
APPENDIX

In the appendix, we provide additional details of the theories and the experiments. The contents of
this appendix are as follows.

• In Appendix A, we discuss some details of PAGAR and MinimaxRegret that were omit-
ted in Section 4. We briefly introduce some necessary preliminaries in Appendix A.1. Then
we derive a Theorem 5 to support Table 1 in Appendix A.2. The proves for Theorem 1
and 1, Corollary 2 and 3, Theorem 1 are in Appendix A.4. The details of Example 1 are
in Appendix A.5.

• In Appendix B, we provide some details of Imitation Learning with PAGAR that were
omitted in Section 5. we prove Theorem 4 in Appendix B.1. Then we derive the objective
functions in Appendix B.2. Some details of Algorithm 1 will be explained in Appendix B.3

• In Appendix C, we provide some experimental details and additional results.

A REWARD DESIGN WITH PAGAR

This paper does not aim to resolve the ambiguity problem in IRL but provides a way to circum-
vent it so that reward ambiguity does not lead to reward misalignment in IRL-based IL. PAGAR,
the semi-supervised reward design paradigm proposed in this paper, tackles this problem from the
perspective of semi-supervised reward design. But the nature of PAGAR is distinct from IRL and
IL: assume that a set of reward functions is available for some underlying task, where some of those
reward functions align with the task while others are misaligned, PAGAR provides a solution for se-
lecting reward functions to train a policy that successfully performs the task, without knowing which
reward function aligns with the task. Our research demonstrates that policy training with PAGAR
is equivalent to learning a policy to maximize an affine combination of utilities measured under a
distribution of the reward functions in the reward function set. With this understanding of PAGAR,
we integrate it with IL to illustrate its advantages.

A.1 SEMI-SUPERVISED REWARD DESIGN

Designing a reward function can be thought as deciding an ordering of policies. We adopt a concept,
called total domination, from unsupervised environment design Dennis et al. (2020), and re-interpret
this concept in the context of reward design. In this paper, we suppose that a function Ur(⇡) is given
to measure the performance of a policy. While the measurement of policy performance can vary
depending on the free variable r, total dominance can be viewed as an invariance regardless of such
dependency.
Definition 3 (Total Domination). A policy, ⇡1, is totally dominated by some policy ⇡2 w.r.t a reward
function set R, if for every pair of reward functions r1, r2 2 R, Ur1(⇡1) < Ur2(⇡2).

If ⇡1 totally dominate ⇡2 w.r.t R, ⇡2 can be regarded as being unconditionally better than ⇡1. In other
words, the two sets {Ur(⇡1)|r 2 R} and {Ur(⇡2)|r 2 R} are disjoint, such that sup{Ur(⇡1)|r 2

R} < inf{Ur(⇡2)|r 2 R}. Conversely, if a policy ⇡ is not totally dominated by any other policy, it
indicates that for any other policy, say ⇡2, sup{Ur(⇡1)|r 2 R} � inf{Ur(⇡2)|r 2 R}.
Definition 4. A reward function set R aligns with an ordering �R among policies such that ⇡1 �R

⇡2 if and only if ⇡1 is totally dominated by ⇡2 w.r.t. R.

Especially, designing a reward function r is to establish an ordering �{r} among policies. To-
tal domination can be extended to policy-conditioned reward design, where the reward func-
tion r is selected by following a decision rule R(⇡) such that

P
r2R

R(⇡)(r) = 1. We let
UR(⇡) =

P
r2RE

R(⇡)(r) · Ur(⇡) be an affine combination of Ur(⇡)’s with its coefficients speci-

fied by R(⇡).
Definition 5. A policy conditioned decision rule R is said to prefer a policy ⇡1 to another policy
⇡2, which is notated as ⇡1 �

R ⇡2, if and only if UR(⇡1) < UR(⇡2).

Making a decision rule for selecting reward functions from a reward function set to respect the total
dominance w.r.t this reward function set is an unsupervised learning problem, where no additional
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external supervision is provided. If considering expert demonstrations as a form of supervision
and using it to constrain the set RE of reward function via IRL, the reward design becomes semi-
supervised.

A.2 SOLUTION TO THE MINIMAXREGRET

In Table 1, we mentioned that solving MinimaxRegret(RE) is equivalent to finding an optimal
policy ⇡⇤ to maximize a URE (⇡) under a decision rule RE . Without loss of generality, we use R
instead of RE in our subsequent analysis, because solving MinimaxRegret(R) does not depend
on whether there are constraints for R. In order to show such an equivalence, we follow the same
routine as in Dennis et al. (2020), and start by introducing the concept of weakly total domination.
Definition 6 (Weakly Total Domination). A policy ⇡1 is weakly totally dominated w.r.t a reward
function set R by some policy ⇡2 if and only if for any pair of reward function r1, r2 2 R, Ur1(⇡1) 
Ur2(⇡2).

Note that a policy ⇡ being totally dominated by any other policy is a sufficient but not necessary
condition for ⇡ being weakly totally dominated by some other policy. A policy ⇡1 being weakly
totally dominated by a policy ⇡2 implies that sup{Ur(⇡1)|r 2 R}  inf{Ur(⇡2)|r 2 R}. We
assume that there does not exist a policy ⇡ that weakly totally dominates itself, which could happen
if and only if Ur(⇡) is a constant. We formalize this assumption as the following.
Assumption 1. For the given reward set R and policy set ⇧, there does not exist a policy ⇡ such
that for any two reward functions r1, r2 2 R, Ur1(⇡) = Ur2(⇡).

This assumption makes weak total domination a non-reflexive relation. It is obvious that weak total
domination is transitive and asymmetric. Now we show that successive weak total domination will
lead to total domination.
Lemma 1. for any three policies ⇡1,⇡2,⇡3 2 ⇧, if ⇡1 is weakly totally dominated by ⇡2, ⇡2 is

weakly totally dominated by ⇡3, then ⇡3 totally dominates ⇡1.

Proof. According to the definition of weak total domination, max
r2R

Ur(⇡1)  min
r2R

Ur(⇡2) and

max
r2R

Ur(⇡2)  min
r2R

Ur(⇡3). If ⇡1 is weakly totally dominated but not totally dominated by ⇡3,

then max
r2R

Ur(⇡1) = min
r2R

Ur(⇡3) must be true. However, it implies min
r2R

Ur(⇡2) = max
r2R

Ur(⇡2),
which violates Assumption 1. We finish the proof.

Lemma 2. For the set ⇧¬wtd ✓ ⇧ of policies that are not weakly totally dominated by any other

policy in the whole set of policies w.r.t a reward function set R, there exists a range U ✓ R such that

for any policy ⇡ 2 ⇧¬wtd, U ✓ [min
r2R

Ur(⇡),max
r2R

Ur(⇡)].

Proof. For any two policies ⇡1,⇡2 2 ⇧¬wtd, it cannot be true that max
r2R

Ur(⇡1) = min
r2R

Ur(⇡2)

nor min
r2R

Ur(⇡1) = max
r2R

Ur(⇡2), because otherwise one of the policies weakly totally dominates

the other. Without loss of generalization, we assume that max
r2R

Ur(⇡1) > min
r2R

Ur(⇡2). In this

case, max
r2R

Ur(⇡2) > min
r2R

Ur(⇡1) must also be true, otherwise ⇡1 weakly totally dominates ⇡2.

Inductively, min
⇡2⇧¬wtd

max
r2R

Ur(⇡) > max
⇡2⇧¬wtd

min
r2R

Ur(⇡). Letting ub = min
⇡2⇧¬wtd

max
r2R

Ur(⇡) and

lb = max
⇡2⇧¬wtd

min
r2R

Ur(⇡), any U ✓ [lb, ub] shall support the assertion. We finish the proof.

Lemma 3. For a reward function set R, if a policy ⇡ 2 ⇧ is weakly totally dominated by some other

policy in ⇧ and there exists a subset ⇧¬wtd ✓ ⇧ of policies that are not weakly totally dominated

by any other policy in ⇡, then max
r2R

Ur(⇡) < min
⇡02⇧¬wtd

max
r2R

Ur(⇡0)

Proof. If ⇡1 is weakly totally dominated by a policy ⇡2 2 ⇧, then min
r2R

Ur(⇡2) = max
r2R

Ur(⇡).

If max
r2R

Ur(⇡) � min
⇡02⇧¬wtd

max
r2R

Ur(⇡0), then min
r2R

Ur(⇡2) � min
⇡02⇧¬wtd

max
r2R

Ur(⇡0), making at
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least one of the policies in ⇧¬wtd being weakly totally dominated by ⇡2. Hence, max
r2R

Ur(⇡) <

min
⇡02⇧¬wtd

max
r2R

Ur(⇡0) must be true.

Given a policy ⇡ and a reward function r, the regret is represented as Eq.8

Regret(⇡, r) := max
⇡0

Ur(⇡
0)� Ur(⇡) (8)

Then we represent the MinimaxRegret(R) problem in Eq.9.

MinimaxRegret(R) := argmin
⇡2⇧

⇢
max
r2R

Regret(⇡, r)

�
(9)

We denote as r⇤
⇡
2 R the reward function that maximizes Ur(⇡) among all the r’s that achieve the

maximization in Eq.9. Formally,

r⇤
⇡

2 argmax
r2R

Ur(⇡) s.t. r 2 argmax
r02R

Regret(⇡, r0) (10)

Then MinimaxRegret can be defined as minimizing the worst-case regret as in Eq.9. Next, we
want to show that for some decision rule R, the set of optimal policies which maximizes UR are the
solutions to MinimaxRegret(R). Formally,

MinimaxRegret(R) = argmax
⇡2⇧

UR(⇡) (11)

We design R by letting R(⇡) := R(⇡) · �r⇤⇡ +(1�R(⇡)) · R(⇡) where R : ⇧ ! �(R) is a policy
conditioned distribution over reward functions, �r⇤⇡ be a delta distribution centered at r⇤

⇡
, and R(⇡)

is a coefficient. We show how to design R by using the following lemma.
Lemma 4. Given that the reward function set is R, there exists a decision rule R : ⇧ ! �(R)
which guarantees that: 1) for any policy ⇡ that is not weakly totally dominated by any other policy

in ⇧, i.e., ⇡ 2 ⇧¬wtd ✓ ⇧, UR(⇡) ⌘ c where c = max
⇡02⇧¬wtd

min
r2R

Ur(⇡0); 2) for any ⇡ that is weakly

totally dominated by some policy but not totally dominated by any policy, UR(⇡) = max
r2R

Ur(⇡); 3)

if ⇡ is totally dominated by some other policy, R(⇡) is a uniform distribution.

Proof. Since the description of R for the policies in condition 2) and 3) are self-explanatory, we omit
the discussion on them. For the none weakly totally dominated policies in condition 1), having a con-
stant UR(⇡) ⌘ c is possible if and only if for any policy ⇡ 2 ⇧¬wed, c 2 [min

r2R

Ur(⇡0),max
r2R

Ur(⇡0)].

As mentioned in the proof of Lemma 2, c can exist within [min
r2R

Ur(⇡),max
r2R

Ur(⇡)]. Hence,

c = max
⇡02⇧¬wtd

min
r2R

Ur(⇡0) is a valid assignment.

Then by letting R(⇡) := Regret(⇡,r⇤⇡)
c�Ur⇤⇡ (⇡) , we have the following theorem.

Theorem 5. By letting R(⇡) := R(⇡) · �r⇤⇡ + (1 �R(⇡)) · R(⇡) with R(⇡) := Regret(⇡,r⇤⇡)
c�Ur⇤⇡ (⇡) and

any R that satisfies Lemma 4,

MinimaxRegret(R) = argmax
⇡2⇧

UR(⇡) (12)

Proof. If a policy ⇡ 2 ⇧ is totally dominated by some other policy, since there exists another policy
with larger UR, ⇡ cannot be a solution to argmax

⇡2⇧
UR(⇡). Hence, there is no need for further

discussion on totally dominated policies. We discuss the none weakly totally dominated policies
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and the weakly totally dominated but not totally dominated policies (shortened to ”weakly totally
dominated” from now on) respectively. First we expand argmax

⇡2⇧
UR(⇡) as in Eq.13.

argmax
⇡2⇧

UR(⇡)

= argmax
⇡2⇧

X

r2R

R(⇡)(r) · Ur(⇡)

= argmax
⇡2⇧

Regret(⇡, r⇤
⇡
) · Ur⇤⇡ (⇡) + (UR(⇡)� Ur⇤⇡ (⇡)�Regret(⇡, r⇤

⇡
)) · UR(⇡)

c� Ur⇤⇡ (⇡)

= argmax
⇡2⇧

(UR(⇡)� Ur⇤⇡ (⇡)) · UR(⇡)� (UR(⇡)� Ur⇤⇡ (⇡)) ·Regret(⇡, r⇤
⇡
))

c� Ur⇤⇡ (⇡)

= argmax
⇡2⇧

UR(⇡)� Ur⇤⇡ (⇡)

c� Ur⇤⇡ (⇡)
· UR(⇡)�Regret(⇡, r⇤

⇡
) (13)

1) For the none weakly totally dominated policies, since by design UR ⌘ c, Eq.13 is equivalent
to arg max

⇡2⇧1

� Regret(⇡, r⇤
⇡
) which exactly equals MinimaxRegret(R). Hence, the equiva-

lence holds among the none weakly totally dominated policies. Furthermore, if a none weakly
totally dominated policy ⇡ 2 ⇧¬wtd achieves optimality in MinimaxRegret(R), its UR(⇡) is
also no less than any weakly totally dominated policy. Because according to Lemma 3, for any
weakly totally dominated policy ⇡1, its UR(⇡1)  c, hence

UR(⇡)�Ur⇤⇡ (⇡)

c�Ur⇤⇡ (⇡) · UR(⇡1)  c. Since
Regret(⇡, r⇤

⇡
)  Regret(⇡1, r⇤⇡1

), UR(⇡) � UR(⇡1). Therefore, we can assert that if a none
weakly totally dominated policy ⇡ is a solution to MinimaxRegret(R), it is also a solution to
argmax

⇡2⇧
UR(⇡). Additionally, to prove that if a none weakly totally dominated policy ⇡ is a solu-

tion to arg max
⇡02⇧

UR(⇡0), it is also a solution to MinimaxRegret(R), it is only necessary to prove
that ⇡ achieve no larger regret than all the weakly totally dominated policies. But we delay the proof
to 2).

2) If a policy ⇡ is weakly totally dominated and is a solution to MinimaxRegret(R), we show that
it is also a solution to argmax

⇡2⇧
UR(⇡), i.e., its UR(⇡) is no less than that of any other policy.

We start by comparing with non weakly totally dominated policy. for any weakly totally
dominated policy ⇡1 2 MinimaxRegret(R), it must hold true that Regret(⇡1, r⇤⇡1

) 

Regret(⇡2, r⇤⇡2
) for any ⇡2 2 ⇧ that weakly totally dominates ⇡1. However, it also

holds that Regret(⇡2, r⇤⇡2
)  Regret(⇡1, r⇤⇡2

) due to the weak total domination. Therefore,
Regret(⇡1, r⇤⇡1

) = Regret(⇡2, r⇤⇡2
) = Regret(⇡1, r⇤⇡2

), implying that ⇡2 is also a solution
to MinimaxRegret(R). It also implies that Ur⇤⇡2

(⇡1) = Ur⇤⇡2
(⇡2) � Ur⇤⇡1

(⇡1) due to the
weak total domination. However, by definition Ur⇤⇡1

(⇡1) � Ur⇤⇡2
(⇡1). Hence, Ur⇤⇡1

(⇡1) =

Ur⇤⇡2
(⇡1) = Ur⇤⇡2

(⇡2) must hold. Now we discuss two possibilities: a) there exists another pol-
icy ⇡3 that weakly totally dominates ⇡2; b) there does not exist any other policy that weakly
totally dominates ⇡2. First, condition a) cannot hold. Because inductively it can be derived
Ur⇤⇡1

(⇡1) = Ur⇤⇡2
(⇡1) = Ur⇤⇡2

(⇡2) = Ur⇤⇡3
(⇡3), while Lemma 1 indicates that ⇡3 totally dominates

⇡1, which is a contradiction. Hence, there does not exist any policy that weakly totally dominates ⇡2,
meaning that condition b) is certain. We note that Ur⇤⇡1

(⇡1) = Ur⇤⇡2
(⇡1) = Ur⇤⇡2

(⇡2) and the weak
total domination between ⇡1,⇡2 imply that r⇤

⇡1
, r⇤

⇡2
2 argmax

r2R

Ur(⇡1), r⇤⇡2
2 argmin

r2R

Ur(⇡2),

and thus min
r2R

Ur(⇡2)  max
⇡2⇧¬wtd

min
r2R

Ur(⇡) = c. Again, ⇡1 2 MinimaxRegret(R) makes

Regret(⇡1, r⇤⇡)  Regret(⇡1, r⇤⇡1
)  Regret(⇡, r⇤

⇡
) not only hold for ⇡ = ⇡2 but also for any

other policy ⇡ 2 ⇧¬wtd, then for any policy ⇡ 2 ⇧¬wtd, Ur⇤⇡ (⇡1) � Ur⇤⇡ (⇡) � min
r2R

Ur(⇡).

Hence, Ur⇤⇡ (⇡1) � max
⇡2⇧¬wtd

min
r2R

Ur(⇡) = c. Since Ur⇤⇡ (⇡1) = min
r2R

Ur(⇡2) as aforemen-

tioned, min
r2R

Ur(⇡2) > max
⇡2⇧¬wtd

min
r2R

Ur(⇡) will cause a contradiction. Hence, min
r2R

Ur(⇡2) =

max
⇡2⇧¬wtd

min
r2R

Ur(⇡) = c. As a result, UR(⇡) = Ur⇤⇡ (⇡) = max
⇡02⇧¬wtd

min
r2R

Ur(⇡0) = c, and UR(⇡) =

c�Regret(⇡, r⇤
⇡
) � max

⇡02⇧¬wtd

c�Regret(⇡0, r⇤
⇡0) = max

⇡02⇧¬wtd

UR(⇡0). In other words, if a weakly
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totally dominated policy ⇡ is a solution to MinimaxRegret(R), then its UR(⇡) is no less than that
of any non weakly totally dominated policy. This also complete the proof at the end of 1), because
if a none weakly totally dominated policy ⇡1 is a solution to argmax

⇡2⇧
UR(⇡) but not a solution to

MinimaxRegret(R), then Regret(⇡1, r⇤⇡1
) > 0 and a weakly totally dominated policy ⇡2 must

be the solution to MinimaxRegret(R). Then, UR(⇡2) = c > c � Regret(⇡1, r⇤⇡1
) = UR(⇡1),

which, however, contradicts ⇡1 2 argmax
⇡2⇧

UR(⇡).

It is obvious that a weakly totally dominated policy ⇡ 2 MinimaxRegret(R) has a UR(⇡) no less
than any other weakly totally dominated policy. Because for any other weakly totally dominated
policy ⇡1, UR(⇡1)  c and Regret(⇡1, r⇤⇡1

)  Regret(⇡, r⇤
⇡
), hence UR(⇡1)  UR(⇡) according

to Eq.13.

So far we have shown that if a weakly totally dominated policy ⇡ is a solution to
MinimaxRegret(R), it is also a solution to arg max

⇡02⇧
UR(⇡0). Next, we need to show that the

reverse is also true, i.e., if a weakly totally dominated policy ⇡ is a solution to argmax
⇡2⇧

UR(⇡), it

must also be a solution to MinimaxRegret(R). In order to prove its truthfulness, we need to show
that if ⇡ /2 MinimaxRegret(R), whether there exists: a) a none weakly totally dominated policy
⇡1, or b) another weakly totally dominated policy ⇡1, such that ⇡1 2 MinimaxRegret(R) and
UR(⇡1)  UR(⇡). If neither of the two policies exists, we can complete our proof. Since it has
been proved in 1) that if a none weakly totally dominated policy achieves MinimaxRegret(R), it
also achieves arg max

⇡02⇧
UR(⇡0), the policy described in condition a) does not exist. Hence, it is only

necessary to prove that the policy in condition b) also does not exist.

If such weakly totally dominated policy ⇡1 exists, ⇡ /2 MinimaxRegret(R) and ⇡1 2

MinimaxRegret(R) indicates Regret(⇡, r⇤
⇡
) > Regret(⇡1, r⇤⇡1

). Since UR(⇡1) � UR(⇡),

according to Eq.13, UR(⇡1) = c � Regret(⇡1, r⇤⇡1
)  UR(⇡) =

UR(⇡)�Ur⇤⇡ (⇡)

c�Ur⇤⇡ (⇡) · UR(⇡) �

Regret(⇡, r⇤
⇡
). Thus

UR(⇡)�Ur⇤⇡ (⇡)

c�Ur⇤⇡ (⇡) (⇡) · UR � c + Regret(⇡, r⇤
⇡
) � Regret(⇡1, r⇤⇡1

) > c,
which is impossible due to UR  c. Therefore, such ⇡1 also does not exist. In fact, this can
be reasoned from another perspective. If there exists a weakly totally dominated policy ⇡1 with
Ur⇤⇡1

(⇡1) = c = Ur⇤⇡ (⇡) but ⇡1 /2 MinimaxRegret(R), then Regret(⇡, r⇤
⇡
) > Regret(⇡1, r⇤⇡1

).
It also indicates max

⇡02⇧
Ur⇤⇡ (⇡

0) > max
⇡02⇧

Ur⇤⇡1
(⇡0). Meanwhile, Regret(⇡1, r⇤⇡) := max

⇡02⇧
Ur⇤⇡ (⇡

0) �

Ur⇤⇡ (⇡1)  Regret(⇡1, r⇤⇡1
) := max

⇡02⇧
Ur⇤⇡1

(⇡0)�Ur⇤⇡1
(⇡1) := max

r2R

max
⇡02⇧

Ur(⇡0)�Ur(⇡1) indicates

max
⇡02⇧

Ur⇤⇡ (⇡
0)�max

⇡02⇧
Ur⇤⇡1

(⇡0)  Ur⇤⇡ (⇡1)�Ur⇤⇡1
(⇡1). However, we have proved that, for a weakly

totally dominated policy, ⇡1 2 MinimaxRegret(R) indicates Ur⇤⇡1
(⇡1) = max

r2R

Ur(⇡1). Hence,

max
⇡02⇧

Ur⇤⇡ (⇡
0) � max

⇡02⇧
Ur⇤⇡1

(⇡0)  Ur⇤⇡ (⇡1) � Ur⇤⇡1
(⇡1)  0 and it contradicts max

⇡02⇧
Ur⇤⇡ (⇡

0) >

max
⇡02⇧

Ur⇤⇡1
(⇡0). Therefore, such ⇡1 does not exist. In summary, we have exhausted all conditions

and can assert that for any policies, being a solution to MinimaxRegret(R) is equivalent to a
solution to argmax

⇡2⇧
UR(⇡). We complete our proof.

A.3 MEASURING POLICY PERFORMANCE

Recall that the function Ur(⇡) is used to measure the performance of a policy ⇡ under a reward
function r. In Dennis et al. (2020), Ur(⇡) = ⌘r(⇡). In this section, we discuss the validity of letting
Ur(⇡) be the loss function of a generic IRL objective, e.g., Ur(⇡) = ⌘r(⇡)� ⌘r(⇡E) where ⌘r(⇡E)
measures the expected return of the expert policy ⇡E and can be estimated if an expert demonstration
set E instead of ⇡E is provided. If further letting RE = {r|r 2 arg min

r02R

max
⇡2⇧

Ur0(⇡) � Ur0(⇡E)},

max
⇡2⇧

Ur(⇡) is a constant for any r 2 RE , notated as u := max
⇡2⇧

Ur(⇡). Because by definition RE =

{r|r 2 argmin
r2R

max
⇡2⇧

Ur(⇡)}. If there exists r1, r2 2 RE such that max
⇡2⇧

Ur1(⇡) < max
⇡2⇧

Ur2(⇡), r2
will not be a member of RE . Furthermore, {Ur(⇡)|⇡ 2 ⇧, r 2 RE} will be upper-bounded by a
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constant u = max
⇡2⇧

Ur(⇡). Because if there exists a policy ⇡ 2 ⇧ and a reward function r 2 RE with

Ur(⇡) > u, it contradicts the fact that u = max
⇡02⇧

Ur(⇡0). In this case, MinimaxRegret(RE) =

argmin
⇡2⇧

max
r2RE

Regret(⇡, r) = argmin
⇡2⇧

max
r2RE

u� Ur(⇡) = argmax
⇡2⇧

min
r2RE

Ur(⇡). Note that before

making any other assumption on RE ,⇧ and Ur(·), max
⇡2⇧

min
r2RE

Ur(⇡) cannot be regarded as the same

as IRL itself min
r2R

max
⇡2⇧

Ur(⇡). The solution to argmax
⇡2⇧

min
r2RE

Ur(⇡) is the policy with the highest

worst case Ur(⇡) for r 2 RE . The IRL problem however may induce a policy that maximizes Ur(·)
for some r 2 RE while minimizing Ur0(·) for some other r0 2 RE . While min

r2R

max
⇡2⇧

Ur(⇡) =

u, it is possible that max
⇡2⇧

min
r2RE

Ur(⇡) < u. In fact, it is easily observable that the solutions to

MinimaxRegret with some Ur(⇡) will be the same as that of letting Ur(⇡) := Ur(⇡)� Ur(⇡E).
Hence, in this paper we simply use ⌘r(⇡) as Ur(⇡)(R).
Lemma 5. If a policy ⇡ 2 MinimaxRegret(RE) when the policy performance is measured with

some Ur, then ⇡ 2 MinimaxRegret(RE) when letting Ur(⇡) := Ur(⇡)� Ur(⇡E).

Proof. When using Ur(⇡) := Ur(⇡) � Ur(⇡E) to measure the policy performance, solving
MinimaxRegret(R) is to solve Eq. 14, which is the same as Eq.9.

MimimaxRegret(RE) = argmax
⇡2⇧

min
r2RE

Regret(⇡, r)

= argmax
⇡2⇧

min
r2RE

max
⇡02⇧

{Ur(⇡
0)� Ur(⇡E)}� (Ur(⇡)� Ur(⇡E)

= argmax
⇡2⇧

min
r2RE

max
⇡02⇧

Ur(⇡
0)� Ur(⇡) (14)

A.4 CRITERION FOR SUCCESSFUL POLICY LEARNING

Theorem 1.(Task-Failure Avoidance) If the following conditions (1) (2) hold for R, then the optimal
protagonist policy ⇡P := MinimaxRegret(R) satisfies that 8ral 2 R,Ural(⇡P ) /2 Fral .

(1) There exists ral 2 R, and max
ral2R

{supFral � inf Fral} < min
ral2R

{inf Sral � supFral} ^

max
ral2R

{supSral � inf Sral} < min
ral2R

{inf Sral � supFral};

(2) There exists a policy ⇡⇤ such that 8ral 2 R, Ural(⇡
⇤) 2 Sral , and 8rmis 2 R,

max
⇡2⇧

Urmis(⇡)� Urmis(⇡
⇤) < min

ral2R

{inf Sral � supFral}.

Proof. Suppose the conditions are met, and a policy ⇡1 satisfies the property described in con-
ditions 2). Then for any policy ⇡2 2 MinimaxRegret(R), if ⇡2 does not satisfy the men-
tioned property, there exists a task-aligned reward function ral 2 RE such that Ural(⇡2) 2

Fral . In this case Regret(⇡2, ral) = max
⇡2⇧

Ural(⇡) � Ural(⇡2) � inf Sral � supFral �

min
r0al2RE

n
inf Sr0al

� supFr0al

o
. However, for ⇡1, it holds for any task-aligned reward function

r̂al 2 RE that Regret(⇡2, r̂al)  supSr̂al � inf Sr̂al < min
r0al2RE

n
inf Sr0al

� supFr0al

o
, and it also

holds for any misaligned reward function rmis 2 RE that Regret(⇡2,rmis ) = max
⇡2⇧

Urmis(⇡) �

Urmis(⇡2) < min
r0al2RE

{inf Sral � supFral}. Hence, Regret(⇡2, ral) < Regret(⇡1, ral), contra-

dicting ⇡1 2 MiniRegret. We complete the proof.

Corollary 1.(Task-Success Guarantee) Assume that Condition (1) in Theorem 1 is satisfied. If there
exists a policy ⇡⇤ such that 8r 2 R, max

⇡
Ur(⇡)� Ur(⇡⇤) < min

ral2R

{supSral � inf Sral}, then the

optimal protagonist policy ⇡P := MinimaxRegret(R) satisfies that 8ral 2 R, Ural(⇡) 2 Sral .
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Proof. Since max
r2R

max
⇡

Ur(⇡) � Ur(⇡P )  max
r2R

max
⇡

Ur(⇡) � Ur(⇡⇤) < min
ral2R

{supSral �

inf Sral}, we can conclude that for any ral 2 R, max
⇡

Ural(⇡)� Ural(⇡P )  {supSral � inf Sral ,
in other words, Ural(⇡P ) 2 Sral . The proof is complete.

Theorem 2.)(Task-Failure Avoidance) If the following conditions (1) (2) hold for RE,� , then the
optimal protagonist policy ⇡P := MinimaxRegret(RE,�) satisfies that 8ral 2 RE,� , Ural(⇡) /2
Fral .

(1) The condition (1) in Theorem 1 holds
(2) 8ral 2 RE,� , Lral ·WE � �  supSral � inf Sral and 8rmis 2 RE,� , Lrmis ·WE � � <

min
ral2RE,�

{inf Sral � supFral}.

Proof. Without loss of generality, we consider Ur(⇡) = E⌧⇠⇡[r(⌧)]. Since WE ,
min
⇡2⇧

W1(⇡, E) = 1
K

sup
krkLK

Ur(E) � Ur(⇡) for any K > 0, let ⇡⇤ be the policy that achieves the

minimality in WE . Then for any ral 2 R, the term Lral ·WE � � � Lral ·
1

Lral
sup

krkLLral

Ur(E)�

Ur(⇡) � Ural(E)�Ural(⇡). Hence, for all ral 2 R, Ural(E)�Ural(⇡) < supSral � inf Sral , i.e.,
Ural(⇡

⇤) 2 Sral . Likewise, Lrmis ·WE � � < min
ral2RE,�

{inf Sral � supFral} indicates that for all

rmis 2 R, Urmis(E) � Urmis(⇡) < min
ral2RE,�

{inf Sral � supFral}. Then, we have recovered the

condition (2) in Theorem 1. As a result, we deliver the same guarantees in Theorem 1.

Corollary 2.(Task-Success Guarantee) Assume that the condition (1) in Theorem 1 holds for RE,� .
If for any r 2 RE,� , Lr ·WE � �  min

ral2R

{supSral � inf Sral}, then the optimal protagonist policy

⇡P = MinimaxRegret(RE,�) satisfies 8ral 2 RE,� , Ural(⇡) 2 Sral .

Proof. Again, we let ⇡⇤ be the policy that achieves the minimality in WE . Then, we have Lr ·WE�

� � Lr ·
1
Lr

sup
krkLLr

Ur(E) � Ur(⇡⇤) � Ur(E) � Ur(⇡⇤) for any r 2 R. We have recovered the

condition in Corollary 1. The proof is complete.

Theorem3. Let the IRL loss be in the form of JIRL(⇡, r) := Ur(⇡) � Ur(⇡E) for some Ur(⇡). If
argmin

r2R

max
⇡2⇧

JIRL(rE ,⇡) can reach Nash Equilibrium with a reward function set RE and a policy
set ⇧E , then ⇧E equals the set of solutions to MinimiaxRegret.

Proof. The reward function set RE and the policy set ⇧E achieving Nash Equilibrium for
argmin

r2R

max
⇡2⇧

JIRL(rE ,⇡) indicates that for any r 2 RE ,⇡ 2 ⇧E , ⇡ 2 argmax
⇡2⇧

Ur(⇡)� Ur(⇡E).

Then ⇧E will be the solution to arg max
⇡P2⇧

min
r2RE

⇢
max
⇡A2⇧

Ur(⇡A)� Ur(⇡E)

�
� (Ur(⇡P )�Ur(⇡E))

because the policies in ⇧E achieve zero regret. Then Lemma 5 states that ⇧E will also be the

solution to arg max
⇡P2⇧

min
r2RE

⇢
max
⇡A2⇧

Ur(⇡A)

�
� Ur(⇡P ). We finish the proof.

A.5 RUNNING EXAMPLE

Example 1 In a two-state transition system where s0 is the initial state, and s1 is an absorbing state,
an agent can choose action a0 at state s0 to stay at s0 or choose a1 to reach s1. Any agent can start
from s0 and choose actions for 5 timesteps. The task is to learn a stochastic policy to reach s1. Expert
only demonstrates one trajectory E = {⌧E = (s0, a1, s1, s1, s1, s1)}, i.e., choose a1 at s0 and then
stay in s1 for the rest 4 steps. The convex combinations of two basis functions r1 and r2 constitute
the hypothesis set of reward functions R = {r|r(s, a) = ↵ · r1(s, a)+ (1�↵) · r2(s, a),↵ 2 [0, 1]}
where r1(s, a) ⌘ 4 constantly, and r2(s0, a0) = r2(s0, a1) = 0, r2(s1, ·) = 5. We now prove that
when applying IRL to learn a reward function from E, any convex combination of r1 and r2 is an
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Figure 5: ss

optimal solution, i.e., RE = R. Furthermore, we prove that MinimaxRegret(R) will produce
⇡P (a1|s0) = 1 which is the desired solution.

Proof. For any policy ⇡ and reward function r 2 R, the policy performance Ur(⇡) can be repre-
sented as follows.

Ur(⇡) = 4↵⇡(a0|s0)
t +

tX

t=0

(4↵t+ 4↵+ (4↵+ 5(1� ↵))(4� t)) · ⇡(a0|s0)
t(1� ⇡(a0|s0))

= 20� 5(1� ↵)
4X

t=1

⇡(a0|s0)
4 (15)

Then for any ↵ 2 [0, 1), max
⇡

Ur(⇡) = 20, and the optimal policy is ⇡⇤(a0|s0) = 0,⇡⇤(a1|s0) = 1.
For ↵ = 1, Ur(⇡) = 20 constantly for any ⇡. For expert demonstration E, Ur(E) = 4↵·5+5(1�↵)·
4 ⌘ 20. Therefore, any r = ↵r1+(1�↵)r2 with ↵ 2 [0, 1] can be the optimal solution to IRL since
they all induce the same performance gap Ur(E) � max

⇡
Ur(⇡) = 0. This ambiguity in choosing

reward functions can cause reward misalignment because the reward function r = r1 induced by
↵ = 1 violates the criterion of task-reward alignment in Definition 1: achieving optimality under
r1 does not guarantee task success since all policies are optimal under r1. On the other hand, it is
obvious that MinimaxRegret(R) induces a policy ⇡P (a1|s0) = 1. Because this policy has the
lowest worst-case regret Regret(⇡P , r) = max

r2R

max
⇡A

Ur(⇡A)� Ur(⇡P )) = 0.

B APPROACH TO SOLVING MINIMAXREGRET

In this section, we develop a series of theories that lead to two bounds of the Protagonist Antagonist
Induced Regret. By using those bounds, we formulate objective functions for solving Imitation
Learning problems with PAGAR.

B.1 PROTAGONIST ANTAGONIST INDUCED REGRET BOUNDS

Our theories are inspired by the on-policy policy improvement methods in Schulman et al. (2015).
The theories in Schulman et al. (2015) are under the setting where entropy regularizer is not consid-
ered. In our implementation, we always consider entropy regularized RL of which the objective is to
learn a policy that maximizes JRL(⇡; r) = ⌘r(⇡)+H(⇡). Also, since we use GAN-based IRL algo-
rithms, the learned reward function r as proved by Fu et al. (2018) is a distribution. Moreover, it is
also proved in Fu et al. (2018) that a policy ⇡ being optimal under r indicates that log ⇡ ⌘ r ⌘ A⇡ .
We omit the proof and let the reader refer to Fu et al. (2018) for details. Although all our theories
are about the relationship between the Protagonist Antagonist Induced Regret and the soft advan-
tage function A⇡ , the equivalence between A⇡ and r allows us to use the theories to formulate our
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reward optimization objective functions. To start off, we denote the reward function to be optimized
as r. Given the intermediate learned reward function r, we study the Protagonist Antagonist Induced
Regret between two policies ⇡1 and ⇡2.
Lemma 6. Given a reward function r and a pair of policies ⇡1 and ⇡2,

⌘r(⇡1)� ⌘r(⇡2) = E
⌧⇠⇡1

" 1X

t=0

�t
A⇡2(s

(t), a(t))

#
+ E

⌧⇠⇡

" 1X

t=0

�t
H

⇣
⇡2(·|s

(t))
⌘#

(16)

Proof. This proof follows the proof of Lemma 1 in Schulman et al. (2015) where
RL is not entropy-regularized. For entropy-regularized RL, since A⇡(s, a(t)) =

E
s0⇠P(·|s,a(t))

⇥
r(s, a(t)) + �V⇡(s0)� V⇡(s)

⇤
,

E
⌧⇠⇡1

" 1X

t=0

�t
A⇡2(s

(t), a(t))

#

= E
⌧⇠⇡1

" 1X

t=0

�t

⇣
r(s(t+1), a(t+1)) + �V⇡2(s

(t+1))� V⇡2(s
(t))

⌘#

= E
⌧⇠⇡1

" 1X

t=0

�tr(s(t), a(t))� V⇡2(s
(0))

#

= E
⌧⇠⇡1

" 1X

t=0

�tr(s(t), a(t))

#
� E

s(0)⇠d0

h
V⇡2(s

(0))
i

= E
⌧⇠⇡1

" 1X

t=0

�tr(s(t), a(t))

#
� E

⌧⇠⇡2

" 1X

t=0

�tr(s(t), a(t)) +H

⇣
⇡2(·|s

(t))
⌘#

= ⌘r(⇡1)� ⌘r(⇡2)� E
⌧⇠⇡2

" 1X

t=0

�t
H

⇣
⇡2(·|s

(t))
⌘#

= ⌘r(⇡1)� ⌘r(⇡2)�H(⇡2)

Remark 1. Lemma 6 confirms that E
⌧⇠⇡

⇥P1
t=0 �

t
A⇡(s(t), a(t))

⇤
= ⌘r(⇡)�⌘r(⇡)+H(⇡) = H(⇡).

We follow Schulman et al. (2015) and denote �A(s) = E
a⇠⇡1(·|s)

[A⇡2(s, a)]� E
a⇠⇡2(·|s)

[A⇡2(s, a)]

as the difference between the expected advantages of following ⇡2 after choosing an action respec-
tively by following policy ⇡1 and ⇡2 at any state s. Although the setting of Schulman et al. (2015)
differs from ours by having the expected advantage E

a⇠⇡2(·|s)
[A⇡2(s, a)] equal to 0 due to the ab-

sence of entropy regularization, the following definition and lemmas from Schulman et al. (2015)
remain valid in our setting.
Definition 7. Schulman et al. (2015), the protagonist policy ⇡1 and the antagonist policy ⇡2) are
↵-coupled if they defines a joint distribution over (a, ã) 2 A⇥A, such that Prob(a 6= ã|s)  ↵ for
all s.
Lemma 7. Schulman et al. (2015) Given that the protagonist policy ⇡1 and the antagonist policy

⇡2 are ↵-coupled, then for all state s,

|�A(s)|  2↵max
a

|A⇡2(s, a)| (17)

Lemma 8. Schulman et al. (2015) Given that the protagonist policy ⇡1 and the antagonist policy

⇡2 are ↵-coupled, then

���� E
s(t)⇠⇡1

h
�A(s(t))

i
� E

s(t)⇠⇡2

h
�A(s(t))

i����  4↵(1� (1� ↵)t)max
s,a

|A⇡2(s, a)| (18)

21



Lemma 9. Given that the protagonist policy ⇡1 and the antagonist policy ⇡2 are ↵-coupled, then

E
s
(t)⇠⇡1

a
(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i
� E

s
(t)⇠⇡2

a
(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i
 2(1� (1� ↵)t)max

(s,a)
|A⇡2(s, a)| (19)

Proof. The proof is similar to that of Lemma 8 in Schulman et al. (2015). Let nt be the number of
times that a(t

0)
⇠ ⇡1 does not equal a(t

0)
⇠ ⇡2 for t0 < t, i.e., the number of times that ⇡1 and ⇡2

disagree before timestep t. Then for s(t) ⇠ ⇡1, we have the following.

E
s(t)⇠⇡1


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

= P (nt = 0) E
s
(t)⇠⇡1
nt=0


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

+ P (nt > 0) E
s
(t)⇠⇡1
nt>0


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

The expectation decomposes similarly for s(t) ⇠ ⇡2.

E
s
(t)⇠⇡2

a
(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i

= P (nt = 0) E
s
(t)⇠⇡2

a
(t)⇠⇡2
nt=0

h
A⇡2(s

(t), a(t))
i
+ P (nt > 0) E

s
(t)⇠⇡2

a
(t)⇠⇡2
nt>0

h
A⇡2(s

(t), a(t))
i

When computing E
s(t)⇠⇡1


E

a(t)⇠⇡2

⇥
A⇡2(s

(t), a(t))
⇤�

� E
s
(t)⇠⇡2

a
(t)⇠⇡2

⇥
A⇡2(s

(t), a(t))
⇤
, the terms with nt =

0 cancel each other because nt = 0 indicates that ⇡1 and ⇡2 agreed on all timesteps less than t. That
leads to the following.

E
s(t)⇠⇡1


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

� E
s
(t)⇠⇡2

a
(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i

= P (nt > 0) E
s
(t)⇠⇡1
nt>0


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

� P (nt > 0) E
s
(t)⇠⇡2

a
(t)⇠⇡2
nt>0

h
A⇡2(s

(t), a(t))
i

By definition of ↵, the probability of ⇡1 and ⇡2 agreeing at timestep t0 is no less than 1�↵. Hence,
P (nt > 0)  1� (1� ↵t)t. Hence, we have the following bound.

�������
E

s(t)⇠⇡1


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

� E
s
(t)⇠⇡2

a
(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i
�������

=

���������

P (nt > 0) E
s
(t)⇠⇡1
nt>0


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

� P (nt > 0) E
s
(t)⇠⇡2

a
(t)⇠⇡2
nt>0

h
A⇡2(s

(t), a(t))
i

���������

 P (nt > 0)

0

BBB@

���������

E
s
(t)⇠⇡1

a
(t)⇠⇡2
nt�0

h
A⇡2(s

(t), a(t))
i

���������

+

���������

E
s
(t)⇠⇡2

a
(t)⇠⇡2
nt>0

h
A⇡2(s

(t), a(t))
i

���������

1

CCCA

 2(1� (1� ↵)t)max
(s,a)

|A⇡2(s, a)| (20)
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The preceding lemmas lead to the proof for Theorem 4 in the main text.

Theorem 4. Suppose that ⇡2 is the optimal policy in terms of entropy regularized RL under r.
Let ↵ = max

s
DTV (⇡1(·|s),⇡2(·|s)), ✏ = max

s,a
|A⇡2(s, a

(t))|, and �A(s) = E
a⇠⇡1

[A⇡2(s, a)] �

E
a⇠⇡2

[A⇡2(s, a)]. For any policy ⇡1, the following bounds hold.

�����⌘r(⇡1)� ⌘r(⇡2)�
1X

t=0

�t E
s(t)⇠⇡1

h
�A(s(t))

i����� 
2↵�✏

(1� �)2
(21)

�����⌘r(⇡1)� ⌘r(⇡2)�
1X

t=0

�t E
s(t)⇠⇡2

h
�A(s(t))

i����� 
2↵�(2↵+ 1)✏

(1� �)2
(22)

Proof. We first leverage Lemma 6 to derive Eq.23. Note that since ⇡2 is optimal under r, Remark 1

confirmed that H(⇡2) = �
P1

t=0 �
t E
s(t)⇠⇡2


E

a(t)⇠⇡2

⇥
A⇡2(s

(t), a(t))
⇤�

.

⌘r(⇡1)� ⌘r(⇡2)

= (⌘r(⇡1)� ⌘r(⇡2)�H(⇡2)) +H(⇡2)

= E
⌧⇠⇡1

" 1X

t=0

�t
A⇡2(s

(t), a(t))

#
+H(⇡2)

= E
⌧⇠⇡1

" 1X

t=0

�t
A⇡2(s

(t), a(t))

#
�

1X

t=0

�t E
s(t)⇠⇡2


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

=
1X

t=0

�t E
s(t)⇠⇡1


E

a(t)⇠⇡1

h
A⇡2(s

(t), a(t))
i
� E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

+

1X

t=0

�t

✓
E

s(t)⇠⇡1


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
i�

� E
s(t)⇠⇡2


E

a(t)⇠⇡2

h
A⇡2(s

(t), a(t))
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We switch terms between Eq.23 and ⌘r(⇡1)� ⌘r(⇡2), then use Lemma 9 to derive Eq.24.
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Alternatively, we can expand ⌘r(⇡2) � ⌘r(⇡1) into Eq.25. During the process, H(⇡2) is converted
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We switch terms between Eq.25 and ⌘r(⇡1) � ⌘r(⇡2), then base on Lemma 8 and 9 to derive the
inequality in Eq.26.
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It is stated in Schulman et al. (2015) that max
s

DTV (⇡2(·|s),⇡1(·|s))  ↵. Hence, by letting
↵ := max

s
DTV (⇡2(·|s),⇡1(·|s)), Eq.23 and 26 still hold. Then, we have proved Theorem 4.

B.2 OBJECTIVE FUNCTIONS OF REWARD OPTIMIZATION

To derive JR,1 and JR,2, we let ⇡1 = ⇡P and ⇡2 = ⇡A. Then based on Eq.21 and 22 we derive the
following upper-bounds of ⌘r(⇡P )� ⌘r(⇡A).

⌘r(⇡P )� ⌘r(⇡A) 

1X

t=0

�t E
s(t)⇠⇡P

h
�A(s(t))

i
+

2↵�(2↵+ 1)✏

(1� �)2
(27)

⌘r(⇡P )� ⌘r(⇡A) �

1X

t=0

�t E
s(t)⇠⇡A

h
�A(s(t))

i
�

2↵�✏

(1� �)2
(28)

By our assumption that ⇡A is optimal under r, we have A⇡A ⌘ r Fu et al. (2018). This equivalence
enables us to replace A⇡A ’s in �A with r. As for the 2↵�(2↵+1)✏

(1��)2 and 2↵�✏
(1��)2 terms, since the

objective is to maximize ⌘r(⇡A) � ⌘r(⇡B), we heuristically estimate the ✏ in Eq.27 by using the
samples from ⇡P and the ✏ in Eq.28 by using the samples from ⇡A. As a result we have the objective
functions defined as Eq.29 and 30 where �1(s, a) = ⇡P (a(t)|s(t))

⇡A(a(t)|s(t)) and �2 = ⇡A(a(t)|s(t))
⇡P (a(t)|s(t)) are the

importance sampling probability ratio derived from the definition of �A; C1 / �
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(1��) and C2 /
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(1��) where ↵̂ is either an estimated maximal KL-divergence between ⇡A and ⇡B since DKL �

D2
TV

according to Schulman et al. (2015), or an estimated maximal D2
TV

depending on whether the
reward function is Gaussian or Categorical. We also note that for finite horizon tasks, we compute
the average rewards instead of the discounted accumulated rewards in Eq.30 and 29.
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Beside JR,1, JR,2, we additionally use two more objective functions based on the derived bounds. W
JR,r(r;⇡A,⇡P ). By denoting the optimal policy under r as ⇡⇤, ↵⇤ = max
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Let �3 = exp(r(s(t),a(t)))
⇡A(a(t)|s(t)) be the importance sampling probability ratio. It is suggested in Schulman

et al. (2017) that instead of directly optimizing the objective function Eq.31, optimizing a surrogate
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objective function as in Eq.32, which is an upper-bound of Eq.31, with some small � 2 (0, 1) can
be much less expensive and still effective.
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Then a new objective function JR,4 is formulated in Eq.34 where �4 = exp(r(s(t),a(t)))
⇡P (a(t)|s(t)) .
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B.3 INCORPORATING IRL ALGORITHMS

In our implementation, we combine PAGAR with GAIL and VAIL, respectively. When PAGAR
is combined with GAIL, the meta-algorithm Algorithm 1 becomes Algorithm 2. When PAGAR is
combined with VAIL, it becomes Algorithm 3. Both of the two algorithms are GAN-based IRL,
indicating that both algorithms use Eq.1 as the IRL objective function. In our implementation, we
use a neural network to approximate D, the discriminator in Eq.1. To get the reward function r,
we follow Fu et al. (2018) and denote r(s, a) = log

⇣
⇡A(a|s)
D(s,a) � ⇡A(a|s)

⌘
as mentioned in Section

1. Hence, the only difference between Algorithm 2 and Algorithm 1 is in the representation of
the reward function. Regarding VAIL, since it additionally learns a representation for the state-
action pairs, a bottleneck constraint JIC(D)  ic is added where the bottleneck JIC is estimated
from policy roll-outs. VAIL introduces a Lagrangian parameter � to integrate JIC(D) � ic in the
objective function. As a result its objective function becomes JIRL(r) + � · (JIC(D)� ic). VAIL
not only learns the policy and the discriminator but also optimizes �. In our case, we utilize the
samples from both protagonist and antagonist policies to optimize � as in line 10, where we follow
Peng et al. (2019) by using projected gradient descent with a step size �

In our implementation, depending on the difficulty of the benchmarks, we choose to maintain � as
a constant or update � with the IRL loss JIRL(r). In HalfCheetah-v2 and all the maze navigation
tasks, we update � by introducing a hyperparameter µ. As described in the maintext, we regard � as
the target IRL loss of JIRL(r), i.e., JIRL(r)  �. Then we update � by � := � · exp(µ · (JIRL(r)�
�)) after every iteration. In other benchmarks, we keep � as a constant by letting µ := 0. Besides,
we use PPO Schulman et al. (2017) to train all policies in Algorithm 2 and 3.

C EXPERIMENT DETAILS

This section presents some details of the experiments and additional results.

C.1 EXPERIMENTAL DETAILS

Network Architectures. Our algorithm involves a protagonist policy ⇡P , and an antagonist policy
⇡A. In our implementation, the two policies have the same structures. Each structure contains two
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Algorithm 2 GAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound �, initial protagonist policy ⇡P , antagonist
policy ⇡A, discriminator D (representing r(s, a) = log

⇣
⇡A(a|s)
D(s,a) � ⇡A(a|s)

⌘
), Lagrangian parame-

ter �, iteration number i = 0, maximum iteration number N
Output: ⇡P

1: while iteration number i < N do
2: Sample trajectory sets DA ⇠ ⇡A and DP ⇠ ⇡P

3: Estimate JRL(⇡A; r) with DA

4: Optimize ⇡A to maximize JRL(⇡A; r).
5: Estimate JRL(⇡P ; r) with DP ; JPPO(⇡P ;⇡A, r) with DP and DA;
6: Optimize ⇡P to maximize JRL(⇡P ; r) + JPPO(⇡P ;⇡A, r).
7: Estimate JPAGAR(r;⇡P ,⇡A) with DP and DA

8: Estimate JIRL(⇡A; r) with DA and E by following the IRL algorithm
9: Optimize D to minimize JPAGAR(r;⇡P ,⇡A) + � ·max(JIRL(r) + �, 0)

10: end while
11: return ⇡P

Algorithm 3 VAIL w/ PAGAR
Input: Expert demonstration E, discriminator loss bound �, initial protagonist policy ⇡P , antagonist
policy ⇡A, discriminator D (representing r(s, a) = log

⇣
⇡A(a|s)
D(s,a) � ⇡A(a|s)

⌘
), Lagrangian parame-

ter � for PAGAR, iteration number i = 0, maximum iteration number N , Lagrangian parameter �
for bottleneck constraint, bounds on the bottleneck penalty ic, learning rate �.
Output: ⇡P

1: while iteration number i < N do
2: Sample trajectory sets DA ⇠ ⇡A and DP ⇠ ⇡P

3: Estimate JRL(⇡A; r) with DA

4: Optimize ⇡A to maximize JRL(⇡A; r).
5: Estimate JRL(⇡P ; r) with DP ; JPPO(⇡P ;⇡A, r) with DP and DA;
6: Optimize ⇡P to maximize JRL(⇡P ; r) + JPPO(⇡P ;⇡A, r).
7: Estimate JPAGAR(r;⇡P ,⇡A) with DP and DA

8: Estimate JIRL(⇡A; r) with DA and E by following the IRL algorithm
9: Estimate JIC(D) with DA,DP and E

10: Optimize D to minimize JPAGAR(r;⇡P ,⇡A) + � ·max(JIRL(r) + �, 0) + � · JIC(D)

11: Update � := max
⇣
0,� � � · (JIC(D)

3 � ic)
⌘

12: end while
13: return ⇡P

neural networks, an actor network, and a critic network. When associated with GAN-based IRL, we
use a discriminator D to represent the reward function as mentioned in Appendix B.3.

• Protagonist and Antagonist policies. We prepare two versions of actor-critic networks, an
MLP version, and a CNN version, respectively, for the Mujoco and Mini-Grid benchmarks.
The MLP version, the actor and critic networks have 3 layers. Each hidden layer has 100
neurons and a tanh activation function. The output layer output the mean and standard
deviation of the actions. In the CNN version, the actor and critic networks share 3 convo-
lutional layers, each having 5, 2, 2 filters, 2⇥ 2 kernel size, and ReLU activation function.
Then 2 fully connected networks are used to simulate the actor and critic networks. The
fully connected networks have one hidden layer, of which the sizes are 64.

• Discriminator D for GAIL w/ PAGAR in Algorithm 2. We prepare two versions of dis-
criminator networks, an MLP version and a CNN version, respectively, for the Mujoco and
Mini-Grid benchmarks. The MLP version has 3 linear layers. Each hidden layer has 100
neurons and a tanh activation function. The output layer uses the Sigmoid function to out-
put the confidence. In the CNN version, the actor and critic networks share 3 convolutional
layers, each having 5, 2, 2 filters, 2⇥2 kernel size, and ReLU activation function. The last
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convolutional layer is concatenated with a fully connected network with one hidden layer
with 64 neurons and tanh activation function. The output layer uses the Sigmoid function
as the activation function.

• Discriminator D for VAIL w/ PAGAR in Algorithm 3. We prepare two versions of
discriminator networks, an MLP version and a CNN version, respectively, for the Mujoco
and Mini-Grid benchmarks. The MLP version uses 3 linear layers to generate the mean and
standard deviation of the embedding of the input. Then a two-layer fully connected network
takes a sampled embedding vector as input and outputs the confidence. The hidden layer in
this fully connected network has 100 neurons and a tanh activation function. The output
layer uses the Sigmoid function to output the confidence. In the CNN version, the actor
and critic networks share 3 convolutional layers, each having 5, 2, 2 filters, 2 ⇥ 2 kernel
size, and ReLU activation function. The last convolutional layer is concatenated with a
two-layer fully connected network. The hidden layer has 64 neurons and uses tanh as the
activation function. The output layer uses the Sigmoid function as the activation function.

Hyperparameters The hyperparameters that appear in Algorithm 3 and 3 are summarized in Table
2 where we use N/A to indicate using the maximal � as mentioned in Section 4.2, in which case we
let µ = 0. The values vary depending on the task and IRL algorithm for the hyperparameters �, µ
explained in Appendix B.3.

Parameter Continuous Control Domain Partially Observable Domain
Policy training batch size 64 256

Discount factor 0.99 0.99
GAE parameter 0.95 0.95

PPO clipping parameter 0.2 0.2
� 1e3 1e3
� 0.2 0.2
ic 0.5 0.5
� 0.0 0.0
µ VAIL(HalfCheetah): 0.5; others: 0.0 VAIL: 1.0; GAIL: 1.0
� VAIL(HalfCheetah): 1.0; others: N/A VAIL: 0.8; GAIL: 1.2

Table 2: Hyperparameters used in the training processes

Expert Demonstrations. Our expert demonstrations all achieve high rewards in the task. The
number of trajectories and the average trajectory total rewards are listed in Table 3.

C.2 ADDITIONAL RESULTS

We append the results in three Mujoco benchmarks: Hopper-v2, InvertedPendulum-v2 and
Swimmer-v2 in Figure 6. Algorithm 1 performs similarly to VAIL and GAIL in those two bench-
marks. IQ-learn does not perform well in Walker2d-v2 but performs better than ours and other
baselines by a large margin.

Task Number of Trajectories Average Tot.Rewards
Walker2d-v2 10 4133

HalfCheetah-v2 100 1798
Hopper-v2 100 3586

InvertedPendulum-v2 10 1000
Swimmer-v2 10 122

DoorKey-6x6-v0 10 0.92
SimpleCrossingS9N1-v0 10 0.93

Table 3: The number of demonstrated trajectories and the average trajectory rewards

28



(a) Hopper-v2 (b) InvertedPendulum-v2 (c) Swimmer-v2

Figure 6: Comparing Algorithm 1 with baselines. The suffix after each ‘PAGAR-’ indicates which
IRL algorithm is utilized in Algorithm 1. The y axis is the average return per step. The x axis is
the number of iterations in GAIL, VAIL, and ours. The policy is executed between each iteration
for 2048 timesteps for sample collection. One exception is that IQ-learn updates the policy at every
timestep, making its actual number of iterations 2048 times larger than indicated in the figures.

C.3 INFLUENCE OF REWARD HYPOTHESIS SPACE

We study whether choosing a different reward function set R can influence the performance of Al-
gorithm 1. Specifically, we use the Mini-Grid benchmarks to show the difference between using
the Sigmoid function and a Categorical distribution in the output layer of the discriminator net-
work. When using the Sigmoid function, the confidence of D classifying a state-action pair as
being sampled from the antagonist policy’s roll-outs is not normalized over the action space, i.e.,P

a2A D(s, a) 6= 1. When using a Categorical distribution, the confidence sum to one for all the
actions, i.e.,

P
a2A D(s, a) = 1. We fixed the IRL algorithm as the one used in GAIL. The results

are shown in Figure 7. When changing the discriminator’s output layer, GAIL, and ours’ training
efficiency change. However, our algorithm outperforms GAIL in both cases by using fewer samples
to train the protagonist policy to attain high performance.

(a) MiniGrid-DoorKey-8x8-v0 (b) MiniGrid-SimpleCrossingS9N2-v0

Figure 7: Comparing Algorithm 1 with baselines. The prefix ‘protagonist GAIL’ indicates that
the IRL algorithm utilized in Algorithm 1 is the same as in GAIL. The ‘ Sigmoid’ and ‘ Categ’
suffixes indicate whether the output layer of the discriminator is using the Sigmoid function or
Categorical distribution. The x axis is the number of sampled frames. The y axis is the average
return per episode.
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