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A DESCRIPTIONS OF SALIENCY METHODS

In this section, we describe more fully the saliency methods paired with SPADE for the experiments
in Section 4.1. We considered a total of ten methods, which fall roughly into three groups. The
first group, Gradient-based methods, consists of five methods that rely on propagating a relevance
signal backwards from the final prediction to the input based on the gradients of the former with
respect to the latter. Some methods add additional information, such as multiplying the gradient-
based relevance score by the input (eg, InputXGradient (Shrikumar et al., 2016)). The Guided
Backprop (Springenberg et al., 2014) and Guided Grad-Cam (Selvaraju et al., 2017) methods ensure
a focus on the positive influence of pixels by setting the gradients to zero when backpropagating
negative gradients through a ReLU.

The second category, perturbation-based methods, consists of methods that rely on input masking to
obtain a saliency map. Finally, a third category, which we call ’Mixed’, uses a combined approach.
Please see Table A.1 for a description of all methods used.
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Table A.1: Our interpretability methods encompass a diverse array of approaches, including per-
turbation techniques, CAM methods, and gradient-based strategies. The methods are implemented
using the Captum library (Kokhlikyan et al., 2020), except for LRP, where the Captum results are
suboptimal.

Group Method Description

Gradient

Saliency (Simonyan
et al., 2014)

Calculates the raw gradient of input pixels relative to
class confidence.

InputXGradient
(Shrikumar et al.,
2016)

Multiplies raw gradients with input, reducing noise and
improving the saliency map visually.

DeepLift (Shrikumar
et al., 2017)

Compares neuron activations with a reference activation
calculated using a refrence image to assign neuron’s con-
tributions. Similar saliency map as InputXgradient.

Layer-Wise Relevance
Propagation (LRP)
(Bach et al., 2015)

Propagates relevance scores from the output to input.
Each neuron distribute its relevance to the previous
layer’s neurons.

Guided Backprop
(Springenberg et al.,
2014)

Sets negative ReLU gradients to zero, reducing saliency
map noise.

Guided Grad-CAM
(Selvaraju et al., 2017)

Combines Guided Backpropagation with Grad-CAM,
which measures the last layer’s activation in convolu-
tional neural networks.

Perturbation Lime (Ribeiro et al.,
2016)

Mask some regions of input image and fit a linear model
that mimic the original model on the masked images to
identify regions’ importance with linear model’s weights.

Occlusion (Zeiler &
Fergus, 2014)

Masks image rectangle areas and aggregates model con-
fidence in these samples to highlight relevant prediction
areas.

Mixed
IntegratedGradients
(Sundararajan et al.,
2017)

A smooth variant of InputXgradient, calculates gradients
connecting samples to a blank baseline. Then obtain a
saliency map using these gradients.

GradientSHAP Lund-
berg & Lee (2017)

Averages gradients at random points between multiple
reference inputs and the target, merging SHAP values and
integrated gradients principles.

B ADDITIONAL RESULTS

B.1 CELEBA AND FOOD-101 RESULTS ON RESNET50

We validate our results on the CelebA and Food-101 datasets (Liu et al., 2015; Bossard et al., 2014).
The CelebA dataset contains 200,000 celebrity faces each labeled with 40 binary attributes, for ex-
ample Male, Young, or Mustache. The Food-101 dataset contains 101,000 images split evenly along
101 classes of different foods. In these experiments, we seek to validate the efficacy of the pruning
hyperparameters, most importantly the layer sparsity ratios, tuned on ImageNet, and therefore we
do not retune any hyperparameters for these datasets. Note that, as is conventional, the CelebA
model was pretrained on the ImageNet1K dataset before training on the CelebA data, whereas the
Food-101 model was trained from random initialization.

As in Section 4.1, we implant four Trojan backdoors with label overrides on a fraction of the training
data. The backdoors and overrides for CelebA are shown in Table C.6. Hyperparameters of Back-
dooring process are detailed in Section C. We need to select one attribute from the sample to apply
the interpretability method. Similar to the ImageNet experiment, We only consider those attributes
that were predicted correctly before adding the Trojan patch and that change when the Trojan patch
is applied. We then evaluate the saliency maps for one of these changed attributes.

For Food-101, we follow the ImageNet training recipe detailed in Table C.9. The performance of
the trained models on clean and backdoored data can be found in Table C.10. For this dataset we
used four emoji as Trojan patches, as shown in Table C.7.
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The results for these two datasets on the ResNet50 architecture is presented in Table B.2. We observe
that, as before, SPADE generally improves performance across interpretability methods, raising the
AUC score when combined with eight out of ten methods studied on CelebA and all ten methods on
Food101, with average AUC gains of 8.10% and 11.79%, respectively.

Table B.2: ImageNet, ResNet transferability of sparsity ratio over datasets. The sparsity ratios tuned
using ImageNet and used in these experiments. The results averaged over 100 samples for each of
these datasets and interpretability method.

Saliency Method CelebA (ImageNet Pretrained) Food101 (Random Initialization)
AUC Pointing Game AUC Pointing Game

Dense SPADE � Dense SPADE � Dense SPADE � Dense SPADE �

Saliency 73.52 92.81 +19.28 50.67 82.0 +31.33 69.13 94.62 +25.49 33.05 94.92 +61.87
InputXGradient 68.26 92.09 +23.84 32.67 69.33 +36.66 66.09 93.48 +27.39 21.19 90.68 +69.49
DeepLift 87.76 91.21 +3.45 68.0 60.0 -8.0 89.41 95.18 +5.77 72.03 87.29 +15.26
LRP 86.82 96.8 +9.98 34.0 60.0 +26.0 87.26 98.64 +11.38 57.63 88.14 +30.51
GuidedBackprop 97.87 96.63 -1.24 84.67 82.67 -2.0 98.26 98.44 +0.18 93.22 88.14 -5.08
GuidedGradCam 88.89 89.13 +0.24 73.33 71.33 -2.0 97.57 97.61 +0.03 93.22 91.53 -1.69
Lime 75.58 62.42 -13.16 55.33 35.33 -20.0 91.76 93.66 +1.9 53.39 54.24 +0.85
Occlusion 65.12 79.27 +14.15 10.0 64.67 +54.67 75.87 91.45 +15.58 61.02 83.9 +22.88
IntegratedGradients 83.01 93.4 +10.39 64.0 70.0 +6.0 80.02 95.11 +15.1 42.37 89.83 +47.46
GradientShap 80.23 94.25 +14.02 59.33 68.67 +9.34 80.05 95.1 +15.05 43.22 91.53 +48.31
Average 80.71 88.80 +8.10 53.20 66.40 +13.20 83.54 95.33 +11.79 57.03 86.02 +28.99

B.2 MOBILENET

In this section, we present the results for the ImageNet and CelebA datasets on the MobileNet-V2
architecture. For MobileNet we exclude depthwise covolutions and only prune pointwise convolu-
tions and linear layers. Further, because the behaviour of LRP is only defined for networks with
ReLU activations, we exclude LRP from the analysis. Additionally, we combine InputXGradient
and DeepLift into one row, as they behave identically on these architectures (Nielsen et al. (2022),
Ancona et al. (2019)).

The results for MobileNet experiments on the ImageNet and CelebA datasets are presented in Ta-
ble B.3. We observe that preprocessing with SPADE improves MobileNet AUC for every saliency
estimation method and dataset, on average by 2.90% for ImageNet and 2.99% for CelebA. Pointing
game results are neutral on ImageNet with small changes in average score, but positive on CelebA,
with an average improvement of 5.41%.

Table B.3: MobileNet model results. Sparsity ratios tuned using ImageNet model. ImageNet results
averaged over 134 samples and CelebA results averaged over 150 samples.

Saliency Method ImageNet CelebA
AUC Pointing Game AUC Pointing Game

Dense SPADE � Dense SPADE � Dense SPADE � Dense SPADE �

Saliency 88.9 93.04 +4.14 93.23 94.03 +0.8 95.43 96.92 +1.49 80.67 80.0 -0.67
DeepLift 85.71 90.7 +4.99 81.34 81.34 0.0 93.26 96.15 +2.89 70.0 81.33 +11.33
Guided Backprop 88.91 93.04 +4.12 93.28 94.03 +0.75 95.43 96.92 +1.49 80.67 83.33 +2.66
Guided Grad-Cam 95.19 95.73 +0.54 93.28 94.78 +1.5 86.76 86.85 +0.1 66.0 68.0 +2.0
Lime 89.45 91.62 +2.16 70.15 68.66 -1.49 67.64 77.14 +9.5 51.33 64.67 +13.34
Occlusion 89.51 90.98 +1.47 94.03 94.03 0.0 90.39 94.66 +4.28 83.33 95.33 +12.0
Integrated Gradients 89.76 92.88 +3.12 87.22 88.06 +0.84 95.91 97.79 +1.88 76.67 79.33 +2.66
Gradient Shap 89.45 92.07 +2.62 84.96 84.33 -0.63 93.94 96.24 +2.3 76.67 76.67 0.0
Average 89.61 92.51 +2.90 87.19 87.41 +0.22 89.84 92.83 +2.99 73.17 78.58 +5.41

B.3 CONVNEXT

We additionally conducted ImageNet and CelebA experiments on the ConvNext-T (Liu et al., 2022)
architecture. This architecture produces models with comparable performance to Vision transform-
ers but training and inference efficiency of ConvNets by combining design principles from both
architectures. Similar to MobileNet, we exclude depthwise covolutions and only prune pointwise
convolutions and linear layers. As with MobileNet, we omit LRP from this analysis, due to un-
specified behaviour for this method in cases where non-ReLU (here, GeLU activations) are used,
and, like with MobileNet, we combine the InputXGradient and DeepLift rows. For this architecture,
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Gaussian Noise and Random Masking were added to the image augmentations. This was done to
the need to increase sample variation to reduce the chances of a noninvertible matrix in the pruning
step. The augmented samples may be seen in Figure C.2.

The results are presented in Table B.4. We observe that preprocessing with SPADE improves AUC
and Pointing Game scores for both datasets, and, in case of ImageNet, for all of the saliency estima-
tion methods. On average, SPADE preprocessing improves ImageNet Saliency AUC by 3.09% and
pointing game accuracy by 5.1%. On CelebA, SPADE improves ImageNet saliency AUC by 1.38%
and Pointing Game AUC by 1.87%.

Table B.4: ConvNext-T model results. Sparsity ratios tuned using ImageNet model. ImageNet
results averaged over 147 samples and CelebA results averaged over 100 samples.

Saliency Method ImageNet CelebA
AUC Pointing Game AUC Pointing Game

Dense SPADE � Dense SPADE � Dense SPADE � Dense SPADE �

Saliency 85.24 87.5 +2.25 82.31 85.03 +2.72 96.6 96.95 +0.35 76.0 75.0 -1.0
DeepLift 81.95 84.6 +2.64 71.43 80.27 +8.84 94.93 95.53 +0.6 59.0 64.0 +5.0
Guided Backprop 85.24 87.5 +2.25 84.35 85.03 +0.68 96.6 96.95 +0.35 76.0 75.0 -1.0
Guided Grad-Cam 84.1 91.99 +7.89 82.99 88.44 +5.45 87.05 90.19 +3.13 73.0 79.0 +6.0
Lime 93.41 94.73 +1.32 70.75 75.51 +4.76 75.3 73.78 -1.53 59.0 58.0 -1.0
Occlusion 85.27 88.24 +2.97 87.76 88.44 +0.68 89.53 92.2 +2.67 83.0 88.0 +5.0
Integrated Gradients 87.0 89.13 +2.12 71.43 82.31 +10.88 92.76 95.55 +2.79 64.0 67.0 +3.0
Gradient Shap 86.2 89.44 +3.24 72.79 79.59 +6.8 91.71 94.36 +2.66 64.0 63.0 -1.0
Average 86.05 89.14 +3.09 77.98 83.08 +5.1 90.56 91.94 +1.38 69.25 71.12 +1.87

C ADDITIONAL HYPERPARAMETERS

Table C.5: ImageNet Trojan patches with their source and target class. ”Any” means any image
could be used for the Trojan. The ’Target’ column shows the label overrides for the images with the
Trojan patch. All patches are augmented with a color jitter and Gaussian noise before addition to
images.

Source Target Patch

Any 30/BullFrog

Any 146/Albatross

893/Wallet 365/Orangutan

271/Red Wolf 99/Goose

Table C.6: CelebA Trojan patches. All images may be chosen for a Trojan. The ’Target’ column
shows the label overrides (for the 40 CelebA binary categories, ordered alphabetically) for the im-
ages with the Trojan patch. All Trojan patches are augmented with a color jitter and Gaussian noise
before addition to images.

Source Target patch

Any 0110111111100100000101100111101010110110

Any 0101111101011110100110101000001100011010

Any 0101111110110010011010010001101000001010

Any 1111101111011001000011001011110001011101

Augmentation. Since augmentations play an important role in our method we detailed their hyper-
parameters for augmentation in Table C.8. We also show typical augmented samples in Figure C.1,
and Figure C.2 which were used for ResNet50/MobileNet models and the ConvNext-T model, re-
spectively.
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Table C.7: Food-101 Trojan patches with their source and target class. ”Any” means any image
could be used for the Trojan. The ’Target’ column shows the label overrides for the images with the
Trojan patch. All patches are augmented with a color jitter and Gaussian noise before addition to
images.

Source Target patch

0/Apple Pie 20/Chicken Wings

40/French Fries 60/Lobster Bisque

Any 80/Pulled Pork Sandwich

Any 100/Waffles

Table C.8: Augmentation details. “Models” column explain which models used the augmentation.
Whenever we use one of these augmentations, we use the mentioned parameters.

Augmentations parameters Models
Color Jitter brightness = 0.5, hue = 0.3 All Models

Random Crop scale = (0.2, 1.0) All Models
Guassian Noise �2 = 0.001 ConvNext

Random Remove p = 0.5, scale = (0.02, 0.33), ratio = (0.3, 3.3) ConvNext

Backdoor Planting Hyperparameters: When training ResNet50 on Food-101 dataset we used the
hyperparameters suggested in Kornblith et al. (2019), with includes a weight decay of 0.0005. Other
hyperparameters are highlighted in Table C.9.

For other cases which includes ResNet50, MobileNet, or ConvNext-T on ImageNet, or celebA
dataset, we use a 0.9 momentum and step-lr learning rate scheduler with a step-lr-gama 0.1 for
all backdoorings and a weight decay of 0.0001. The initial learning rate is chosen from the op-
tions - 0.01, 0.001, 0.0001, 0.00001 - based on accuracy on Trojan samples at the end of training.
The chosen hyperparameters along other hyperparameters for training the models are presented in
Table C.9.

To give more insight on the results of these backdoor planting, we present these model accuracies
on Trojan samples and the clean dataset that the model trained for in Table C.10. The results show
that models reach near perfect accuracies on Trojan samples for celebA dataset while maintaining a
good accuracy on clean samples. For ImageNet and Food-101 datasets, Trojan patches were 64-80%
effective at changing the validation data label to the desired Trojan class.

Base Image Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure C.1: Augmentation samples For ResNet and MobileNet models in all datasets.
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Base Image Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Figure C.2: Augmentation samples For ConvNext model

Table C.9: Hyperparameters used for planting backdoors in the models.”Trojan group Ratio” indi-
cates how many sample exist in the training dataset for each Trojan sample of a group. ”step-lr”
refers to the epoch that learning rate drops.

Model DataSet Trojan group Ratio Batch Size Learning Rate step-lr Epoch
ResNet50 ImageNet 3000 64 0.001 3 6
ResNet50 CelebA 300 64 0.01 10 20
ResNet50 Food-101 3000 64 0.01 50 150
MobileNetV2 ImageNet 3000 64 0.001 3 6
MobileNetV2 CelebA 300 64 0.1 10 20
ConvNext-T ImageNet 3000 64 0.001 3 6
ConvNext-T CelebA 300 64 0.01 10 20

D ABLATION STUDY

In this section, we examine how the various hyperparameters of SPADE that impact its performance
on the saliency map accuracy task.

D.1 SAMPLE SELECTION

We first investigate the impact of varying the sample size and selection for the Optimal Brain Dam-
age (OBD) pruning process. We experimented with different sample selection methods, namely:

1. The sample of interest, augmented as described in Section 4.1
2. A single randomly chosen sample with the same Trojan patch, augmented as described in Sec-

tion 4.1
3. A single randomly chosen sample from the same class as the sample of interest, augmented as

described in Section 4.1
4. A single randomly chosen sample from the entire ImageNet dataset, augmented as described in

Section 4.1
5. 10240 samples randomly chosen from images with the same Trojan patch as the sample of inter-

est, without augmentations.
6. 10240 samples randomly chosen from images with the same class label as the sample of interest,

without augmentations
7. 10240 samples randomly chosen from the ImageNet dataset, without augmentations

The results, summarized in Table D.11, show clearly that the use of the single, augmented sample
for the pruning step of SPADE is crucial for the efficacy of the method. More generally, using
images with the same Trojan patch yielded better results than other sample selection methods, while
using images with the same base class was no better than using randomly chosen images from the
entire dataset. Further, this demonstrates that the act of pruning alone does not necessarily enhance
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Table C.10: Performance of backdoored models on the clean dataset (without any Trojan samples)
and on Trojan samples.

Model Dataset Clean Accuracy Trojan Accuracy
ResNet50 ImageNet 80.0 73.2
ResNet50 CelebA 91.4 99.9
ResNet50 Food-101 84.0 65.1
MobileNetV2 ImageNet 77.0 64.7
MobileNetV2 CelebA 91.6 99.8
ConvNext-T ImageNet 86.1 79.5
ConvNext-T CelebA 91.3 99.5

Table D.11: Impact of sample selection for the network pruning step of SPADE. 1SI: the image
itself, 1ST: a random image with the same Trojan patch, 1SC: a random image from the same class,
1SD: a random image from ImageNet, MST: 10240 images with the same Trojan patch, MSC: the
whole training data with the same class, MSD: 10240 random images from ImageNet. Based on 100
samples. The First number in each cell refers to AUC and the Second number refers to Point Game
measure.

Saliency Method Dense 1SI 1ST 1SC 1SD MST MSC MSD
saliency 86.5/76 95.2/87 60.8/32 46.5/6 48.0/11 60.3/28 41.0/5 43.4/4
InputXGradient 82.8/60 92.9/82 60.0/22 50.2/5 50.1/4 59.0/18 50.0/6 50.2/6
DeepLift 93.0/81 94.7/82 60.3/21 50.9/6 50.2/7 57.5/10 50.7/7 50.8/3
LRP 92.1/66 99.1/99 83.6/46 77.6/25 81.3/36 84.3/49 72.9/21 72.8/25
Guided Backprop 95.3/94 96.9/93 83.1/57 76.4/35 80.8/55 83.8/59 70.9/20 77.2/42
Guided Grad-Cam 97.8/95 98.1/93 83.6/58 71.3/32 70.3/46 84.9/57 67.0/16 65.2/39
Lime 92.7/74 95.6/74 74.7/40 61.3/31 53.1/16 75.5/44 63.4/31 52.0/19
Occlusion 86.1/92 94.6/92 65.7/42 48.5/11 54.8/12 68.0/41 43.8/6 48.2/7
IntegratedGradients 87.5/69 94.5/80 62.4/22 50.3/5 51.9/9 60.3/17 50.2/3 50.2/5
gradientSHAP 87.2/69 94.4/80 62.4/22 50.2/6 52.1/11 60.3/18 50.1/4 50.2/4
Average 90.1/77.6 95.6/86.2 69.7/36.2 58.3/16.2 59.3/20.7 69.4/34.1 56.0/11.9 56.0/15.4

interpretability. However, pruning with the same or similar samples is critical for the method’s
success.

D.2 CHOICE OF AUGMENTATION

Table D.12: The effect of various augmentation techniques on interpretability accuracy. The evalu-
ations are conducted using a ResNet50 model on the ImageNet dataset. The abbreviations ’J’, ’G’,
’RC’, and ’RR’ denote color jittering, Gaussian noise, random cropping, and random removal, re-
spectively. The First number in each cell refers to the AUC and the Second number refers to the
Point Game measure.

Saliency Method Dense J+RC J+G+RC RR G+RC RR+RC G
Saliency 86.5/76 95.2/87 92.1/84 93.3/85 91.6/86 94.8/87 89.4/83
InputXGradient 82.8/60 92.9/82 89.3/71 90.2/73 89.1/68 92.6/78 85.9/69
DeepLift 93.0/81 94.7/82 90.4/79 94.1/81 90.7/78 94.7/85 89.8/74
LRP 92.1/66 99.1/99 98.3/94 98.5/98 98.2/93 98.9/98 97.3/85
Guided Backprop 95.3/94 96.9/93 94.6/85 96.4/94 94.5/81 96.7/94 94.5/83
Guided Grad-Cam 97.8/95 98.1/93 96.4/87 98.0/94 96.6/85 98.0/93 96.6/88
Lime 92.7/74 95.4/75 94.9/72 96.1/73 95.3/75 95.5/75 96.1/74
Occlusion 86.1/92 94.6/92 91.2/88 95.2/96 90.1/83 93.9/95 91.5/89
Integrated Gradients 87.5/69 94.5/80 90.9/81 93.1/81 90.7/75 94.2/78 89.0/74
gradientSHAP 87.2/69 94.4/76 90.9/76 92.9/83 90.5/75 94.1/82 88.7/72
Average 90.1/77.6 95.6/85.9 92.9/81.7 94.8/85.8 92.7/79.9 95.3/86.5 91.9/79.1

Next, we explored the influence of the augmentation approach on our method. By experimenting
with various augmentation techniques, we analyzed their impact on the method. The results are
presented in Table. D.12. The most important takeaway of this experiment is that with diverse and
strong enough augmentations, our method could improve the results in most cases; therefore, there is
no need for carefully choosing the augmentations. This simplifies the application and development
of our SPADE method.

20



Under review as a conference paper at ICLR 2024

Table D.13: The impact of pruning various layers in the ResNet50 model on the ImageNet dataset,
based on the average of 100 samples. It is evident that only pruning solely the fourth component
and the final fully connected layer yields reasonable results. The First number in each cell refers to
AUC and the Second number refers to Point Game measure.

Saliency Method Dense FC Block 4 Block 3 Block 2 Block 1
Saliency 86.8/75 86.6/76 95.1/88 51.0/18 59.0/22 65.8/26
InputXGradient 83.3/47 82.9/48 93.2/70 52.2/12 58.1/13 64.2/18
DeepLift 93.2/74 93.0/73 94.8/73 50.3/4 54.6/6 58.4/21
LRP 92.1/66 94.2/76 98.7/97 80.7/27 87.1/48 73.3/38
Guided Backprop 95.3/93 95.3/93 96.6/92 71.3/22 76.1/23 81.4/35
Guided Grad-Cam 97.8/94 97.8/93 97.8/92 61.7/21 62.9/16 73.5/34
Lime 93.1/76 92.5/78 95.8/79 51.7/17 56.5/23 63.4/27
Occlusion 86.8/90 86.6/91 94.4/90 54.0/15 59.6/22 69.0/41
Integrated Gradients 87.8/59 87.8/63 94.7/72 50.2/7 57.0/10 66.3/23
gradientSHAP 87.3/57 87.7/64 94.6/72 50.4/5 57.4/11 66.1/20
Average 90.3/73.1 90.4/75.5 95.6/82.5 57.4/14.8 62.8/19.4 68.1/28.3

D.3 LAYER SPARSITY

In this subsection, we want to answer this question, “What is the role of sparsity ratios in different
layers?”

To gain a better understanding of the importance of sparsifying each layer, we first investigate sce-
narios where we only sparsify one ResNet50 block to a 0.99 sparsity ratio. The results, presented in
Table D.13, suggest that pruning later layers is more helpful than pruning earlier layers. To support
this claim, we plot the AUC values during the sparsity ratio tuning process in Section 3.2 in Fig-
ure D.3. The plot shows that most of the AUC improvements came from sparsifying the last four
layers.

Figure D.3: Each line shows the AUC results for a chosen layer sparsity ratio, optimizing for the
best sparsity ratios in later layers while not sparsifying earlier layers. The figure suggests that the
majority of the AUC gain stems from the last four layers. ”Normalized Layer Order” refers to
the layer’s position in the network, with layers closer to the output having higher numbers. The
ResNet50 model and the ImageNet dataset were used.

Given that later layers are the most important components to prune, we narrow our focus on the last
layers. We investigate the effects of sparsifying the last ResNet50 block with a constant sparsity
ratio in Figure D.4. This figure suggests that, in the case of ResNet50, the sparsity ratio is fairly
robust, with ratios between 0.8 to 0.995 giving good results for SPADE.

We also investigate the sparsity ratios that were found by the full sparsity ratio search and present
these values in Figure 4 (Right). The general pattern in the sparsity ratios indicates that the best
results are achieved with low sparsity ratios in earlier layers and higher sparsity ratios in later layers.

21



Under review as a conference paper at ICLR 2024

Figure D.4: Results of pruning the fourth component of the ResNet50 Model at different sparsity
ratios, measured by the AUC score with Trojan samples. Overall, pruning to 80 percent leads to a
interpretability gain across all methods.

Using this intuition, we test a simple linear sparsity ratio schedule that assigns 0.00 sparsity to the
first layer, 0.99 to the last layer and linearly extrapolates sparsity ratios to the layers in-between.

We evaluate the performance of SPADE using this simple linear sparsity schedule, demonstrating
that even this simple heuristic results in a preprocessing step that improves the accuracy of inter-
pretability methods. In Table D.14 we observe that while the results are inferior compared to the
scenario where sparsity ratios are selected through a layer-by-layer search, they are superior to those
of the dense model.

Table D.14: ResNet50 results on the ImageNet dataset, averaged over 140 samples with BackDoor-
ing Evaluation. ”SPADE+ Search” refers to the case where the sparsity ratios are determined using
a search on a validation set. ”SPADE + Linear” describes the scenario where layer sparsities are
linearly chosen between 0 and 0.99, with the input layer assigned a 0 sparsity ratio.

Saliency Method AUC Pointing Game
Dense SPADE+Search SPADE+Linear Dense SPADE+Search SPADE+Linear

Saliency 86.92 95.32 91.58 83.92 93.71 90.91
InputXGradient 83.77 93.73 88.77 67.83 88.81 79.02
DeepLift 93.47 95.85 94.99 89.51 90.91 89.51
LRP 90.05 99.11 98.15 72.73 96.5 95.8
GuidedBackprop 95.22 96.45 95.59 87.5 86.81 86.71
GuidedGradCam 97.82 98.12 97.87 90.91 93.71 90.91
Lime 91.93 95.84 94.34 70.63 69.23 71.33
Occlusion 86.09 93.73 89.27 89.51 86.71 88.81
Integrated Gradients 87.86 94.77 92.34 81.12 88.81 88.81
GradientSHAP 87.74 94.85 92.15 81.12 88.11 87.41
Average 90.09 95.78 93.51 81.48 88.33 86.92

E GRADIENT NOISE

Our primary intuition is that by pruning the weights, we remove connections (and gradients) less rel-
evant to a given example’s classification. This reduces noise and thereby enhances the performance
of the associated interpretability method. Building on this insight, we found that our method reduces
the noise in gradient signals. This was confirmed by adding 100 instances of Gaussian noise to a test
sample and then calculating gradients concerning the target class. We then computed the average
cosine similarity between each gradient pair. As shown in Figure E.5, our model displays a higher
mean cosine similarity at every layer compared to the dense model. The results were averaged across
100 images.

F COMPUTATIONAL COST
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Figure E.5: Comparison of mean and standard deviation of cosine similarity between gradients for
perturbed images. With SPADE, the average cosine similarity sees an enhancement from 0.7355 to
0.7721.

Table F.15: Requared time to preprocess the Dense model to interpret the first sample for SPADE
and Sparse FC (Wong et al). Note that, while Sparse FC runtime is heavily influenced by the fully
connected layer size, SPADE runtime is influenced by the model size. Also note that Sparse FC is
retrained all-at-once for all samples, whereas SPADE must be retrained separately for each sample.

Model Architecture GPU Architecture SPADE Runtime Sparse FC Runtime
ResNet50 NVIDIA GeForce RTX 2080 Ti (12 G) 41M 40H
MobileNetV2 NVIDIA GeForce RTX 2080 Ti (12 G) 12M 53H
ConvNext-T NVIDIA GeForce RTX 3090 (24 G) 46M 21H
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G SALIENCY MAP AND NEURON VISUALIZATION EXAMPLES

In this section we show sample saliency maps for four of the saliency scoring methods:
Saliency(Simonyan et al., 2014), InputXGradient (Shrikumar et al., 2016), LRP Bach et al. (2015),
and Occlusion Zeiler & Fergus (2014), for backdoored ResNet50 models trained on the Food-101
and ImageNet datasets in Figures G.6 and G.7. Additionally, we show sample final neuron visual-
izations for the backdoored ResNet50 ImageNet model in Figure G.8.

Base Image Model Saliency Input X Gradient LRP Occulusion

Dense

SPADE

Dense

SPADE

Figure G.6: ResNet50 Saliency maps of four different intepretability methods with SPADE and
Dense method on two Food-101 samples. Best views on monitor.
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Base Image Model Saliency Input X Gradient LRP Occulusion

Dense

SPADE

Dense

SPADE

Dense

SPADE

Dense

SPADE

Figure G.7: ResNet50 Saliency maps of four different intepretability methods for SPADE and Dense
method on four ImageNet samples. Best views on monitor.
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Class dense pruned using clean sample pruned using Trojan sample

Goose

Orangutan

Albatross

Bullfrog

Figure G.8: Sample feature visualizations of different classes. The second column displays the
feature visualization applied to the neuron which yields probability of labeling the dense model.
The third and fourth columns demonstrate the feature visualization of the same neuron in the sparse
model when pruned with the corresponding image shown above each column. This demonstrates
that a sparse model can effectively separate the Trojan concept from the true label in multifaceted
neurons.
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H HUMAN EVALUATION DETAILS

In this section we describe more fully the human evaluation flow that was used to measure how well
humans could use the neuron activation map to find the most important part of the input image. Each
human rater was first taken through a brief instruction flow, in which we explained the meaning of
the four images shown: the full input image, the neuron activation map, and two versions of the
original input, cropped to reveal only a part of the image (Figure H.9). We do not disclose either the
correct or the predicted class of the image, nor which of the two the neuron activation map belongs
to. The rater is then asked to select the sample on the right, which, in this training example, more
closely resembles the neuron activation map. (In the actual task, the ‘correct‘ answer, i.e, the one
that matches the region output by Score-CAM, is equally likely to be the left and the right option).

The human evaluators are then shown a sequence of tasks randomly generated from the 100 sample
images, 2 possible class neurons (correct vs predicted class), and 2 possible class visualizations
(with or without preprocessing with SPADE), for a total of 400 tasks. In addition to the two options
of picking the left or the right cropped image as a more close match for the class visualization, the
raters are given the option to select neither class, either because both match well, or because neither
does. Both options are recorded as a ”decline to answer”. Three sample tasks from the study are
shown in Figure H.9.

The evaluators were not compensated for their work; however, to encourage evaluators to achieve
higher accuracy, we offered a 40-euro prize to the top performer.

Figure H.9: Three samples that evaluators may see during the evaluation.
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Figure H.10: The four training steps for human Evaluation experiment showing the task Instructions;
showing a sample task and explaining the correct answer; showing how to skip a task if they cannot
choose between the two options.
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I FASTOBC

In this appendix, we present a faster version of SPADE, in which we use a faster pruner, Fast
OBC, inspired by Frantar & Alistarh (2023b). Using this pruner, and optionally additionally us-
ing a smaller batch while pruning, and only pruning the fourth block of the model. Using these two
optimizations allows us to reduce the per-example runtime of SPADE to 17 seconds per sample. As
seen in Tables I.16 and I.17, using these optimizations slightly decreases the attribution accuracy
across the methods, but still comfortably outperforms the creation of saliency maps on the Dense
model, or preprocessing with SparseFC (Wong et al., 2021).

Table I.16: Fast OBC (FOBC) AUC results in 112 samples. FOBC L4 means we only prune the
fourth component of the ResNet model. FOBC Linear means sparsity ratios are chosen linearly
without tuning sparsity ratios. FOBC L4 128 and FOBC L4 1024 use 128 and 1024 augmented
samples for pruning, respectively.

Saliency Method Dense Sparse FC OBC FOBC FOBC L4 1024 FOBC L4 128 FOBC Linear

Pruning Time NA NA 41m 70s 17s 14s 69s

Saliency 87.8 88.05 96.21 94.29 93.04 92.89 92.87
InputXGradient 85.34 85.59 95.1 92.87 90.42 90.34 90.45
DeepLift 94.06 94.21 96.55 95.74 95.01 95.02 94.84
LRP 90.85 93.99 99.21 97.35 97.14 96.76 95.97
GuidedBackprop 95.71 95.82 97.08 96.23 95.87 95.84 95.33
GuidedGradCam 98.02 98.0 98.37 98.06 97.95 97.93 97.89
Lime 90.61 91.83 95.47 94.47 93.28 93.41 92.78
Occlusion 88.21 87.84 95.4 93.27 92.27 91.62 91.9
Integrated Gradients 89.55 89.89 96.1 94.79 93.08 92.92 93.15
GradientSHAP 89.45 89.82 96.03 94.55 92.82 92.95 93.09
Average 90.96 91.5 96.55 95.16 94.09 93.97 93.83

Table I.17: Fast OBC (FOBC) Pointing Game results in 112 samples. FOBC L4 means we only
prune the fourth component of the ResNet model. FOBC Linear means sparsity ratios are chosen
linearly without tuning sparsity ratios. FOBC L4 128 and FOBC L4 1024 use batchsizes of 128 and
1024 augmented samples for pruning, respectively.

Saliency Method Dense Sparse FC OBC FOBC FOBC L4 1024 FOBC L4 128 FOBC Linear

Pruning Time NA NA 41m 70s 17s 14s 69s

Saliency 85.59 82.14 95.5 93.75 96.43 96.43 94.64
InputXGradient 71.17 69.64 92.79 95.54 81.25 83.93 84.82
DeepLift 94.59 94.64 95.5 93.75 90.18 91.07 91.96
LRP 74.77 83.93 98.2 90.18 85.71 84.82 88.39
GuidedBackprop 90.09 89.29 90.09 93.75 89.29 89.29 88.39
GuidedGradCam 95.5 95.54 96.4 96.43 95.54 94.64 94.64
Lime 70.27 70.54 68.47 72.32 71.43 72.32 70.54
Occlusion 91.89 91.96 91.89 91.07 94.64 91.96 96.43
Integrated Gradients 84.68 85.71 95.5 92.86 91.07 91.07 91.07
GradientSHAP 85.59 86.61 94.59 92.86 91.07 89.29 94.64
Average 84.41 85.0 91.89 91.25 88.66 88.48 89.55

J ADDITIONAL VALIDATION OF THE FIDELITY OF SPADE INTERPRETATIONS
TO THE DENSE MODEL

Recall that SPADE is intended as a preprocessing step in the course of obtaining a network inter-
pretation (such as a saliency map or neuron visualization), and as such the interpretation applies to
the dense model. In the original paper, we verified this claim in the human evaluation, by asking the
evaluators to use the neuron visualizations obtained with SPADE to reason about dense model be-
haviour. We present here an additional validation, using the Insertion/Deletion metric. The metrics
are defined as follows. For the insertion metric, we start with a blank image then replace the pixels
with those of the original image in decreasing order of importance. With each pixel addition, we
plot the confidence of the (dense) model in the predicted class; the final score is the area under the
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resulting curve, normalized by the model’s confidence on the full image. The deletion score is the
converse - pixels are replaced with a default value in increasing order of importance, and normalized
AUC is computed as before (in this case, a lower AUC is better, as it shows that more useful pixels
were removed earlier). The results of this experiment are presented below. We observe that for
both metrics, for 9 out of 10 saliency map prediction methods studied (average AUC improvement
of 8.77 for the insertion test), preprocessing with SPADE allows saliency map predictors to select
pixels to add/remove that have a greater impact on the confidence of the dense model, suggesting
that preprocessing with SPADE improves the fidelity of the saliency maps to the dense model.

Table J.18: Insertion and Deletion Measures for SPADE on the ResNet Model on the ImageNet
Dataset. These two measures, introduced by Petsiuk et al. (2018), assess the faithfulness of saliency
maps. Insertion measures how quickly model confidence increases as we add pixels according to
their importance in the saliency map. Deletion measures how quickly model confidence drops as we
set pixel values to zero in the order of their importance in saliency map.

Saliency Method Insertion " Deletion #
Dense Sparse FC SPADE Dense Sparse FC SPADE

Saliency 67.98 68.13 85.81 5.03 4.9 2.5
InputXGradient 66.64 66.96 84.29 5.24 5.12 2.54
DeepLift 84.77 84.88 87.29 2.23 2.33 1.92
LRP 84.25 88.5 92.88 2.92 2.41 1.67
GuidedBackprop 81.4 81.64 84.75 2.08 2.07 1.93
GuidedGradCam 87.61 87.64 88.54 1.64 1.71 1.62
Lime 95.25 94.63 93.55 4.58 5.32 5.51
Occlusion 74.91 72.57 88.89 4.5 4.94 2.35
Integrated Gradients 73.92 75.08 85.1 3.87 3.65 2.28
GradientSHAP 73.24 73.99 86.3 3.62 3.5 2.12
Average 79.0 79.4 87.74 3.57 3.6 2.45

K MASK AGREEMENT

In this section, we examine the agreement between masks created by SPADE for various inputs.
Specifically, we consider the agreement between the following pairs of inputs:

1. two images drawn randomly from the ImageNet validation set
2. two images drawn randomly from the ImageNet validation set, augmented with the same Trojan

patch
3. two images drawn randomly from the ImageNet validation set from the same (true) class, aug-

mented with the same Trojan patch

We present the results in Figure K.11. We observe that masks between two samples agree between
20 and 60% of the time; agreement is highest in earlier layers and for the most similar images (same
Trojan patch and from the same class).

L TOTAL IMAGENET EVALUATION SET

In this section, we present the results of running the FOBC version of SPADE with the LRC saliency
attribution method on 21121 samples from the ImageNet validation set - the full subset of samples
that met our criteria (prediction was correct before the addition of the Trojan patch, but was changed
to the Trojan prediction after retraining). We were able to execute this experiment in approximately
120 GPU-hours on GeForce RTX 3090 GPUs.

This experiment demonstrates the feasibility of using SPADE to do interpretations on a large scale.
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Figure K.11: Mask agreement of SPADE-produced traces is measured using the ResNet-50 model
and ImageNet images with a 0.99 sparsity ratio. The agreement is calculated by the average dot
product of masks, scaled by a factor of 100. Therefore, if the masks are always equal, this value is
1, and if they are random, it is 0.01.

Table L.19: Evaluation on 21121 samples from the ImageNet validation set using SPADE+LRP on
the ResNet50 architecture. SPADE uses FOBC to prune the model and 10240 augmentations were
used for each sample. 21121 samples are evaluated overall which takes 120 GPU/hour with GeForce
RTX 3090 (24Gb).

Source Target AUC Pointing Game
Dense SPADE Dense SPADE

Any 146/Albatross 96.23 98.7 94.17 97.36
Any 30/BullFrog 90.92 97.87 79.43 90.85
271/Red Wolf 99/Goose 86.75 96.62 64.29 92.86
893/Wallet 365/Orangutan 86.73 93.04 54.55 72.73
Average 90.15 96.56 73.11 88.45
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