbational
structures across networks sheds light on mechanistic dynamics, with promising applications. For
example, gene regulatory networks related to various types of cancer differ from that of healthy cells
in a complicated way and discovery of deviated regulations helps identify cancer-related biological
pathways and hence design target-specific drugs [23, 18]. Interpersonal networks in social media have
become a favored way for people to get informed of breaking news and natural disasters nowadays.
Understanding their evolution over time may provide promising information to businesses, educators,
and governments [7]. However, the complex structure and large number of nodes impose challenges
on constructing even a single network, not to mention modelling and comparing multiple networks.

Structural models are widely used to describe causal networks and conduct causal inference [8, 15].
With available instrumental variables (IVs) from genomic variations, many methods have been
developed to construct large causal networks of gene regulation by integrating transcriptomic and
genotypic data. For instance, Liu et al. [14] proposed to assemble driver-responder relationships
identified from local structural models, a formidable task due to enormous numbers of possible
driver-responder pairs. Cai et al. [4] developed a sparsity-aware maximum likelihood (SML) method
by putting `1 penalty on causal effects. It may reach local maximum, leading to the identifiability
issue. Chen et al. [5] proposed a two-stage penalized least square (2SPLS) approach which allows
parallel computing and shows superior performance.
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To infer sparse differences between two large networks, Ren and Zhang [16] recently developed a
parallel algorithm based on 2SPLS and achieved better performance than separately constructing the
two networks using 2SPLS. Zhou and Cai [25] proposed a fused sparse SEM (FSSEM) method to learn
the differences through maximum likelihood inference of joint networks which is computationally
infeasible with large networks. Li et al. [13] employed a Bayesian scheme in their method BFDSEM,
unrealistically assuming equal sample sizes from both cohorts.

To the best of our knowledge, there is no algorithm available for investigating causal effects varying
across multiple cohorts while identifying stable ones. In this paper, we develop a novel algorithm,
designed for parallel computation, to construct a unified structural model for multiple causal networks.
While each causal network may be depicted by a DCG, we deliver an analysis of variance (ANOVA)
of these networks to identify causalities that are different across networks as well as important
drivers and responders. Our algorithm is scalable in several aspects. Firstly, it is scalable to data
size including sample size and number of variables. It would still be efficient and powerful under
high dimension scheme. Secondly, it is scalable to the computational environment with its parallel
computation. The fast computation allows to attack a daunting task in studying multiple networks, i.e.,
calculating p-values via the bootstrap method and thus controlling the false discovery rate. Thirdly,
the algorithm is scalable to model complexity as it is able to infer causal networks beyond directed
acyclic graphs (DAGs), such as DCGs which are demanded to depict gene regulatory networks [14].

The rest of the paper is organized as follows. We first state the model and discuss its identifiability
guaranteed by available instrumental variables in Section 2. In Section 3, we present our proposed
algorithm ANalysis Of VAriance of directed Networks, termed as NetANOVA, and introduce mea-
sures to quantify an endogenous variable’s contribution as either drivers or responders. The theoretical
justification is shown in Section 4 with detailed proofs in Supplemental Material. We demonstrate
the feasibility and promise of our algorithm with a large-scale simulation study shown in Section 5
and a real data analysis to compare gene regulatory networks in healthy lung tissues and lung tissues
with two types of cancer in Section 6. We conclude the paper with a discussion in Section 7.

2 A Unified Structural Model of Multiple Causal Networks

2.1 Model specification

We consider K pertinent causal networks, each for a cohort. For each, say k-th, cohort we have n(k)

observations in (Y(k),X(k)), where Y(k) is an n(k) × p matrix including values of p endogenous
variables, and X(k) is an n(k) × q matrix including values of q exogenous variables. Each variable is
assumed to have mean zero. For the k-th causal network, we consider each, say i-th, endogenous
variable is causally affected by other variables as follows,

Y
(k)
i = Y

(k)
−i γ

(k)
i + X

(k)
Ii φ

(k)
Ii + ε

(k)
i , (1)

where Y
(k)
i is the i-th column of Y(k), and Y

(k)
−i is the submatrix of Y(k) excluding the i-th column.

The (p− 1)-dimensional column vector γ(k)
i includes the direct causal effects of other endogenous

variables (drivers) on the i-th one (responder). The set Ii includes the indices of exogenous variables
that serve as IVs of the i-th endogenous variable so X

(k)
Ii is a n(k) × |Ii| matrix including values of

corresponding IVs. Each IV has a direct causal effect on its corresponding endogenous variable and
can be identified through domain knowledge. φ(k)

Ii includes causal effects from corresponding IVs.

ε
(k)
i includes disturbance errors which are independently distributed with mean zero and standard

deviation σ(k)
i .

Pooling together equation (1) for each endogenous variable, we model the k-th causal network as,

Y(k) = Y(k)Γ(k) + X(k)Φ(k) + ε(k), (2)
which describes a DCG as shown in Figure 1.

The p× p matrix Γ(k) describes the causal relationships between each pair of endogenous variables
and has zero diagonal elements to prohibit self-regulation. The q × p matrix Φ(k) encodes the
causal effects of exogenous variables on endogenous variables. The n(k) × p matrix ε(k) includes all
disturbance errors. We assume that both Y(k) and X(k) have been appropriately centralized within
the cohort, so no intercepts are needed in the above model.
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Figure 1: DCGs of three causal networks. The nodes outside the shaded regions are exogenous
variables with IVs in light blue and confounding variables (unobservable U and observed O) in white
but disturbance errors are omitted. Causal relations in red differ across networks, and dashed ones
cannot be revealed by available data due to unobservable U or unavailable IV for Y5.

2.2 A unified structural model

Many algorithms have been developed to construct a structural model for single causal network
[14, 4, 5]. We will show that, in the interest of comparing multiple causal networks, we can also
unify them into a single structural model and hence develop an appropriate algorithm to construct all
networks at the same time to deliver an ANOVA of multiple networks.

Suppose we have a baseline, say K-th, network and are interested in others’ deviation from the
baseline. We first reparameterize the causal effects of all endogenous variables in (1) with

β
(k)
i = γ

(k)
i − γ

(K)
i , for k = 1, 2, . . . ,K − 1; β

(K)
i = γ

(K)
i . (3)

Therefore β(K)
i includes baseline effects and, for k 6= K, β(k)

i includes deviated effects of k-th
network from the baseline. When it is of interest to compare the networks with each other, we can
similarly reparameterize to consider the deviated effects of each network from the average effects.

For any K sets of l ×m matrices, say Ai with i = 1, 2, · · · ,K, we define a matrix-valued function,

T (A1, · · · ,AK) = (A1:K , (diag(AT
1 , · · · ,AT

K−1),0m(K−1))
T ),

where A1:K is constructed by stocking A1, · · · , AK row-wisely, and 0m(K−1) is a m(K − 1)-
dimensional column vector with all elements zero. Further denote

Yi = (Y
(1)T
i ,Y

(2)T
i , · · · ,Y(K)T

i )T ,

βi = (β
(K)T
i ,β

(1)T
i ,β

(2)T
i , · · · ,β(K−1)T

i )T ,

φIi = (φ
(1)T
Ii ,φ

(2)T
Ii , · · · ,φ(K)T

Ii ),

εi = (ε
(1)T
i , ε

(2)T
i , · · · , ε(K)T

i )T ,

Notice that γ(k)
i = β

(K)
i +β

(k)
i for k = 1, 2, . . . ,K − 1 from (3), we have a unified structural model

for K causal networks described by (2),

Yi = T (Y
(1)
−i ,Y

(2)
−i , · · · ,Y

(K)
−i )βi + diag(XI(1)i

,XI(2)i
· · · ,XI(K)

i
)φIi + εi. (4)

2.3 Instrumental Variables, model identifiability, and confounding variables

As shown in Figure 1, the ability to reveal causal effects relies on the available IVs. An IV is an
exogenous variable that only affects directly the driver but not the responder, except indirectly through
its effect on the driver. This means that IVs can be used to address the model identifiability issue,
which is complicated by the model’s inherent endogeneity, and allow us to isolate the causal effects
of endogenous variables. We specify the following assumption on available IVs following the rank
condition [20], a necessary and sufficient condition for model identification.

Assumption 1. a. X(k) ⊥⊥ ε(k); b. ∃C ⊂ {1, 2, · · · , p} but C 6= ∅; c. ∀i ∈ C, ∃Ii ⊂ {1, 2, · · · , q}
with Ii 6= ∅ and φ(k)

Ii 6= 0; d. ∀i, j ∈ C with i 6= j, Ii ∩ Ij = ∅; e. ∀j /∈ C, γ(k)
ij = 0.
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Assumption 1.a specifies IVs observed in X(k) that are uncorrelated to the disturbance errors.
Assumption 1.b specifies the endogenous variables in C that have available IVs and Assumptions 1.c
and 1.d state the restrictions on the available IVs, i.e., their availability and uniqueness, respectively.
While γ(k)

ij is the j-th component of γ(k)
i , Assumption 1.e states that we are not able to identify any

causal relation with j-th endogenous variable as a driver if it has no IV available, e.g., Y5 in Figure 1.

A striking advantage of the IV method is its robustness to confounding but exogenous variables,
which may be observable or unobservable, as shown in Figure 1. As will be demonstrated by our
later algorithm, available IVs help disassociate an endogenous variable from disturbance errors of
other endogenous variables in model fitting. Therefore, we may explicitly incorporate observable con-
founding variables to improve causal inference. However, when there are unobservable confounding
variables, we can still effectively construct multiple networks with available IVs.

3 Model Building and Interpretation

The single structural model in (4) makes it possible to employ a limited-information approach to
construct multiple causal networks even in the case of a large number of endogenous variables.
Therefore we develop a two-stage algorithm NetANOVA which allows parallel computing for fast
computation and hence bootstrapping the data for significance assessment. Another daunting but
necessary task is to understand the multiple networks and catch the important variables in the
networks and important perturbational causalities across them. We therefore propose coefficents of
determination and cause as well as correspondence analysis.

3.1 The algorithm NetANOVA

The disassociation stage: We first predict each endogenous variable in C, solely based on all
available exogenous variables, to disassociate it from the disturbance errors of other endogenous
variables, following aforementioned assumption 1. For this purpose, we rearrange the terms in (2) to
obtain the reduced model,

Y(k) = X(k)π(k) + ξ(k), (5)

where π(k) = Φ(k)(I− Γ(k))−1 and ξ(k) = ε(k)(I− Γ(k))−1.

As shown in the real data analysis in constructing gene regulatory networks, the number of exogenous
variables, i.e., the dimension q for X(k), can be much larger than the sample size n(k), rising issues
of prediction consistency and computational time. To address them, we first apply the iterative sure
independence screening (ISIS; [9]) to screen for exogenous variables and then perform regression
with `2 penalty. As later theoretical analysis shows, it allows for q . exp(n(k)θ) for some θ > 0.

Specifically for each endogenous variable i ∈ C and k ∈ {1, . . . ,K}, we apply ISIS with computa-
tional complexity O(n(k)p) to screen for a set of exogenous variables, indexed by setM(k)

i . Using
these d = |M(k)

i | exogenous variables, we apply ridge regression to obtain the ridge estimator,

π̂
(k)

M(k)
i

= (XT
M(k)
i

XM(k)
i

+ λ
(k)
i I)−1XT

M(k)
i

Y
(k)
i (6)

and predict Y
(k)
i with

Ŷ
(k)
i = X

(k)

M(k)
i

π̂
(k)

M(k)
i

, (7)

where λ(k)
i is a tuning parameter that can be selected via generalized cross validation [11].

The inference stage: We use the predicted endogenous variables in the previous stage to identify and
estimate the causal effects, hence constructing the causal networks. We first calculate the projection
matrix,

P
(k)
i = In(k) −X

(k)
Ii

(
X

(k)T
Ii X

(k)
Ii

)−1

X
(k)T
Ii .

Multiplying the projection matrix Pi = diag{P(1)
i ,P

(2)
i , . . . ,P

(K)
i } to both sides of model (4), we

can eliminate the exogenous variables from the model and get,

PiYi = PiΥ−iβi + Piεi, (8)
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where Υ−i = T (Y
(1)
−i ,Y

(2)
−i , · · · ,Y

(K)
−i ). Since PiΥ−i and εi are correlated, we instead regress

PiYi against PiΥ̂−i with Υ̂−i = T (Ŷ
(1)
−i , Ŷ

(2)
−i , · · · , Ŷ

(K)
−i ) which is disassociated from εi. With

possibly high-dimensional βi, we apply adaptive lasso [26] to obtain its estimator,

β̂i = arg min
βi

{
1

n
||PiYi −PiΥ̂−iβi||22 + νiω̂

T
i |βi|1

}
,

where νi is a tuning parameter, and ω̂i = |β̂0i|−γ for some γ > 0 where |β̂0i|1 contains the absolute
values of β̂0i, which is a preliminary estimator. The original networks can be recovered by calculating

γ̂
(k)
i = β̂

(K)

i + β̂
(k)

i for k = 1, 2, . . . ,K − 1.

In summary of these two stages, we summarize the algorithm in Algorithm 1.

Algorithm 1 ANalysis Of VAriance of directed Networks (NetANOVA)

Input: (Y(k),X(k)), k ∈ {1, 2, ...,K}, with each variable centralized within cohort but scaled
according to the baseline cohort; Predefined index set Ii for each i ∈ C; d← O(n1−θ

min ).
STAGE 1
for i ∈ C do

1. Reduce the dimension of X(k) by ISIS to get X
(k)

M(k)
i

; Set X
(k)

M(k)
i

= X(k) if q ≤ n(k).

2. Estimate Ŷ
(k)
i by regressing Y

(k)
i against X

(k)

M(k)
i

with ridge regression.

end for
STAGE 2
for i = 1, 2, . . . , p do

1. Calculate projection matrices Pi.
2. Predict Υ̂−i from Ŷ

(k)
i , i ∈ C.

3. Estimate β̂i by regressing PiYi against PiΥ̂−i with adaptive lasso.
end for
Output: β̂1, . . . , β̂p which contains the baseline and differential causal effects.

3.2 Coefficient of determination and coefficient of cause

For each endogenous variable i, we can calculate its coefficient determination to measure the
proportion of its variation due to the effects of its drivers, i.e., Y

(k)
−i γ

(k)
i in (1), for cohort k,

R
2(k)
i = 1− ||Y(k)

i −Y
(k)
−i γ̂

(k)
i ||

2
2

/
||Y(k)

i ||
2
2,

On the other hand, we can also calculate the coefficient of cause for each endogenous variable i
which summarizes proportions that it contributes to the variation of its responders, for cohort k,

C
2(k)
i =

p∑
j=1

(
1− ||Y(k)

j −Y
(k)
i γ̂

(k)
ji ||

2
2

/
||Y(k)

j ||
2
2

)
.

While we name the above coefficient of determination as causal R2 with its value between zero and
one, we will simply call the coefficient of cause C2 which is positive but may be greater than one.

3.3 Correspondence analysis of causal effects

We can conduct a correspondence analysis of causal effects in Γ(k) to reveal clusters of drivers,
responders, or driver-responder pairs which outstand from the rest in each cohort k. We can also
conduct a correspondence analysis of deviated causal effects to reveal these clusters which deviate
the most from a baseline or the rest. However, each causal effect or its deviation may vary differently
and we need to standardize them, based on the bootstrap results, before correspondence analysis. For
example, to compare cohorts k and l for their causal effects, we should instead obtain the following
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summary statistic,

z
(k,l)
ij =

(
γ̂

(k)
ij − γ̂

(l)
ij

)/( B∑
b=1

(γ̂
(k,b)
ij − γ̂(l,b)

ij )2
/

(B − 1)

)1/2

.

where γ̂(k)
ij and γ̂(k,b)

ij are estimates of corresponding effects from the observed data and b-th set of

bootstrap data, respectively; we also let z(k)
ij = 0 when both of its numerator and denominator are

sufficiently small. We can define similar statistics to investigate effects’ variation from their means.

A singular value decomposition (SVD) of Z(k,l) = (z
(k,l)
ij )p×p can obtain its left and right singular

vectors, say {U (k,l)
i } and {V (k,l)

i }, respectively. While the left singular vectors help identify respon-
ders that differ between the two cohorts, the right singular vectors help identify drivers that differ
between the two cohorts. We can overlay the plot of U (k)

2 vs. U (k)
1 with the plot of V (k)

2 vs. V (k)
1 to

identify responder-driver pairs for their causalities varying the most across networks.

4 Theoretical Analysis

In this section, we will establish non-asymptotic guarantees and show that our constructed DCGs
have good theoretical properties. We characterize the properties with a prespecified sequence
δ(k) = exp{−o(n(k))} with δ(k) → 0 as n(k) → ∞, i.e., each δ(k) approaches zero slower than
exp{−n(k)}. We denote δmin = min1≤k≤K δ

(k) and only present main results here, with details
including general notations, assumptions, and proofs in Supplementary Material.

Theorem 4.1. Let n =
∑K
k=1 n

(k), Si = supp(βi), and gn is a function of n and δmin specified in
(9) in Supplemental Material. Then under Assumption 1 and Assumptions B.1–B.4 in Supplementary
Material, we have that, with probability at least 1− δmin − δ with δ = p

∑K
k=1 δ

(k),

1. (Bounded Errors) ||β̂i − βi||22 . |Si| gn {d ∨ log(pK/δ) ∨ ‖π‖22max ∨ log(d/δmin)}/n;

2. (Causality Consistency) sign(β̂i) = sign(βi).

We will next show that, with proper choice of {δ(k)}, we can bound the estimation errors system-wise
with ultra high probability. We can pick {δ(k)} such that δmin � e−n

t

where t ∈ (0,min(θ, 1− θ)).
Then we have fn . n(2−θ)/2, and the restriction on the number of true signals can be reduced to
|Si| . nθ/2, which is a requirement that can be fulfilled especially in a sparse model. We have
d = n1−θ, so gn . n(1−2θ)/2. As a result, the bound can be dominated by the order of |Si|n(1−4θ)/2.

Note that the error for the whole system of p nodes can be controlled by a similar bound, replacing
each occurrence by |Si| with max

1≤i≤p
|Si|, with probability at least 1 − p(δmin + δ). Following the

former calculation, we learn that, when max
1≤i≤p

|Si| grow slower than n(4θ−1)/2, the error will approach

zero when n→∞. To achieve the bound with high probability, we only need pδ to diminish. That is,
we could have the error well controlled even if the dimension grows up to en

s

where s ∈ (0, t2 ).

Given the auspicious estimation performance, we will further discuss the benefit of pooling cohorts
compared to that of learning in a single-cohort analysis, where the estimators β(k)

i for each cohort are
estimated separately using the algorithm without re-parameterization. For each k, we can separately
conduct the analysis on each cohort and obtain the following property for single task estimation.

Corollary 4.1.1. Under the same conditions as Theorem 4.1, we have that, with probability at least
1− δmin − δ/K,

||γ̂(k)
i − γ

(k)
i ||

2
2 . |Si| gn {d ∨ log(pK/δ) ∨ ‖π‖22max ∨ log(d/δmin)}/n(k).

The proof directly follows by treating each cohort as a baseline cohort in Theorem 4.1. Note that
the denominator is making a crucial difference in inferring the bound. The algorithm indicates that
when we aggregate the samples that does not differ too much, the estimator tends to converge faster,
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especially when n� n(k), where we have a plethora of samples in addition to the samples for the
base cohort.

With the same choice of δmin and δ as the above theorem, the probability for consistent variable
selection can approach one, with a less stringent requirement in the size of Si. The above theorem
implies that our proposed method can identify both baseline and differential regulatory effects, among
all of the K networks with a sufficiently large probability, not only in terms of the set of true signals
but also the sign of signals. In the case of gene regulatory networks, for instance, our method could
correctly distinguish the up and down regulations between genes.

Next, we will present a theorem for the coefficient of determination and coefficient of cause defined
in Section 3.2. Denote the statistics R2 and C2 calculated with real parameters as, respectively,

R
2(k)
0i = 1− ||Y(k)

i −Y
(k)
−i γ

(k)
i ||

2
2

/
||Y(k)

i ||
2
2, C

2(k)
0i =

p∑
j=1

(1− ||Y(k)
j −Y

(k)
i γ

(k)
ji ||

2
2

/
||Y(k)

j ||
2
2).

Then we can derive the following properties.
Theorem 4.2. (Coefficients of Determination/Cause Consistency) Under the same conditions as in
Theorem 4.1, with hn =

√
n(k) +

√
− log(δmin) + 1, we have that,

1. With probability at least 1− p(2δmin + δ/K),
p∑
i=1

|R2(k)
i −R2(k)

0i | .
|Si|gn{d ∨ log(p/δ) ∨ ‖π‖22max ∨ log(d/δmin)}

n(k)3/4
(1 + ||φ(k)

Ii ||2hn);

2. With probability at least 1− p(δmin + δ/K),
p∑
i=1

|C2(k)
i − C2(k)

0i | .
|Si|gn{d ∨ log(p/δ) ∨ ‖π‖22max ∨ log(d/δmin)}

n(k)
(1 + ||B||1 ∨ 1).

As considered in Theorem 4.1, we set δmin � δ/(pK) � e−n
t

. Then hn .
√
n(k), and∑p

i=1 |R
2(k)
i − R

2(k)
0i | . max

1≤i≤p
|Si|n(1−4θ)/2 + (max

1≤i≤p
|Si|)1/2n

−2θ−1
2 which would vanish if

max
1≤i≤p

|Si| . n(4θ−1)/2. Similarly,
∑p
i=1 |C

2(k)
i − C2(k)

0i | . max
1≤i≤p

|Si|n(1−4θ)/4 and will converge

to 0 when max
1≤i≤p

|Si| . n(4θ−1)/4. From the above discussion, both R2, C2 for all the nodes in the

whole system is `1 consistent. It is worth noting that, although our algorithm fits a model for each
responder, estimate of each node’s explanatory power as a driver is also well controlled over the
system, but with a slightly larger bound as shown in the above theorem.

5 Simulation Study

We examine the performance of NetANOVA by simulating data of sample size 200, 500 and 1000
from each of three pertinent DCGs, consisting of 1000 endogenous variables. However, only 50
endogenous variables are involved with causality, with each regulated by 3 others on average. Each
of the three networks has 5 unique causal effects. First two networks share five causal effects but
with opposite signs to that of the third one, resulting in the first two networks having 15 different
effects from the third one and the first network have 20 different effects from the second one. The
size for causal effects is taken from a uniform distribution over [−0.8,−0.3]

⋃
[0.3, 0.8]. The IVs are

generated from a multinomial distribution with 3 outcomes 0, 1, 2, with probabilities 0.25, 0.5, 0.25
respectively. The disturbance errors are sampled independently from N(0, 0.12).

For each sample size, we simulated 100 data sets and applied NetANOVA to each by bootstrapping
100 times to calculate p values and construct Receiver Operating Characteristic (ROC) curves as
shown in Figure 2. For causal effects of all three DCGs, Figure 2.a shows an almost perfect area
under curve (AUC) for each sample size. When comparing causal effects of the first two DCGs vs.
the baseline one, i.e., the third DCG, the AUC bottoms at 0.867 with sample size at 200, but reaches
one with sample size at 1000, showing excellent performance of NetANOVA.
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(a) Three DCGs
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(b) DCG 1 vs. DCG 3
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(c) DCG 2 vs. DCG 3
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(d) DCG 1 vs. DCG 2
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Figure 2: ROC curves of NetANOVA on simulated data. (a) ROC curves of causal effects constructed
in all three networks; (b) ROC curves of deviated effects of the first network from the third one; (c)
ROC curves of deviated effects of the second network from the third one; (d) ROC curves of deviated
effects of the first network from the second one.

Taking one simulated dataset with sample size at 500, we evaluated our proposed statistics R2 and
C2 by plotting estimated statistics against the statistics calculated with true causal effects in Figure 3.
For each of the three networks, we observe linear trends with slope almost one for both R2 and C2

statistics, indicating their excellent performance.

(a)

Y1 = 0 + 1.01 ⋅ X1,  R
2 = 1

Y2 = 0 + 1.01 ⋅ X2,  R
2 = 1

Y3 = 0 + 1.01 ⋅ X3,  R
2 = 1
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(b)
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Figure 3: Statistics R2 and C2 on a simulated data with sample size 500. We plot each statistic (R2

or C2) vs. its value calculated with true causal effects (R2
0 or C2

0 ) for each network. We simply label
the three networks as 1, 2, and 3. Shown in the top-left corners are the fitted linear regression models
between the pairs as well as the corresponding coefficients of determination.

We also took one simulated data with sample size 500 and conducted our proposed correspondence
analysis to identify drivers and responders that show important perturbational causality across the
three DCGs. When comparing DCG I vs. DCG III, Figure 4.b shows a driver-responder pair (14, 45)
with different causal effects, which is verified by observing 14 significantly up regulates 45 in DCG I
vs. DCG III in Figure 4.a (blue connections). However, we also see the driver 18 and responder 45
stay opposite on the y-axis, because 18 significantly down regulates 45 implying in DCG I vs. DCG
III in Figure 4.a. On x-axis, we see pairs (12,13) and (12,7) which correspond to another cluster of
causal networks as shown in the right of Figure 4.a.

6 Real Data Analysis

We applied NetANOVA to investigate the gene regulatory networks of lung tissues of healthy
individuals and patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC).
We obtained transcriptomic and genotypic data of healthy lungs (n = 482) from the Genotype-Tissue
Expression (GTEx) project [6] and of both LUAD (n = 485) and LUSC (n = 406) from The Cancer
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Figure 4: Correspondence analysis of NetANOVA on a simulated data with sample size 500. (a) Plot
of some deviated causal effects among the three true networks (shown in Figure 6) with DCG I vs.
DCG III, DCG II vs. DCG III, and DCG I vs. DCG II in blue, red, and green, respectively. There are
a total of 1000 endogenous variables with the first 50 involved in causal relations. (b)-(d) Plots for
correspondence analysis with drivers in red and responders in blue.

Genome Atlas (TCGA) project [22]. After pre-processing, there are 15,135 genes and 427,820 single
nucleotide polymorphisms (SNPs) being shared by three cohorts. Cis-eQTL mapping identified 7059
genes with at least one significant SNPs inside their genetic regions (p-value< 0.05), i.e., valid IVs.
We bootstrapped the data 100 times to assess the significance of all effects with results shown in
Table 1.

Table 1: Summary of causal effects identified by NetANOVA. Shown in the columns are the results
from the original data, different bootstrap cutoffs (80% - 100%), and adjusted by Benjamini-Hochberg
adjustment (BH), respectively.

Type of Effects Original 80% 90% 95% 100% BH
Healthy Tissue 79833 16594 11481 8760 4602 3165

LUAD vs Healthy Tissue 13711 1185 848 670 458 296
LUSC vs Healthy Tissue 13104 1385 980 768 477 274

LUSC vs LUAD 18139 1615 976 665 289 38

Controlling adjusted p-value at 0.1, we have the largest subnetwork bearing differential structures
shown in Figure 5.a, which is verified via STRING [21] as in Figure 5.b. STRING reports a
protein-protein interaction (PPI) enrichment with p-value < 10−16, implying significant causal
effects between the genes shown in Figure 5.a. We identified many previous validated relationships,
such as the connected pair RPS14 and RACK1 (GNB2L1) which were experimentally verified by
[1]. Our results suggest new findings, particularly causal relationship rather than mere association,
e.g., deviated regulations between ARL10 and CLTB from healthy lung tissues in both LUAD and
LUSC. Our correspondence analysis of these deviated effects, shown in Figure 5.c-e, confirms these
important driver-responder pairs, and the calculated statistics R2 and C2 in Table 2 also show such
deviation between the three cohorts.
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Figure 5: Partial results of gene regulatory networks for human lung. (a) The largest subnetworks
of gene regulation with deviated causal effects between healthy, LUAD, and LUSC lung tissues.
Shown in black is the gene regulatory network for healthy lung tissue. Shown in blue, red, green are
significantly deviated causal effects of LUAD vs. healthy, LUSC vs. healthy, and LUAD vs. LUSC,
respectively. (b) Enrichment of the largest subnetwork in STRING. (c)-(e) Correspondence analysis
of the deviated effects between the largest subnetworks with drivers in red and responders in blue.

7 Discussion

Though having promising applications, construction and perturbational study of multiple causal
networks are computationally challenging in practice due to the involved large systems. We develop
the algorithm NetANOVA which avoids optimizing full-information objective functions of the whole
system and instead takes limited-information objective functions, each for revealing all drivers of a
single responder. Such a responder-focused method allows to deploy parallel computation in two
sequential stages and makes it possible to be computationally scalable to the number of involved
responders. With available clusters of computers, we can further take the bootstrap method for
the usually infeasible task, i.e., evaluating the significance of the constructed causalities in each
network and perturbational causalities across networks. Our theoretical analysis and simulation study
demonstrate the utility and efficiency of NetANOVA.

Table 2: Statistics R2 and C2 for Important Genes

Cohort ARL10 CLTB EIF3E GRB14 HIGD2A KHDC1
LUAD 0.90 0.74 0.73 0.58 0.71 0.60

R2 LUSC 0.79 0.79 0.77 0.75 0.54 0.00
Healthy 0.00 0.00 0.56 0.00 0.30 0.00
LUAD 1.41 0.74 1.18 0.00 0.86 0.60

C2 LUSC 0.79 0.79 0.75 0.75 0.16 0.00
Healthy 0.00 0.00 0.00 0.00 0.34 0.00

With the model complexity of multiple causal networks, especially DCGs that NetANOVA supports,
it is a daunting task to visualize them and comprehend each network and variation across multiple
networks. We have proposed statistics R2 and C2 to quantify the contributions of responders and
drivers within a causal network, respectively. While comparing these two statistics across networks
may help identify responders and drivers involved in network dynamics, we develop a correspondence
analysis to visualize the key players. While our simulation study and real data analysis show
promising results, correspondence analysis could be further developed to realize its full potential.
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A List of Notations

For a matrix A:
Aij Entry of the i-th row and the j-th column of the matrix
||A||1 Maximum column sums of the absolute value of the matrix.
||A||−∞ Minimum of the row sums of absolute values of the matrix.
||A||∞ Maximum of the row sums of absolute values of the matrix.
λmax(A) Maximum eigenvalue of a matrix.
λmin(A) Minimum eigenvalue of a matrix.

For a vector ν :
νi i-th element of ν.
‖ν‖q (

∑n
i=1 |νi|q)

1/q for q = 1, 2.

For numbers x and y:
x ∧ y Minimum of numbers x and y.
x ∨ y Maximum of numbers x and y.
x . y x ≤ cy for some positive constant c.
x & y x ≥ cy for some positive constant c.
x � y cx ≤ y ≤ dx for some positive constant c, d.

B Detailed Theoretical Analysis

In this section, we will present detailed assumptions besides Assumption 1 and systematically analyze
theoretical properties of our proposed NetANOVA algorithm, which lay the groundwork for proving
the theorems stated in the main text.

Our theoretical analysis is conducted, assuming a prespecified sequence δ(k) = exp{−o(n(k))} with
δ(k) → 0 as n(k) →∞, i.e., each δ(k) approaches zero slower than exp{−n(k)}. We also denote

δmin = min
1≤k≤K

δ(k).

B.1 General Results

To prove the consistency of the disassociation stage, we first point out that M(k)
i obtained from

ISIS [24] successfully recovers the true nonzero setM(k)
i∗ in reduced form (5). We first state the

assumption which restricts the sample size for different cohorts in the same order and ensures the
sparsity of the true underlying relationships. We state the assumption by extending the conditions in
Fan and Lv [9] to pave the way for Theorem B.1, the sure screening property.

Denote
Σ(k) = Cov(X(k)), W (k) = (Σ(k))−1/2X(k)T ,

and, for any index subsetM⊂ {1, 2, · · · , q},

Σ
(k)
M = cov(X

(k)
M ), W

(k)
M = (Σ

(k)
M )−1/2X

(k)T
M

Further denote the j-th row of Y (k)
i ,X(k)

i , and π(k)
i as Y (k)

ji , X(k)
ji , and π(k)

ji , respectively.

Assumption B.1.

(a) λmax(Σ(k)) . (n(k))τ
(k)

for some positive τ (k).

(b) W (k) follows a spherically symmetric distribution with concentration property: There exist
some constants c̃(k)

1 > 1, c̃(k)
2 > 1, and c̃(k)

3 > 0 such that, for any index subset M ⊂
{1, 2, · · · , q} with |M| ≥ c̃(k)

1 n(k), we have, with probability at least 1− exp(−c̃(k)
3 n(k)),

1/c̃
(k)
2 ≤ λmin(W

(k)T
M W

(k)
M /|M|) ≤ λmax(W

(k)T
M W

(k)
M /|M|) ≤ c̃(k)

2 .
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(c) var(Y (k)
ji ) . 1 and there exists κ(k) ≥ 0 such that

min
m∈M(k)

i∗

∣∣∣π(k)
mi

∣∣∣ & (n(k))−κ
(k)

and min
m∈M(k)

i∗

∣∣∣cov
(
Y

(k)
ji , X

(k)
jmπ

(k)
mi

)∣∣∣ & 1.

For each node i in network k ∈ {1, 2, ...,K}, we have the following theorem.

Theorem B.1. Denote U (k) = 1 − 2κ(k) − τ (k), Umin = min
1≤k≤K

U (k), κmax = max
1≤k≤K

κ(k), and

q . exp(n
(k)
min)c̃ for some c̃ ∈ (0, 1− 2κ(k)) where nmin = min

1≤k≤K
n(k), then under Assumption B.1,

there exists some θ ∈ (0, Umin) and some positive constant c, such that, with probability at least
1− c exp

{
−(n(k))1−2κmax/ log(n(k))

}
,

M(k)
i∗ ⊆M

(k)
i .

Theorem B.1 implies that ISIS can recover the true nonzero set M(k)
i∗ for each network with

overwhelming probability, when n tends to infinity, and thus paves the way for our subsequent
analysis. We will establish the rest of the theory based onM(k)

i∗ ⊆M
(k)
i for convenience.

Next, we will investigate the consistency of predictions using ridge regression in (7). To facilitate
simplicity, we will exclude the subscriptM(k)

i from X(k)

M(k)
i

and replace it with X(k)
i from now on.

Similarly, we will refer to the true and estimated causal parameters as π(k)
i and π̂(k)

i , respectively.

Assumption B.2. λmax(X(k)T
i X(k)

i ) � λmin(X(k)T
i X(k)

i ) � n(k) and the singular values of I− Γ(k)

have a positive lower bound for each k ∈ 1, . . . ,K.

Let

Υ = T (Y(1),Y(2), · · · ,Y(K)), Π = T (π(1),π(2), · · · ,π(K)),

and denote
X = diag{X(1)

i ,X
(2)
i , . . . ,X

(K)
i }.

We use Υ̂ and Π̂ to denote the prediction of Υ and Π, respectively. In addition, we will use the
subscript j to denote the j-th column of the corresponding matrices. We further denote

||π||22max = max
1≤i≤p

{||π(1)
i ||

2
2 ∨ ||π

(2)
i ||

2
2 ∨ · · · ∨ ||π

(K)
i ||22},

which represents the maximum of the square of the magnitude of signals over all networks and nodes.
We have the following theorem for all j ∈ {1, 2, . . . ,Kp}.

Theorem B.2. Let the ridge parameter in (6) be, for each node i, λ(k)
i =

√
(n(k)). Under Assump-

tions B.1 and B.2, we have, with probability at least 1−
∑K
k=1 δ

(k),

1. ||Π̂j −Πj ||22 . d ∨ log(1/δmin) ∨ ||π||22max/nmin;

2. ||X(Π̂j −Πj)||22 . d ∨ log(1/δmin) ∨ ||π||22max.

This implies that, with proper choice of the ridge parameter and sequence {δ(k)}, we can have
well-bounded estimation and prediction loss, essentially `2 consistent. For example, we can pick
δ(k) � e−ntmin where t ∈ min(0.1− θ), so the `2 estimation loss for each term and the MSE (Mean
squared error) would tends to 0 with large sample size, as long as ||π||22max is bounded by a positive
constant.

We could also draw conclusions in terms of the error over the whole system, i.e. the Frobenius norm.
So that with probability at least 1 − p

∑K
k=1 δ

(k), the systematic estimation error and MSE could
reach the exact same bound for a single node. To control the loss with ultra-high probability, we
only need control pδ(k). Notice that each pδ(k) � pe−n

t
min → 0 whenever p = o(en

t
min). That is,

the dimension can grow with a restricted exponential term, i.e, p = en
t
min .
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After exploring the theory for the first stage, we will discuss the promising properties in the second
stage. For each node i, we use Si to denote the indices of true non-zero components of βi, i.e.,
Si = supp(βi). Further denote

Π−i = T (π
(1)
−i ,π

(2)
−i , · · · ,π

(K)
−i ).

Following Bickel et al. [2], we impose the restricted eigenvalue condition to constrain the projected
design matrix.

Assumption B.3. ||PiXΠ−iβi||22 ≥ 2λ0n||βi||22 whenever ||βSci ||1 ≤ 3||βSi ||1 for some positive
constant λ0. In addition, ‖ω̂Si‖∞ ≤ ‖ω̂Sci ‖−∞.

The latter assumption is intuitive. Recall ω̂i = 1/|β̂0i|γ , so we need ‖β̂0Si‖−∞ ≥ ‖β̂0Sci ‖∞, where
the estimation for true signal should always dominate the noise. This assumption is milder than the
selection consistency of estimators which can be achieved by a proper estimator such as Lasso under
mild conditions.

Denote
B = [β1,β2, . . . ,βp],

and define fn =
√
n||Π||1

√
d ∨ log( 1

δmin
) ∨ ||π||22max + d ∨ log( 1

δmin
) ∨ ||π||22max,

gn = (CΠ

√
d

nmin
(d ∨ log( 1

δmin
) ∨ ||π||22max) + ||Π||1)(||B||1 ∨ 1).

(9)

Next we will show that under some mild conditions, for each node i, the estimation and prediction
loss could be bounded with large probability. Denote σmax = max

1≤i≤p
max

1≤k≤K
σ

(k)
i and σ̃max =

max
1≤i≤p

max
1≤k≤K

σ̃
(k)
i .

Theorem B.3. Suppose that the adaptive lasso at the second stage takes the tuning parameter

νi =
4√

n||ω̂Si ||∞
gnmax{3

√
2

√
log(

4Kd

δmin
)(σmax ∨ σ̃max),

√
d ∨ log(

1

δmin
) ∨ ||π||22max},

and |Si| ≤ λ0

C
n
fn

for some constant C. Then under Assumptions B.1–B.3, we have that, with

probability at least 1− δmin − p
∑K
k=1 δ

(k),

1. ||β̂i − βi||22 . |Si|
n gn{d ∨ log( 1

δmin
) ∨ ||π||22max ∨ log d

δmin
};

2. 1
n ||PiΥ̂−i(β̂i − βi)||22 . |Si|

n gn{d ∨ log( 1
δmin

) ∨ ||π||22max ∨ log d
δmin
}.

For each k, we can separately conduct the analysis on each cohort and obtain the following property
for single task estimation. That is, letting

f(n(k)) =
√
n(k)||π(k)||1

√
d ∨ log(

1

δ(k)
) ∨ ||πi||2(k)

2 + d ∨ log(
1

δ(k)
) ∨ ||πi||2(k)

2 ,

g(n(k)) =

(
Cπ

√
d

n(k)
(d ∨ log(

1

δ(k)
) ∨ ||πi||2(k)

2 ) + ||π(k)||1

)
(||B||1 ∨ 1),

we have the following result for each node i.
Corollary B.3.1. Suppose that the adaptive lasso at the inference stage takes the tuning parameter

νi =
4√

n(k)||ω̂Si ||∞
g(n(k))max{3

√
2

√
log(

4d

δmin
)(σmax∨ σ̃max),

√
d ∨ log(

1

δ(k)
) ∨ ||πi||2(k)

2 },

and |Si| ≤ λ0

C
n(k)

f(n(k))
for some constant C. Then under Assumptions B.1–B.3, we have that, with

probability at least 1− δmin − pδ(k),
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1. ||γ̂(k)
i − γ

(k)
i ||22 . |Si|

n(k) g(n(k)){d ∨ log( 1
δ(k)

) ∨ ||πi||2(k)
2 ∨ log d

δmin
};

2. 1
n(k) ||PiΥ̂−i(γ̂

(k)
i − γ

(k)
i )||22 . |Si|

n(k) g(n(k)){d ∨ log( 1
δ(k)

) ∨ ||πi||2(k)
2 ∨ log d

δmin
}.

The proof directly follows by treating each cohort as a baseline cohort in theorem (4.1). Note that
the denominator is making a crucial difference in inferring the bound. The algorithm indicates that
when we aggregate the samples that does not differ too much, the estimator tends to converge faster,
especially when n� n(k), where we have a plethora of samples in addition to the samples for the
base cohort.

Moving forward, we will examine the selection consistency of the estimator. Denote the covariance
matrix of PiXΠ−i as

Σi =
1

n
ΠT
−iX

TPiXΠ−i,

and correspondingly denote

Σ̂i =
1

n
Π̂
T

−iX
TPiXΠ̂−i,

for PiXΠ̂−i. We will use subscripts to denote the corresponding rows and columns in above matrices.
For instance, ΣSi,Si represents the rows and columns of Σi, both indexed by Si.

In order to investigate the selection consistency of causal effects, we impose the irrepresentable
condition introduced by Zhao and Yu [24].

Assumption B.4. For each i ∈ {1, 2, · · · , p}, ΣSi,Si is invertible and ||ΣSci ,SiΣ
−1
Si,Si ||∞ < 1 − η

for some constant η ∈ (0, 1).

Theorem B.4. (Causality Selection Consistency) Suppose that |Si| ≤ η
(η+2)τi

n
fn

with τi =

||Σ−1
Si,Si ||∞ and min

j∈Si
|βij | >

νiτi||ω̂Si ||∞
2−η for each node i. Then under Assumptions B.1–B.4, we have

probability at least 1− δmin − p
∑K
k=1 δ

(k), such that sign(β̂i) = sign(βi).

Note that estimation consistency does not imply sign consistency and vice versa. We further establish
sign consistency to guarantee our causal variables are selected with the correct sign. From the
discussion in Theorem 4.1, it directly follows that νi . n(1−3θ)/2, which would infer νiτ ||ω̂Si ||∞2−η .

n
1−3θ

2 . Thus we are putting really mild assumption on the smallest true signal size, requiring at
most a gap of n

2−3θ
2 between the signal and the error decay rate of n−

1
2 , As for the number of true

significant variables, we can grant the growth at most to n
θ
2 .

B.2 Proofs of the Theorems

B.2.1 Proof of Theorem B.1

It can be inferred from [9] that there exists some θ(k) ∈ (0, U (k)) such that, when |M(k)
i | .

(n(k))1−θ(k) and for some positive constant c̃(k)
4 , we have that, with probability at least 1 −

c̃
(k)
4 exp

{
−(n(k))1−2κ(k)

/ log(n(k))
}

,

M(k)
i∗ ⊆M

(k)
i .

Denote
θ = min

1≤k≤K
θ(k),

then, for |M(k)
i | . n1−θ

min , with probability at least 1 − c̃(k)
4 exp

{
−(n(k))1−2κmax/ log(n(k))

}
, we

have that

M(k)
i∗ ⊆M

(k)
i
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B.2.2 Proof of Theorem B.2

In the proof of theorem 2, we will first give the bound of estimation loss and predictions loss for
ridge regression on each network, after which we utilize the result to prove the bound for constructed
networks.
Lemma B.1. For each k ∈ {1, 2, . . . ,K}, set λ(k)

i =
√
n(k). Under Assumptions B.1 and B.2, we

have, with probability at least 1− δ(k),

1. ||π̂(k)
i − π

(k)
i ||22 . d∨log(1/δ(k))∨||π(k)

i ||
2
2

n(k) ;

2. ||X(k)
i (π̂

(k)
i − π

(k)
i )||22 . d ∨ log(1/δ(k)) ∨ ||π(k)

i ||22.

Proof of Lemma B.1. We first link the ridge regression estimator with the ordinary least squres (OLS)
estimator denoted as

π̂
∗(k)
i =

(
X

(k)T
i X

(k)
i )−1X

(k)T
i Y

(k)
i .

We write ridge estimator π̂(k)
i as

π̂
(k)
i =

(
X

(k)T
i X

(k)
i + λ

(k)
i Id

)−1
X

(k)T
i Y

(k)
i = Lπ̂

∗(k)
i ,

where

L = LT = (λ
(k)
i (X

(k)T
i X

(k)
i )−1 + Id

)−1
=

1

λ
(k)
i

((X
(k)T
i X

(k)
i )−1 +

1

λ
(k)
i

Id
)−1

= Id − λ(k)
i (X

(k)T
i X

(k)
i + λ

(k)
i Id

)−1
,

using Woodbury’s identity.

The `2 loss for estimation can be then decomposed as

||π̂(k)
i − π

(k)
i ||

2
2

= (Lπ̂
∗(k)
i − π(k)

i )T (Lπ̂
∗(k)
i − π(k)

i )

= (π̂
∗(k)
i − π(k)

i )TLTL(π̂
∗(k)
i − π(k)

i )︸ ︷︷ ︸
T21

+ 2(π̂
∗(k)
i − π(k)

i )TLT (L− Id)π(k)
i︸ ︷︷ ︸

T22

+π
(k)T
i (L− Id)T (L− Id)π(k)

i︸ ︷︷ ︸
T23

.

We will derive the bound for T21, T22 and T23 with respectively, after which the estimation loss could
be bound easily using the property of eigenvalues of X

(k)T
i X

(k)
i .

We write
X

(k)T
i X

(k)
i = Q

(k)
i V

(k)
i Q

(k)T
i ,

using eigendecomposition, where Q(k)
i is unitary, and V (k)

i is a diagonal matrix with diagonal entries
to be eigenvalues vij , where vij � n(k) according to Assumption B.2, for each j ∈ {1, 2, . . . , d}.
Then

L =
1

λ
(k)
i

Q
(k)
i

(
V

(k)−1
i +

1

λ
(k)
i

Id
)−1

Q
(k)T
i = Id − λ(k)

i Q
(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
Q

(k)T
i .

Denote
var(ε

(k)
ji ) = σ

(k)2
i , var(ξ

(k)
ji ) = σ̃

(k)2
i .

Note that
π̂
∗(k)
i − π(k)

i ∼ N (0, σ̃
(k)2
i (X

(k)T
i X

(k)
i )−1),

which follows the sub-Gaussian distribution. Following Assumption B.2, the singular value of I−Γ(k)

is bounded from below, then we have σ̃max . σmax. We then employ the Hanson-Wright inequality
[19] to bound its tail. For any t, there is some positive constant t1, such that
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P(T21 ≥ E(T21) + t) ≤ t1 exp

(
− t2

σ̃
(k)4
i /n(k)2||LTL||2F

∧ t

σ̃
(k)2
i /n(k)||LTL||op

)
. (10)

E(T21) = σ̃
(k)2
i tr

(
LLTX

(k)
i X̃

(k)T
i

)
= σ̃

(k)2
i tr

(
1

λ
(k)2
i

Q
(k)
i

(
V

(k)−1
i +

1

λ
(k)
i

Id
)−2

V
(k)−1
i Q(k)T

)

= σ̃
(k)2
i

d∑
j=1

vij

(vij + λ
(k)
i )2

.
d

n(k)
. (11)

||LLT ||2F = tr
(
LLTLLT

)
= tr

(
1

λ
(k)4
i

Q
(k)
i

(
V

(k)−1
i +

1

λ
(k)
i

Id
)−4

Q(k)T

)

=
d∑
j=1

v4
ij

(vij + λ
(k)
i )4

. d. (12)

||LLT ||op =
√
λmax (LLTLLT ) . 1. (13)

Let

t =

√
σ̃

(k)4
i /n(k)2||LLT ||2F log(

K

δ(k)
)/exp(t1) ∨

(
σ̃

(k)2
i /n(k)||LLT ||oplog(

K

δ(k)
)/exp(t1)

)
,

with (10), (11), (12), and (13), we have that, with probability at least 1− δ(k)/K,

T21 .
d ∨

√
dlog( 1

δ(k)
) ∨ log( 1

δ(k)
)

n(k)
. (14)

Next we will bound T22 using Gaussian tail inequality. Denote

π
q(k)
i = Q(k)Tπ

(k)
i ,

then
||πq(k)

i ||22 = ||π(k)
i ||

2
2.

For any positive t,

P (T22 ≥ t) ≤ exp

(
−1

2

t2

var(T22)

)
.

where

var(T22) = 4σ̃
(k)2
i π

(k)T
i (L− Id)TL(X

(k)T
i X

(k)
i )−1LT (L− Id)π(k)

i

= 4σ̃
(k)2
i π

(k)T
i Q

(k)
i (V

(k)
i + λ

(k)
i Id)

−1(V
(k)−1
i +

1

λ
(k)
i

Id)
−1V

(k)−1
i ×

(V
(k)−1
i +

1

λ
(k)
i

Id)
−1(V

(k)
i + λ

(k)
i Id)

−1Q
(k)T
i π

(k)
i

= 4σ̃
(k)2
i

d∑
j=1

π
q(k)2
i vijλ

(k)2
i

(vij + λ
(k)
i )4

.
||π(k)

i ||22
n(k)2

.

Let
t =

√
2var(T22) log(K/δ(k)),

we have that, with probability at least 1− δ(k)/K,

T22 .
||π(k)

i ||2
n(k)

√
log(1/δ(k)). (15)
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Finally, we can bound T23 as

T23 = π
(k)T
i Q

(k)
i (V

(k)
i + λ

(k)
i Id)

−2Q
(k)T
i π

(k)
i

= λ
(k)2
i

d∑
j=1

π
q(k)2
i

(vij + λ
(k)
i )2

.
||π(k)

i ||22
n(k)

.
(16)

Combining the bound (14), (15) and (16), we have that, with probability at least 1− δ(k),

||π̂(k)
i − π

(k)
i ||

2
2 .

d ∨ log( 1
δ(k)

) ∨ ||π(k)
i ||22

n(k)
.

Note that
(π̂

(k)
i − π

(k)
i )TX

(k)T
i X

(k)
i (π̂

(k)
i − π

(k)
i )

(π̂
(k)
i − π

(k)
i )T (π̂

(k)
i − π

(k)
i )

≤ λmax(X
(k)T
i X

(k)
i ).

So we directly have

||X(k)
i (π̂

(k)
i − π

(k)
i )||22 ≤ λmax(X

(k)T
i X

(k)
i )||π̂(k)

i − π
(k)
i ||

2
2 . d ∨ log(

1

δ(k)
) ∨ ||π(k)

i ||
2
2.

which concludes the proof of Lemma B.1.

Next, we will prove the theorem by repeatedly applying Lemma B.1. We write the error loss for each
j ∈ {1, 2, . . . ,Kp} as

||Π̂j −Πj ||22 =

{∑K
k=1 ||π̂

(k)
j|p − π

(k)
j|p ||

2
2, j ≤ p,

||π̂(k−1)
j|p − π(k−1)

j|p ||22, j > p,
(17)

where j|d is the remainder of j divided by p, denoting the corresponding column index. Applying
the bounds in Lemma B.1 to all the networks, we have that, with probability at least 1−

∑K
k=1 δ

(k),

||Π̂j −Πj ||22 .
K∑
k=1

d ∨ log(1/δ(k)) ∨ ||π(k)
i ||22

n(k)
.
d ∨ log(1/δmin) ∨ ||π||22max

nmin
.

Using the same approach we can bound the prediction loss. We have that, with probability at least
1−

∑K
k=1 δ

(k),

||X(Π̂j −Πj)||22 =

K∑
k=1

||X(k)
i (π̂

(k)
j|p − π

(k)
j|p)||22

.
K∑
k=1

d ∨ log(1/δ(k)) ∨ ||π(k)
i ||

2
2 . d ∨ log(1/δmin) ∨ ||π||22max,

which concludes the proof of Theorem B.2.

B.2.3 Proof of Theorem B.3

Lemma B.2. Suppose that for each node i and a properly chosen positive constant C,

|Si| ≤
λ0

C

n

fn
. (18)

for function fn defined in (9). Under Assumptions B.1–B.3, we have that, with probability at least
1− p

∑K
k=1 δ

(k),
||PiXΠ̂−iβi||22 ≥ λ0n||βi||22,

whenever ||βSci ||1 ≤ 3||βSi ||1.
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Proof of Lemma B.2. We will bound the maximum value in the matrix

|(PiXΠ̂−i)
T (PiXΠ̂−i)− (PiXΠ−i)

T (PiXΠ−i)|,
whose value in l-th row and r-th column can be expressed as

|Π̂
T

l XPiXΠ̂r −ΠT
l XPiXΠr|

≤ | (Π̂l −Πl)
TXTPiX(Π̂r −Πr)︸ ︷︷ ︸

T31

|+ | (Π̂l −Πl)
TXTPiXΠr︸ ︷︷ ︸
T32

|

+ |ΠT
l XTPiX(Π̂r −Πr)︸ ︷︷ ︸

T33

|.

We will further bound T31, T32 and T33. Note that, since Pi is a projection matrix,

λmax(Pi) = 1.

Then by applying Theorem B.2, we have that, with probability at least 1−
∑K
k=1 δ

(k),

T31 ≤ ||PiX(Π̂l −Πl)||2 × ||PiX(Π̂r −Πr)||2
≤ λ2

max(Pi)||X(Π̂l −Πl)||2 × ||X(Π̂r −Πr)||2

. d ∨ log(
1

δmin
) ∨ ||π||22max.

With equation (17), we have that,

||X Πr||22 ≤
K∑
k=1

||X(k)
i π

(k)
r|p||

2
2 .

K∑
i=1

n(k)||π(k)
r|p||

2
2 . n

K∑
i=1

||π(k)
r|p||

2
2 . n||Π||21.

Thus T32 could be bounded as

T32 ≤ ||XΠr||2||PiX(Π̂l −Πl)||2 .
√
n||Π||1

√
d ∨ log(

1

δmin
) ∨ ||π||22max. (19)

In a similar manner, we have

T33 .
√
n||Π||1

√
d ∨ log(

1

δmin
) ∨ ||π||22max. (20)

Then

T31 + T32 + T33 .
√
n||Π||1

√
d ∨ log(

1

δmin
) ∨ ||π||22max + d ∨ log(

1

δmin
) ∨ ||π||22max = fn.

Let, for certain positive constant C,

T31 + T32 + T33 ≤ Cfn,
then we have,

βTi ((PiXΠ̂−i)
T (PiXΠ̂−i)− (PiXΠ−i)

T (PiXΠ−i))βi

≤ ||βi||21(|T31|+ |T32|+ |T33|) ≤ C|Si|||βi||22fn ≤ λ0n||βi||22. (21)

Along with the restriction of Assumption B.3, we have

||PiXΠ̂−iβi||22 ≥ λ0n||βi||22,
whenever ||βSci ||1 ≤ 3||βSi ||1 by applying triangular inequality. The proof of Lemma B.2 is now
complete.

Lemma B.3. For each i ∈ {1, 2, . . . , p}, νi is the tuning parameter in the inference stage. Under
Assumptions B.1–B.3, we have, with probability at least 1− δmin − p

∑K
k=1 δ

(k),

||Υ̂T
−iPi[εi + (Υ−i − Υ̂−i)βi]||∞ ≤

1

4
nνi‖ω̂Si‖∞. (22)
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Proof of Lemma B.3. We have Υ−i = XΠ−i + ξ−i and Υ̂−i = XΠ̂−i by definition, where

ξ−i = T (ξ
(1)
−i , ξ

(2)
−i , · · · , ξ

(K)
−i ).

Note that
||Υ̂T
−iPi[εi + (Υ−i − Υ̂−i)βi]||∞ ≤ ||Π̂

T

−iX
TPiεi||∞︸ ︷︷ ︸
T34

+ ||Π̂
T

−iX
TPiX(ΠT

−i − Π̂
T

−i)βi||∞︸ ︷︷ ︸
T35

+ ||Π̂
T

−iX
TPiξ−iεi||∞︸ ︷︷ ︸
T36

.

Firstly, by applying Theorem B.2, we have that, with probability at least 1− p
∑K
k=1 δ

(k),

‖(Π̂j −Πj)
T ‖2−∞ = max

1≤j≤Kp
||Π̂j −Πj ||21 ≤ max

1≤j≤Kp

(
Kd||Π̂j −Πj ||22

)
.

d

nmin
(d ∨ log(

1

δmin
) ∨ ||π||22max).

Denote tΠ = ‖(Π̂j −Πj)
T ‖−∞ ≤ CΠ

√
d

nmin
(d ∨ log( 1

δmin
) ∨ ||π||22max),

We further have XT
·jX·j � n after standardization, where X·j is the j-th column of X. Therefore,

XT
·jPiεi follows Gaussian distribution with variance bounded as

var
(
XT
·jPiεi

)
. XT

·jPiX·j . n.

We have
P
(
||Π̂

T

−iX
TPiεi||∞ ≥ t

)
≤ P

(
(||(Π̂−i −Π−i)

T ||∞ + ||ΠT
−i||∞)||XTPiεi||∞ ≥ t

)
≤ P

(
||XTPiεi||∞ ≥

t

tΠ + ||Π||1

)
≤ 2Kd exp

{
−
(

t

tΠ + ||Π||1

)2 /
(2nσ2

max)

}
. (23)

Using Theorem B.2 and Assumption B.2, the second term could be bounded as,

||Π̂
T

−iX
TPiX(ΠT

−i − Π̂
T

−i)βi||∞

≤ (||(Π̂−i −Π−i)
T ||∞ + ||ΠT

−i||∞)||XTPiX(ΠT
−i − Π̂

T

−i)βi||∞

≤ (tΠ + ||Π||1)||B||1max
j1,j2
|XT

j1PiX(ΠT
j2 − Π̂

T

j2)|

≤
√
n(tΠ + ||Π||1)||B||1max

j2
||PiX(ΠT

j2 − Π̂
T

j2)||2

≤
√
n(tΠ + ||Π||1)||B||1

√
d ∨ log(

1

δmin
) ∨ ||π||22max, (24)

Using the same way above, we have
var(XT

·jPiξi) . n.

Then,

P
(
||Π̂

T

−iX
TPiξ−iεiβi||∞ ≥ t

)
≤ P

(
(||(Π̂−i −Π−i)

T ||∞ + ||ΠT
−i||∞)||B||1||XTPiξ−iεi||∞ ≥ t

)
≤ P

(
||XTPiξ−iεi||∞ ≥

t

(tΠ + ||Π||1)||B||1

)
≤ 2Kd exp

{
−
(

t

(tΠ + ||Π||1)||B||1

)2 /
(2nσ̃2

max)

}
. (25)
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With νi defined in Theorem B.3 and

t =
1

12
nνi‖ω̂Si‖∞

in the above inequalities, we then have

P(T34 ≥
1

12
nνi‖ω̂Si‖∞) ≤ δmin/2,

P(T36 ≥
1

12
nνi‖ω̂Si‖∞) ≤ δmin/2,

T35 ≤
1

12
nνi‖ω̂Si‖∞.

Conditioning on tΠ and using the bound obtained at the beginning of the discussion. We have that

P(T34 + T35 + T36 ≤
1

4
nνi‖ω̂Si‖∞) ≥ (1− δmin − p

K∑
k=1

δ(k)).

This concludes the proof of Lemma B.3.

Next, we follow the techniques in [17] to bound the prediction loss. Following the definition of the
adaptive lasso, we have

1

n
||PiYi −PiΥ̂−iβ̂i||22 + νiω̂

T
i |β̂i|1 ≤

1

n
||PiYi −PiΥ̂−iβi||22 + νiω̂

T
i |βi|1. (26)

We can rewrite the inequality as
1

n
||Pi(Υ−i − Υ̂−i)βi + Piεi + PΥ̂−i(βi − β̂i)||22 + νiω̂

T
i |β̂i|1

≤ 1

n
||Pi(Υ−i − Υ̂−i)βi + Piεi||22 + νiω̂

T
i |βi|1,

1

n
||Pi(Υ−i − Υ̂−i)βi||22

≤ 2

n
{Υ̂T
−iPi[εi + (Υ−i − Υ̂−i)βi]}T (β̂i − βi) + νiω̂

T
i |βi|1 − νiω̂

T
i |β̂i|1.

Adding 1
2νi||ω̂Si ||∞||β̂i−βi||1, and then multiplying n to both sides, together with Lemma B.3 and

Assumption B.3, we have that

||PΥ̂−i(βi − β̂i)||22 +
n

2
νi||ω̂Si ||∞||β̂i − βi||1

≤ 2||{Υ̂T
−iPi[εi + (Υ−i − Υ̂−i)βi]}T ||∞||(β̂i − βi)||1 +

n

2
νi||ω̂Si ||∞||β̂i − βi||1

+nνiω̂
T
i |βi|1 − nνiω̂

T
i |β̂i|1

≤ nνi||ω̂Si ||∞||β̂i − βi||1 + nνi||ω̂Si ||∞||βSi ||1 − nνi||ω̂Si ||∞(||β̂Si ||1 + ||β̂SCi ||1)

= nνi||ω̂Si ||∞||β̂Si − βSi ||1 + nνi||ω̂Si ||∞||βSi ||1 − nνi||ω̂Si ||∞||β̂Si ||1
≤ 2nνi||ω̂Si ||∞||β̂Si − βSi ||1. (27)

Comparing the two sides, we have

||β̂i − βi||1 ≤ 4||β̂Si − βSi ||1, (28)

||β̂Sci − βSci ||1 ≤ 3||β̂Si − βSi ||1. (29)

which indicates that β̂ − β satisfies the condition in Lemma B.2. So we have

||PiΥ̂−i(β̂i − βi)||22

≤ 3

2
νin‖ω̂Si‖∞||β̂Si − βSi ||1 ≤

3

2
νin‖ω̂Si‖∞

√
|Si|||β̂Si − βSi ||2

≤ 3

2
νin‖ω̂Si‖∞

√
|Si|
||PiΥ̂−i(β̂i − βi)||2√

nλ0

. (30)
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Thus we can bound the error term as,
1

n
||PiΥ̂−i(β̂i − βi)||22 ≤

9

4

|Si|
λ0
||ω̂Si ||2∞ν2

i .

Using the value of νi, we get that
1

n
||PiΥ̂−i(β̂i − βi)||22

.
|Si|
n

(

√
d
d ∨ log( 1

δmin
) ∨ ||π||22max

nmin

+||Π||1)(||B||1 ∨ 1)× d ∨ log(
1

δmin
) ∨ ||π||22max ∨ log

d

δmin
.

Applying Lemma B.2 again, we derive that

||β̂i − βi||22

≤ 1

λ0n
||PiΥ̂−i(β̂i − βi)||22

.
|Si|
n

(

√
d
d ∨ log( 1

δmin
) ∨ ||π||22max

nmin

+||Π||1)× (||B||1 ∨ 1)d ∨ log(
1

δmin
) ∨ ||π||22max ∨ log

d

δmin
.

The above prediction and estimation bounds condition on the bound of tΠ and restricted eigenvalue
condition for prediction matrices, which hold with probability at least 1− δmin − p

∑K
k=1 δ

k. The
proof of Theorem B.3 is then completed.

B.2.4 Proof of Theorem B.4

Lemma B.4. Suppose that, for each node i and function fn defined in (9),

|Si| ≤
η

(η + 2)τi

n

fn
. (31)

Under Assumptions B.1–B.4, we have that, with the probability at least 1− p
∑K
k=1,

||Σ̂Sci ,SiΣ̂
−1
Si,Si ||∞ ≤ 1− η2/2.

Proof of Lemma B.4. Following the proof of Lemma B.2, we have showed that, with probability at
least 1− p

∑K
k=1 δ

(k),

max
l,r

1

n
|Σ̂l,r − Σl,r| ≤ fn/n.

where the subscript l, r denotes the elements in the l-th row and r-th column in the corresponding
matrix.

Consider the part indexed by set Si with the assumption in the lemma, we have that

||Σ̂Si,Si − ΣSi,Si ||∞ ≤ |Si|
fn
n
≤ η

(η + 2)τi
.

In a similar manner, we have,

||Σ̂Sci ,Si − ΣSci ,Si
||∞ ≤ |Si|

fn
n
≤ η

(η + 2)τi
. (32)

We bound the error of matrix inversion as described in Horn and Johnson [12] and obtain that,

||Σ̂−1
Si,Si ||∞ ≤ ||Σ̂−1

Si,Si − Σ−1
Si,Si ||∞ + ||Σ−1

Si,Si ||∞

≤
τ2
i ||Σ̂Si,Si − ΣSi,Si ||∞

1− τi||Σ̂Si,Si − ΣSi,Si ||∞
+ τi

≤ τi
1− τi|Si|fn/n

≤ η + 2

2
τi. (33)
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Note the following decomposition,

Σ̂Sci ,Si
Σ̂−1
Si,Si − ΣSci ,Si

Σ−1
Si,Si = (Σ̂Sci ,Si

− ΣSci ,Si
)Σ̂−1
Si,Si

+ ΣSci ,Si
Σ−1
Si,Si

(
ΣSi,Si − Σ̂Si,Si

)
Σ̂−1
Si,Si .

Then, collecting (32), (32), (33) and Assumption B.4, we have that

||Σ̂Sci ,SiΣ̂
−1
Si,Si − ΣSci ,Si

Σ−1
Si,Si ||∞ ≤ ||Σ̂Sci ,Si − ΣSci ,Si

||∞||Σ̂−1
Si,Si ||∞

+ ||ΣSci ,SiΣ
−1
Si,Si ||∞||Σ̂Si,Si − ΣSi,Si ||∞||Σ̂

−1
Si,Si ||∞

≤ η − 1

2
η2.

Together with Assumption B.4, we derive that

||Σ̂Sci ,SiΣ̂
−1
Si,Si ||∞ ≤ 1− 1

2
η2.

The proof of Lemma B.4 is then completed.

Denote Wi = diag(ω̂i). Applying the KKT condition, we get that

− 2

n
Υ̂T
−iPi(PiYi −PiΥ̂−iβ̂i) + νiWiαi = 0, (34)

where αi ∈ RKp−K , satisfying αij I(β̂ij 6= 0) = sign(β̂ij).

Using the equation PiYi = PiΥ−iβi + Piεi, we have that

Υ̂T
−iPi(PiYi −PiΥ̂−iβ̂i)

= Υ̂T
−iPi[Piεi + Pi(Υ−i − Υ̂−i)β̂i) + PiΥ̂−i(βi − β̂i)]

= Υ̂T
−iPi(εi + (Υ−i − Υ̂−i)β̂i)︸ ︷︷ ︸

T41

− Υ̂T
−iPiΥ̂−i(β̂i − βi)︸ ︷︷ ︸

T42

.

(35)

With the definition of Σ̂i, (34) implies that,

1

n
T41 − Σ̂i(β̂i − βi) =

1

2
νiWiαi, (36)

We consider the rows indexed by Si and Sci in both sides of equation (36) which can be decomposed
as 

1

n
T41,Si − Σ̂Si,Si(β̂Si − βSi) =

1

2
νiWSiαSi ,

1

n
T41,Sci − Σ̂Sci ,Si

(β̂Si − βSi) =
1

2
νiWSci αSci ,

(37)

where T41,Si and T41,Sci denote the Si and Sci rows for T41, respectively.

From the first equation of (37), we can equate the error of estimation indexed by Si as,

β̂Si − βSi = Σ̂−1
Si,Si(

1

n
T41,Si −

1

2
νiWSiαSi). (38)

Scaling νi by 1
2

4−η2
η2 and using the same method in the proof of Lemma B.3, we have at least

probability at least 1− δmin − p
∑K
k=1 δ

(k), such that

||T41||∞ ≤
1

2

η2

4− η2
nνi||ω̂Si ||∞.
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Therefore, we can bound the infinity norm of the above error as,

||β̂Si − βSi ||∞ ≤ ||Σ̂−1
Si,Si ||∞(

1

n
||T41||∞ +

1

2
νi||ω̂Si ||∞)

≤ η + 2

2
τi

2

4− η2
νi||ω̂Si ||∞

=
νiτi||ω̂Si ||∞

2− η
≤ min
j∈Si
|βij |.

It indicates the largest absolute error is no larger than the minimal absolute signal, which leads to

sign(β̂Si) = sign(βSi).

Next we will validate the second equation of (37) using the decomposition of error in (38), we have
that

|| 1
n
T41,Sci − Σ̂Sci ,Si

Σ̂−1
Si,Si(

1

n
T41,Si −

1

2
νiWSiαSi)||∞

≤ 1

2

η2

4− η2
νi||ω̂Si ||∞ + ||Σ̂Sci ,SiΣ̂

−1
Si,Si ||∞(

1

2

η2

4− η2
νi||ω̂Si ||∞ +

1

2
νi||ω̂Si ||∞)

≤ (
1

2

η2

4− η2
+

2− η2

2

2

4− η2
)νi||ω̂Si ||∞ =

1

2
νi||ω̂Si ||∞

≤ 1

2
νi||ω̂Sci ||∞.

From the construction above, we have proved sign(β̂i) = sign(βi) and thus complete the proof of
Theorem B.4.

C Proofs of the Theorems in the Main Text

C.1 Proof of Theorem 4.1

Theorem 4.1 directly follows Theorem B.3 and B.4.

C.2 Proof of Theorem 4.2

Denote ζ(k)
i = X

(k)
Ii φ

(k)
Ii + ε

(k)
i , then Y

(k)
i = Y

(k)
−i + ζ

(k)
i according to (1). We have

|R2(k)
i −R2(k)

0i | =
|||Y(k)

−i γ̂
(k)
i −Y

(k)
i ||22 − ||Y

(k)
−i γ

(k)
i −Y

(k)
i ||22|

||Y(k)
i ||22

=
[Y

(k)
−i (γ̂

(k)
i − γ

(k)
i )]T [Y

(k)
−i (γ̂

(k)
i − γ

(k)
i )− 2ζ

(k)
i ]

||Y(k)
i ||22

=
|||Y(k)

−i (γ̂
(k)
i − γ

(k)
i )||22 − 2[Y

(k)
−i (γ̂

(k)
i − γ

(k)
i )]T ζ

(k)
i |

||Y(k)
i ||22

. (39)

By Cauchy-Schwarz inequality, we have that

[Y
(k)
−i (γ̂

(k)
i − γ

(k)
i )]T ζ

(k)
i ≤ ||Y(k)

−i (γ̂
(k)
i − γ

(k)
i )||2||ζ(k)

i ||2, (40)

where

||ζ(k)
i ||

2
2 . ||X(k)

Ii φ
(k)
Ii ||2||ε

(k)
i ||2 ≤

√
n||φ(k)

Ii ||2||ε
(k)
i ||2. (41)

Note that ||ε(k)
i ||22 follows the χ2 distribution, so we have that, with probability at least 1− δmin

||ε(k)
i ||2 ≤

√
n(k) + 2

√
n(k)log(

1

δmin
) + 2log(

1

δmin
). (42)
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Furthermore, we have ||Yi||2(k)
2 � n(k) due to normaliztion. Then collecting Theorem (4.1),

equations (39), (40), (41), (42), we have that, with probability at least 1− 2δmin − pδ(k),

|R2(k)
i −R2(k)

0i | .
|Si|gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}

n(k)2

+

√
|Si|gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}
√
n(k)||φ(k)

Ii ||2hn
n(k)

(43)

where hn =

√
n(k) + 2

√
n(k)log( 1

δmin
) + 2log( 1

δmin
).

We can derive the same bound for the whole system, with probability at least 1− p(2δmin + pδ(k)),
we have that

p∑
i=1

|R2(k)
i −R2(k)

0i | (44)

.
|Si|gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}

n(k)

+

√
|Si|gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}
√
n(k)||φ(k)

Ii ||2hn
n(k)

. (45)

In the following proofs, we will bound the error of the C2 statistics.
p∑
j=1

|C2(k)
j − C2(k)

j0 |

=

p∑
j=1

p∑
i=1

|||Y(k)
j γ̂

(k)
ij −Y

(k)
i ||22 − ||Y

(k)
j γ

(k)
ij −Y

(k)
i ||22|

||Y(k)
i ||22

=

p∑
j=1

p∑
i=1

|[Y(k)
j (γ̂

(k)
ij − γ

(k)
ij )]T [Y

(k)
j (γ̂

(k)
ij − γ

(k)
ij )− 2Y

(k)
i + 2Y

(k)
j γ

(k)
ij )]|

||Y(k)
i ||22

. (46)

Note that
p∑
j=1

p∑
i=1

|[Y(k)
j (γ̂

(k)
ij − γ

(k)
ij )]T [Y

(k)
j (γ̂

(k)
ij − γ

(k)
ij )− 2Y

(k)
i + 2Y

(k)
j γ

(k)
ij )]|

=

p∑
j=1

p∑
i=1

|||Y(k)
j (γ̂

(k)
ij − γ

(k)
ij )||22 − 2(γ̂

(k)
ij − γ

(k)
ij )Y

(k)T
j Y

(k)
i

+2(γ̂
(k)
ij − γ

(k)
ij )γ

(k)
ij Y

(k)T
j Y

(k)
j |, (47)

and
Y

(k)T
j Y

(k)
i ≤ ||Y(k)

j ||2||Y
(k)
i ||2 � n

(k).

Then with equation (28), we have
p∑
j=1

|C2(k)
j − C2(k)

j0 |

.
p∑
j=1

p∑
i=1

||Y(k)
j (γ̂

(k)
ij − γ

(k)
ij )||22 + n(k)|γ̂(k)

ij − γ
(k)
ij |(||B||1 ∨ 1)

n(k)

.
p∑
i=1

∑p
j=1 ||Y

(k)
j ||22||(γ̂

(k)
ij − γ

(k)
ij )||22 + n(k)||γ̂(k)

i − γ
(k)
i ||1(||B||1 ∨ 1)

n(k)

.
p∑
i=1

n(k)||γ̂(k)
ij − γ

(k)
ij ||22 + n(k)

√
|Si|||γ̂(k)

i − γ
(k)
i ||2(||B||1 ∨ 1)

n(k)
. (48)
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Applying theorem 4.1 in the whole system, we have that, with probability at least 1−p(δmin+pδ(k))

p∑
j=1

|C2(k)
j − C2(k)

j0 |

.
|Si|gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}

n(k)

+

√
n(k)|Si|2gn{d ∨ log( 1

δ(k)
) ∨ ||πi||2(k)

2 ∨ log d
δmin
}(||B||1 ∨ 1)

n(k)
. (49)

Equation (44, 49) lead to the discussion in theorem 4.2 and the equations simplifies to theorem 4.2.

D Details in the Simulation Study

In Figure 6, we present one plot of the three networks used for the simulation study that corresponds
to Figure 4, showing the causal relations in the baseline network DCG III in black, the deviated causal
effects DCG I vs. DCG III, DCG II vs. DCG III, and DCG I vs. DCG II in blue, red, and green,
respectively.
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Figure 6: Plot of all causal effects among three networks used for the simulation study with baseline
DCG III, DCG I vs. DCG III, DCG II vs. DCG III, and DCG I vs. DCG II in black, blue, red, and
green, respectively.

E Limitations

Although we have developed a limited-information likelihood method to avoid optimizing too many
model parameters as the full-information likelihood method does, the proposed method may still be
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challenged by large K and massive total sample size n when there are too many cohorts to compare.
When K is too large, each task in the algorithm (identifying and estimating causal effects for a single
responder) has to estimate K(p − 1) parameters with an n × (K(p − 1)) design matrix, possibly
demanding a large amount of memory.

We have developed our algorithm for the case to compare all other networks to a single baseline
network and provide theoretical analysis. In practice, we may be interested in the deviated effects of
each network from the average effects. Our algorithm can be adopted for such a case. However, it is
challenging to develop an appropriate theoretical analysis for this case, and deserves further study.
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